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1. Introduction

The wave equation with internal and boundary damping, along with a source term, is described by
the system: 

ωtt − ∆ω + ψ1(ωt) = F1(ω) on Ω × R+,
ω = 0 on Γ0 × R

+,
∂ωt
∂η
+ ψ2(ωt) = F2(ω) on Γ1 × R

+,

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x) in Ω.

(1.1)

In this problem, the functions F1 and F2 are nonlinear source terms on the domain Ω ⊆ Rn and the
boundary ∂Ω = Γ0 ∪ Γ1, respectively, where Γ0 and Γ1 are closed and disjoint and meas.(Γ0) > 0. The
vector η is the unit outer normal to ∂Ω. The functions ω0 and ω1 are given data. The functions ψ1 is
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a nonlinear damping acting on the domain Ω, while ψ2 is a nonlinear damping acting on the boundary
∂Ω.

The study of the existence, blow-up, and stability of solutions to wave equations has been
extensively explored in previous research. For example, Lasiecka and Tataru [1] studied the following
semilinear model of the wave equation with nonlinear boundary conditions and nonlinear boundary
velocity feedback: 

ωtt = ∆ω − χ0(ω), in Ω × R+,
∂ω
∂ν
= −χ̃(ωt|Γ1) − χ1(ω|Γ1), on Γ1 × R

+,

ω = 0, on Γ0 × R
+,

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x) in Ω.

(1.2)

Assuming that the velocity boundary feedback is dissipative and the other nonlinear terms are
conservative, uniform decay rates for the solutions are derived. Georgiev and Todorova [2] studied
system (1.1) with ψ1(ωt) = |ωt|

ϑ−2ωt, ψ2(ωt) = F2(ω) = 0 and F1(ω) = |ω|q−2ω, proving global
existence for q ≤ ϑ and a blow-up result when q > ϑ. Levine and Serrin [3] expanded on this
by investigating the case of negative energy with ϑ > 1. Rivera and Andrade [4] examined a
nonlinear wave equation with viscoelastic boundary conditions, showing the existence and uniform
decay under certain initial data restrictions. Santos [5] focused on a one-dimensional wave equation
with viscoelastic boundary feedback, demonstrating that under specific assumptions on g′ and g′′,
sufficient dissipation leads to exponential or polynomial decay if the relaxation function follows the
same pattern. Vitillaro [6] explored system (1.1) with ψ1(ωt) = F1(ω) = 0 and ψ2(ωt) = |ωt|

ϑ−2ωt and
F2(ω) = |ω|q−2u, establishing local and global existence under appropriate conditions on the initial data
and exponents. Cavalcanti et al. [7] studied the following problem

utt − ∆ω +
∫ t

0
g(t − s)∆ω(s)ds = 0, in Ω × R+,

ω = 0, on Γ1 × R
+,

∂ωt
∂ν
−

∫ t

0
g(t − s)∂ωt

∂ν
(s)ds + ψ(ωt) = 0, on Γ0 × R

+,

(1.3)

where ψ : R → R is a nondecreasing C1 function such that

ψ(s)s > 0, for all s , 0

and there exist Ci > 0, i = 1, 2, 3, 4, such thatC1|s|p ≤ |ψ(s)| ≤ C2|s|
1
p , if |s| ≤ 1,

C3|s| ≤ |ψ(s)| ≤ C4|s|, if |s| > 1,
(1.4)

where p ≥ 1. They proved global existence of both strong and weak solutions, along with uniform
decay rates, under restrictive conditions on the damping function ψ and the kernel g. After that,
Cavalcanti et al. [8] relaxed these conditions on ψ and g, demonstrating uniform stability based on
their behavior. Al-Gharabli et al. [9] extended this work by considering a large class of relaxation
functions and establishing general and optimal decay results. Messaoudi and Mustafa [10] focused
on system (1.3), exploring more general relaxation functions, and achieved a general decay result
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without assuming growth conditions on ψ, with the results depending on both g and ψ. Cavalcanti and
Guesmia [11] analyzed the following hyperbolic problem involving memory terms

ωtt − ∆ω + F (x, t,∇ω) = 0, in Ω × R+,
ω = 0, on Γ0,

ω +
∫ t

0
g(t − s)∂ω

∂µ
(s)ds = 0, on Γ1 × R

+,

(1.5)

showing that under certain conditions, the memory term dissipation is sufficient to ensure system
stability. Specifically, they demonstrated that if the relaxation function decays exponentially or
polynomially, the solution follows the same decay rate.

