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1. Introduction

Dual numbers were first given by Clifford (1845–1879), and some properties of those were studied
in the geometrical investigation, and Kotelnikov [1] introduced their first applications. Study applied
to line geometry and kinematics dual numbers and dual vectors [2]. He demonstrated that the directed
lines of Euclidean 3-space and the points of the dual unit sphere in D3 have a one-to-one relationship.
Field theory also relies heavily on these numbers [3]. The most intriguing applications of dual numbers
in field theory are found in a number of Wald publications [4]. Dual numbers have contemporary
applications in kinematics, dynamics, computer modeling of rigid bodies, mechanism design, and
kinematics [5–7].

Complex numbers have significant advantages in derivative computations. However, the second
derivative computations lost these advantages [8]. J. A. Fike developed the hyper-dual numbers to
solve this issue [9]. These numbers may be used to calculate both the first and second derivatives while
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maintaining the benefits of the first derivative using complex numbers. Furthermore, it is demonstrated
that this numerical approach is appropriate for open kinematic chain robot manipulators, sophisticated
software, and airspace system analysis and design [10].

In the literature, sequences of integers have an important place. The most famous of these sequences
have been demonstrated in several areas of mathematics. These sequences have been researched
extensively because of their complex characteristics and deep connections to several fields of
mathematics. The Fibonacci and Lucas sequences and their related numbers are of essential importance
due to their various applications in biology, physics, statistics, and computer science [11–13]. Many
authors were interested in introducing and investigating several generalizations and modifications of
Fibonacci and Lucas sequences. The authors investigated two classes that generalize Fibonacci and
Lucas sequences, and they utilized them to compute some radicals in reduced forms. Panwar [14]
defined the generalized k-Fibonacci sequence as

Fk,n = pkFk,n−1 + qFk,n−2,

with initial conditions Fk,0 = a and Fk,1 = b. If a = 0, k = 2, p = q = b = 1, the classic Pell sequence
and for a = b = 2, k = 2, p = q = 1, Pell-Lucas sequences appear.

The Pell numbers are the numbers of the following integer sequence:

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, ...

The sequence of Pell numbers, which is denoted by Pn is defined as the linear reccurence relation

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1, n ≥ 2.

The integer sequence of Pell-Lucas numbers denoted by Qn is given by

2, 2, 6, 14, 34, 82, 198, 478, 1154, 2786, 6726, ...,

with the same reccurence relation

Qn = 2Qn−1 + Qn−2, Q0 = Q1 = 2, n ≥ 2.

The characteristic equation of these numbers is x2 − 2x− 1 = 0, with roots α = 1 +
√

2 and β = 1−
√

2
and the Binet’s forms of these sequences are given as [15–18],

Pn =
αn − βn

α − β
(1.1)

and
Qn = αn + βn. (1.2)

The set of dual numbers is defined as

D = {d = a + εa∗ | a, a∗ ∈ R, ε2 = 0, ε , 0}.

The set of hyper-dual numbers is

D̃ = {γ = γ0 + γ1ε + γ2ε
∗ + γ3εε

∗ | γ0, γ1, γ2, γ3 ∈ R} ,
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or can be rewritten as

D̃ = {γ = d + ε∗d∗ | d, d∗ ∈ D} ,

where ε, ε∗ and εε∗ are hyper-dual units that satisfy

(ε)2 = (ε∗)2 = 0, ε , ε∗ , 0, εε∗ = ε∗ε.

This set forms commutative and associative algebra over both the dual and real numbers [8–10].
The square root of a hyper-dual number γ can be defined by

√
γ =
√
γ0 +

γ1

2
√
γ0
ε +

γ2

2
√
γ0
ε∗ + (

γ3

2
√
γ0
−

γ1γ2

4γ0
√
γ0

)εε∗. (1.3)

A hyper-dual vector is any vector of the form

~γ = ~γ0 + ~γ1ε + ~γ2ε
∗ + ~γ3εε

∗,

where ~γ0, ~γ1, ~γ2, ~γ3 are real vectors, this vector can be rewritten as ~γ = ~d + ε∗~d∗, where ~d and ~d∗ are
dual vectors. Let ~γ and ~δ be hyper-dual vectors, then their scalar product is defined as

〈~γ,~δ〉HD =〈~γ0, ~δ0〉 +
(
〈~γ0, ~δ1〉 + 〈~γ1, ~δ0〉

)
ε +

(
〈~γ0, ~δ2〉 + 〈~γ2, ~δ0〉

)
ε∗

+
(
〈~γ0, ~δ3〉 + 〈~γ1, ~δ2〉 + 〈~γ2, ~δ1〉 + 〈~γ3, ~δ0〉

)
εε∗, (1.4)

which continents inner products of real vectors.
Let f (x0 + x1ε + x2ε

∗ + x3εε
∗) be a hyper-dual function, then

f (x0 + x1ε + x2ε
∗ + x3εε

∗) = f (x0) + x1 f (x0)ε + x2 f ′(x0)ε∗ + (x3 f ′(x0) + x1x2 f ′′(x0))εε∗. (1.5)

Suppose ~γ, ~δ and Φ be unit hyper-dual vectors and hyper-dual angle respectively then by using (1.5)
the scalar product can be written as

〈~γ,~δ〉HD = cos Φ

= cos φ − ε∗φ∗ sin φ (1.6)
= (cosψ − εψ∗ sinψ) − ε∗φ∗(sinψ + εψ∗ cosψ),

where φ and ψ are, respectively, dual and real angles.
The norm of a hyper-dual vector ~γ is given by∥∥∥~γ∥∥∥

HD
=

∥∥∥~γ0

∥∥∥ +

〈
~γ0, ~γ1

〉∥∥∥~γ0

∥∥∥ ε +

〈
~γ0, ~γ2

〉∥∥∥~γ0

∥∥∥ ε∗ +

〈~γ0, ~γ3
〉∥∥∥~γ0

∥∥∥ +

〈
~γ1, ~γ2

〉∥∥∥~γ0

∥∥∥ −

〈
~γ0, ~γ1

〉 〈
~γ0, ~γ2

〉∥∥∥~γ0

∥∥∥3

 εε∗,
for

∥∥∥~γ0

∥∥∥ , 0. If
∥∥∥~γ∥∥∥

HD
= 1 that is

∥∥∥~γ0

∥∥∥ = 1 and 〈~γ0, ~γ1〉 = 〈~γ0, ~γ2〉 = 〈~γ0, ~γ3〉 = 〈~γ1, ~γ2〉 = 0, then ~γ is a
unit hyper-dual vector.

In this paper, we introduce the hyper-dual Pell and the hyper-dual Pell-Lucas numbers, which
provide a natural generalization of the classical Pell and Pell-Lucas numbers by using the concept
of hyper-dual numbers. We investigate some basic properties of these numbers. We also define a new
vector and angle, which are called hyper-dual Pell vector and angle. We give properties of these vectors
and angles to exert in the geometry of hyper-dual space.
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2. Hyper-dual Pell and Hyper-dual Pell-Lucas numbers

In this section, we define the hyper-dual Pell and hyper-dual Pell-Lucas numbers and then
demonstrate their fundamental identities and properties.

Definition 2.1. The nth hyper-dual Pell HPn and hyper-dual Pell-Lucas HQn numbers are defined
respectively as

HPn = Pn + Pn+1ε + Pn+2ε
∗ + Pn+3εε

∗ (2.1)

and

HQn = Qn + εQn+1 + ε∗Qn+2 + εε∗Qn+3, (2.2)

where Pn and Qn are nth Pell and Pell-Lucas numbers.

The few hyper-dual Pell and hyper-dual Pell-Lucas numbers are given as

HP1 = 1 + 2ε + 5ε∗ + 12εε∗,HP2 = 2 + 5ε + 12ε∗ + 29εε∗, ...

and

HQ1 = 2 + 6ε + 14ε∗ + 34εε∗,HQ2 = 6 + 14ε + 34ε∗ + 82εε∗, ...

Theorem 2.1. The Binet-like formulas of the hyper-dual Pell and hyper-dual Pell-Lucas numbers are
given, respectively, by

HPn =
ϕn ϕ − ψn ψ

ϕ − ψ
(2.3)

and

HQn = ϕn ϕ + ψn ψ, (2.4)

where

ϕ = 1 + ϕε + ϕ2ε∗ + ϕ3εε∗, ψ = 1 + ψε + ψ2ε∗ + ψ3εε∗. (2.5)

Proof. From (2.1) and the Binet formula of Pell numbers, we obtain

HPn = Pn + Pn+1ε + Pn+2ε
∗ + Pn+3εε

∗

=
ϕn − ψn

ϕ − ψ
+
ϕn+1 − ψn+1

ϕ − ψ
ε +

ϕn+2 − ψn+2

ϕ − ψ
ε∗ +

ϕn+3 − ψn+3

ϕ − ψ
εε∗

=
ϕn(1 + ϕε + ϕ2ε∗ + ϕ3εε∗)

ϕ − ψ
−
ψn(1 + ψε + ψ2ε∗ + ψ3εε∗)

ϕ − ψ

=
ϕn ϕ − ψn ψ

ϕ − ψ
.
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On the other hand, using (2.2) and the Binet formula of Pell-Lucas numbers we obtain

HQn = Qn + Qn+1ε + Qn+2ε
∗ + Qn+3εε

∗

= (ϕn + ψn) +
(
ϕn+1 + ψn+1

)
ε +

(
ϕn+2 + ψn+2

)
ε∗ +

(
ϕn+3 + ψn+3

)
εε∗

= ϕn(1 + ϕε + ϕ2ε∗ + ϕ3εε∗) + ψn(1 + ψε + ψ2ε∗ + ψ3εε∗)

= ϕn ϕ + ψn ψ.

�

The proof is completed.

Theorem 2.2. (Vajda-like identities) For non-negative integers m, n, and r, we have

HPmHPn − HPm−rHPn+r = (−1)n+1Pm−n−rPr (1 + 2ε + 6ε∗ + 12εε∗) ,

HQmHQn − HQm−rHQn+r = (−1)n Qm−n − (−1)n+r Qm−n−2r (1 + 2ε + 6ε∗ + 12εε∗) .

Proof. By using the Binet-like formula of hyper-dual Pell numbers, we obtain

HPmHPn − HPm−rHPn+r =

( ϕmϕ − ψmψ

ϕ − ψ

) ( ϕnϕ − ψnψ

ϕ − ψ

)
−

 ϕm−rϕ − ψm−rψ

ϕ − ψ

  ϕn+rϕ − ψn+rψ

ϕ − ψ


=

(ϕr − ψr)(ϕnψm−r − ψnϕm−r)
(ϕ − ψ)2 ϕ ψ

= −
(ϕm−n−r − ψm−n−r)(ϕr − ψr)

(ϕ − ψ)2 ϕ ψ,

and by using (1.1), we obtain

HPmHPn − HPm−rHPn+r = (−1)n+1Pm−n−rPr (1 + 2ε + 6ε∗ + 12εε∗) .

Similarly for hyper-dual Pell-Lucas numbers, we can obtain

HQmHQn − HQm−rHQn+r =
(
ϕmϕ + ψmψ

) (
ϕnϕ + ψnψ

)
−

(
ϕm−rϕ + ψm−rψ

) (
ϕn+rϕ + ψn+rψ

)
= ϕ ψ

(
ϕm−n + ψm−n − ϕm−n−2r − ψm−n−2r

)
.

Using (1.2) and (2.5),

HQmHQn − HQm−rHQn+r = (−1)n Qm−n − (−1)n+r Qm−n−2r (1 + 2ε + 6ε∗ + 12εε∗) .

Thus, we obtain the desired results. �

Theorem 2.3. (Catalan-like identities) For non negative integers n and r, with n ≥ r, we have

HPn−rHPn+r − HP2
n = (−1)n−rP2

r (1 + 2ε + 6ε∗ + 12εε∗) ,

HQn−rHQn+r − HQ2
n = 8(−1)n−r P2

r (1 + 2ε + 6ε∗ + 12εε∗) .
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Proof. From (2.3), we obtain

HPn−rHPn+r − HP2
n =

 ϕn−rϕ − ψn−rψ

ϕ − ψ

  ϕn+rϕ − ψn+rψ

ϕ − ψ

 − ( ϕnϕ − ψnψ

ϕ − ψ

)2

=
ϕnψn

8
ϕ ψ

(
2 − ψrϕ−r − ψ−rϕr)

= (−1)n−r ϕ ψ

(
ϕr − ψr

ϕ − ψ

)2

,

and by using (1.1) and (2.5), we will have

HPn−rHPn+r − HP2
n = (−1)n−rP2

r (1 + 2ε + 6ε∗ + 12εε∗) .

On the other hand, from (2.4) and (2.5) we obtain

HQn−rHQn+r − HQ2
n =

(
ϕn−rϕ + ψn−rψ

) (
ϕn+rϕ + ψn+rψ

)
−

(
ϕnϕ + ψnψ

)2

= ϕ ψ
(
ϕn−rψn+r + ϕn+rψn−r − 2ψnϕn)

= 8(−1)n−r ϕ ψ

(
ϕr − ψr

ϕ − ψ

)2

= 8(−1)n−r P2
r (1 + 2ε + 6ε∗ + 12εε∗) .

�

Corollary 2.1. (Cassini-like identities) For non-negative integer n, we have

HPn−1 HPn+1 − HP2
n = (−1)n−1 (1 + 2ε + 6ε∗ + 12εε∗) ,

HQn−1 HQn+1 − HQ2
n = 8(−1)n−1 (1 + 2ε + 6ε∗ + 12εε∗) .

Proof. We can get the result by taking r = 1 in Theorem 2.3. �

Theorem 2.4. (d’Ocagne-like identities) For non-negative integers n and m,

HPm+1 HPn − HPm HPn+1 = (−1)m Pn−m (1 + 2ε + 6ε∗ + 12εε∗) ,

HQm+1 HQn − HQm HQn+1 = 8 (−1)n Pm−n (1 + 2ε + 6ε∗ + 12εε∗) .

Proof. Using (1.1), (2.3), and (2.5), we have

HPm+1 HPn − HPm HPn+1 =

 ϕm+1ϕ − ψm+1ψ

ϕ − ψ

 ( ϕnϕ − ψnψ

ϕ − ψ

)
−

( ϕmϕ − ψmψ

ϕ − ψ

)  ϕn+1ϕ − ψn+1ψ

ϕ − ψ


= (ϕ − ψ)(ϕnψm − ϕmψn)ϕ ψ

= (−1)m Pn−m (1 + 2ε + 6ε∗ + 12εε∗) .

Using (1.2), (2.4) and (2.5), we have

HQm+1 HQn − HQm HQn+1 = 8 (−1)n Pm−n (1 + 2ε + 6ε∗ + 12εε∗) .

�
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3. Hyper dual Pell vectors and angle

In this section, we introduce hyper-dual Pell vectors and hyper-dual Pell angle. We will give
geometric properties of them.

Definition 3.1. The nth hyper-dual Pell vector is defined as

−−→
HPn = ~Pn + ~Pn+1ε + ~Pn+2ε

∗ + ~Pn+3εε
∗,

where ~Pn = (Pn,Pn+1,Pn+2) is a real Pell vector. The hyper-dual Pell vector
−−→
HPn can be rewritten in

terms of dual Pell vectors ~Pn and ~P∗n as

−−→
HPn = (~Pn + ~Pn+1ε) + (~Pn+2 + ~Pn+3ε)ε∗

= ~Pn + ε∗~P∗n.

Theorem 3.1. The scalar product of hyper-dual Pell vectors
−−→
HPn and

−−→
HPm is

〈
−−→
HPn,

−−→
HPm〉 =

7Qn+m+2

8
−

(−1)mQn−m

8
+ (

7Qn+m+3

4
−

(−1)mQn−m

4
)ε

+ (
7Qn+m+4

4
−

3(−1)mQn−m

4
)ε∗ + (

7Qn+m+5

2
−

3(−1)mQn−m

2
)εε∗. (3.1)

Proof. By using (1.4), we can write

〈
−−→
HPn,

−−→
HPm〉 =〈~Pn, ~Pm〉 +

(
〈~Pn, ~Pm+1〉 + 〈~Pn+1, ~Pm〉

)
ε +

(
〈~Pn, ~Pm+2〉 + 〈~Pn+2, ~Pm〉

)
ε∗

+
(
〈~Pn, ~Pm+3〉 + 〈~Pn+1, ~Pm+2〉 + 〈~Pn+2, ~Pm+1〉 + 〈~Pn+3, ~Pm〉

)
εε∗. (3.2)

Now we calculate the above inner products for real Pell vectors ~Pn and ~Pm by using Binet’s formula of
Pell numbers as

〈~Pn, ~Pm〉 = PnPm + Pn+1Pm+1 + Pn+2Pm+2

=

(
ϕn − ψn

ϕ − ψ

) (
ϕm − ψm

ϕ − ψ

)
+

(
ϕn+1 − ψn+1

ϕ − ψ

) (
ϕm+1 − ψm+1

ϕ − ψ

)
+

(
ϕn+2 − ψn+2

ϕ − ψ

) (
ϕm+2 − ψm+2

ϕ − ψ

)
=
ϕn+m + ψn+m

(ϕ − ψ)2 +
ϕn+m+2 + ψn+m+2

(ϕ − ψ)2 +
ϕn+m+4 + ψn+m+4

(ϕ − ψ)2 −
(ϕnψm + ϕmψn)ϕ−mψ−m

(ϕ − ψ)2 ϕ−mψ−m

=
1
8

(Qn+m + Qn+m+2 + Qn+m+4 + (−1)mQn−m)

=
7Qn+m+2

8
−

(−1)mQn−m

8
.

�

Similarly,

〈~Pn, ~Pm+1〉 =
7Qn+m+3

8
+

(−1)mQn−m−1

8
,
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〈~Pn+1, ~Pm〉 =
7Qn+m+3

8
−

(−1)mQn−m+1

8
,

〈~Pn, ~Pm+2〉 =
7Qn+m+4

8
−

(−1)mQn−m−2

8
,

〈~Pn+2, ~Pm〉 =
7Qn+m+4

8
−

(−1)mQn−m+2

8
,

〈~Pn, ~Pm+3〉 =
7Qn+m+5

8
+

(−1)mQn−m−3

8
,

〈~Pn+1, ~Pm+2〉 =
7Qn+m+5

8
−

(−1)mQn−m−1

8
,

〈~Pn+2, ~Pm+1〉 =
7Qn+m+5

8
+

(−1)mQn−m+1

8
,

〈~Pn+3, ~Pm〉 =
7Qn+m+5

8
−

(−1)mQn−m+3

8
.

By substituting these equalities in (3.2), we obtain the result.

Example 3.1. Let
−−→
HP1 = (1, 2, 5) + (2, 5, 12)ε + (5, 12, 29)ε∗ + (12, 29, 70)εε∗ and

−−→
HP0 = (0, 1, 2) +

(1, 2, 5)ε + (2, 5, 12)ε∗ + (5, 12, 29)εε∗ be the hyper-dual Pell vectors. The scalar product of
−−→
HP1 and

−−→
HP0 are

〈
−−→
HP1,

−−→
HP0〉 =

7Q3 − Q1

8
+

7Q4 − Q1

4
ε +

7Q5 − 3Q1

4
ε∗ +

7Q6 − 3Q1

2
εε∗

= 12 + 59ε + 142ε∗ + 690εε∗.

By the other hand

〈
−−→
HP1,

−−→
HP0〉 = 〈~P1, ~P0〉 +

(
〈~P1, ~P1〉 + 〈~P2, ~P0〉

)
ε +

(
〈~P1, ~P2〉 + 〈~P3, ~P0〉

)
ε∗

+
(
〈~P1, ~P3〉 + 〈~P2, ~P2〉 + 〈~P3, ~P1〉 + 〈~P4, ~P0〉

)
εε∗

= 12 + (30 + 29)ε + (72 + 70)ε∗ + (174 + 173 + 174 + 169)εε∗

= 12 + 59ε + 142ε∗ + 690εε∗.

The results are the same as we expected.

Corollary 3.1. The norm of
−−→
HPn is

‖
−−→
HPn‖

2 = 〈
−−→
HPn,

−−→
HPn〉 =

7Q2n+2

8
−

(−1)n

4
+ (

7Q2n+3

4
−

(−1)n

2
)ε

+ (
7Q2n+4

4
−

3(−1)n

2
)ε∗ + (

7Q2n+5

2
− 3(−1)n)εε∗. (3.3)

Proof. The proof is clear from taking m = n in (3.1). �

Example 3.2. Find the norm of
−−→
HP1 = (1, 2, 5) + (2, 5, 12)ε + (5, 12, 29)ε∗ + (12, 29, 70)εε∗.

If we take n = 1 in (3.3) and use (1.3), then we will get

‖
−−→
HP1‖ =

√
7Q4

8
+

1
4

+ (
7Q5

4
+

1
2

)ε + (
7Q6

4
+

3
2

)ε∗ + (
7Q7

2
+ 3)εε∗
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=
√

30 + 144ε + 348ε∗ + 1676εε∗

=
√

30 +
72
√

30
ε +

174
√

30
ε∗ +

734

5
√

30
εε∗.

From (1.6) and (3.1), the following cases can be given for the scalar product of hyper-dual Pell
vectors

−−→
HPn and

−−→
HPm.

Case 3.1. Assume that cos φ = 0 and φ∗ , 0, then ψ = π
2 , ψ∗ = 0, therefore

〈
−−→
HPn,

−−→
HPm〉 = −ε∗φ∗ = (

7Qm+n+4

4
−

3(−1)mQn−m

4
)ε∗ + (

7Qm+n+5

2
−

3(−1)mQn−m

2
)εε∗,

then, we get

φ∗ = (−1)m
(
3
2

+ ε

)
−

7
4

(Qm+n+4 + 2 ε Qm+n+5)

and corresponding dual lines d1 and d2 are perpendicular such that they do not intersect each other;
see Figure 1.

Figure 1. Geometric representation of hyper-dual angle between the directed dual lines d1

and d2.

Case 3.2. Assume that φ∗ = 0 and φ , 0, then we obtain

〈
−−→
HPn,

−−→
HPm〉 = cos φ =

(
7Qm+n+2

8
−

(−1)mQn−m

8

)
+

(
7Qm+n+3

4
−

(−1)mQn−m

4

)
ε,

therefore

φ = arccos
((

7Qm+n+2

8
−

(−1)mQn−m

8

)
+

(
7Qm+n+3

4
−

(−1)mQn−m

4

)
ε

)
,

and corresponding dual lines d1 and d2 intersect each other; see Figure 2.
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Figure 2. Intersection of dual lines d1 and d2.

Case 3.3. Assume that cos φ = 0 and φ∗ = 0, then ψ = π
2 and ψ∗ = 0, therefore

〈
−−→
HPn,

−−→
HPm〉 = 0,

and dual lines d1 and d2 intersect each other at a right angle; see Figure 3.

Figure 3. Perpendicular intersection of dual lines d1 and d2.

Case 3.4. Assume that φ = 0 and φ∗ = 0, then

〈
−−→
HPn,

−−→
HPm〉 = 1,

in this case corresponding dual lines d1 and d2 are parallel; see Figure 4.
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Figure 4. Parallel of dual lines d1 and d2.

4. Conclusions

In the present study, we introduce two families of hyper-dual numbers with components containing
Pell and the Pell-Lucas numbers. First, we define hyper-dual Pell and Pell-Lucas numbers. Afterwards,
by means of the Binet’s formulas of Pell and Pell-Lucas numbers, we investigate identities such as the
Binet-like formulas, Vajda-like, Catalan-like, Cassini-like, and d’Ocagne-like identities. After that,
we define hyper-dual Pell vector and angle with some properties and geometric applications related
to them. In the future it would be valuable to replicate a similar exploration and development of our
findings on hyper-dual numbers with Pell and Pell-Lucas numbers. These results can trigger further
research on the subjects of the hyper-dual numbers, vector, and angle to carry out in the geometry of
dual and hyper-dual space.
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