Liu and Yu [12] investigated the following viscoelastic equation with nonlinear boundary damping
and source terms 

ωtt − ∆ω +
∫ t

0
g(t − s)∆ω(s)ds = 0, in Ω × R+,

ω = 0, on Γ1 × R
+,

∂ω
∂ν
−

∫ t

0
g(t − s)∂ω

∂ν
(s)ds + |ωt|

m−2 = |ω|p−2ω, on Γ0 × R
+,

(1.6)

proving global existence and general decay of energy under suitable assumptions on the relaxation
function and the initial data. Al-Mahdi et al. [13] extended this work by considering system (1.1) with
modified terms: F1(u) = 0, F2(ω) = |ω|q(x)−2ω, ψ1(ωt) is replaced by

∫ t

0
g(t − s)∆ω(s)ds, ψ2(ωt) is

replaced by
∫ t

0
g(t− s)∂ω

∂n ds+ |ωt|
ϑ(x)−2ωt, proving global existence and establishing general and optimal

decay estimates under specific conditions on the relaxation function and variable exponents ϑ(x) and
q(x). They also provided numerical tests to validate their theoretical decay results.

Zhang and Huang [14] studied a nonlinear Kirchhoff equation described by the system:
ωtt − M

(
||∇ω||2

)
∆ω + αωt + χ(ω) = 0 on Ω × R+,

ω = 0 on Γ1 × R
+,

∂ω
∂η
+ ψ (ωt) = 0 on Γ0 × R

+,

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x) in Ω,

(1.7)

where Ω is a bounded domain of Rn with a smooth boundary ∂Ω = Γ0 ∪ Γ1,and α is a positive real
constant. The functions M(s), χ(ω), ψ(ωt) are satisfy some conditions, while η represents the unit
outward normal vector. Using the Galerkin approximation, Zhang and Huang established the global
existence and uniqueness of the solution. They also addressed challenges posed by the nonlinear terms
M(s) and ψ(ωt) through a transformation to zero initial data and employed compactness, monotonicity,
and perturbed energy method to resolve the problem. Zhang and Ouyang [15] examined a viscoelastic
wave equation with a memory term, nonlinear damping, and a source term:

|ωt|
ρωtt − ∆ω + α|ωt|

p−2ωt +
∫ t

0
g(t − s)∆ω(s)ds = |ω|q−2ω on Ω × R+,

ω = 0 on Γ × R+,
ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x) in Ω,

(1.8)

where Ω is a bounded domain of Rn with a smooth boundary ∂Ω, ρ, α > 0, p ≥ 2, q > 2, and g(t)
is a positive function that represents the kernel of the memory term. Using the potential well method
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combined with the Galerkin approximation, they demonstrated the existence of global weak solutions.
Additionally, under certain conditions on the damping coefficient and the relaxation function, they
established the optimal decay of solutions via the perturbed energy method. They further showed that
the solution can blow up for both positive and negative initial energy conditions.

For further results on wave equations, see the works of Aassila [16], Wang and Chen [17],
Zuazua [18], Soufyane et al. [19], Zhang et al. [20].

There has been increasing interest among researchers in replacing constant exponents with variable
exponents, driven by their practical applications [21] and related references. Variable exponents
are commonly used in mathematical models and equations, particularly in damping terms, to better
represent a system’s diverse behaviors or properties. Damping, which helps dissipate energy and
regulate a system’s response to external forces, can be more accurately modeled using variable
exponents. This allows for a more flexible representation of damping effects tailored to the specific
characteristics of the system in question.

Inspired by these studies and the significance of mathematical models involving nonlinear damping
and/or source terms with variable exponents, we consider problem (1.1) with ψ1(ωt) = ψ(ωt), F1(ω) =
0 and ψ2(ωt) = |ωt|

ϑ(x)−2ωt, and F2(ω) = |ω|θ(x)−2ω.
More precisely, we consider the following nonlinear wave equation with internal and boundary

damping, along with a source term of variable exponent type:
ωtt − ∆ω + ψ(ωt) = 0 on Ω × R+,
ω = 0 on Γ0 × R

+,
∂ω
∂η
+ |ωt|

ϑ(x)−2ωt = |ω|
θ(x)−2ω on Γ1 × R

+,

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x) in Ω.

(1.9)

We aim to study the global existence and stability of solutions to problem (1.9). We investigate the
interaction between the internal nonlinear frictional damping and the nonlinear boundary damping of
variable exponent type. Additionally, we derive general decay rates, including optimal exponential and
polynomial decay rates as the special cases.

This paper is organized into five sections. In Section 2, we introduce the notation and necessary
background material. In Section 3, we prove the global existence of the solution to the problem. In
Sections 4 and 5, we present technical lemmas and decay results, respectively.

2. Preliminaries

In this section, we outline some necessary materials for proving our results. Throughout the paper,
we denote a generic positive constant by c. We consider the following assumptions:

(A1) ϑ : Γ1 → [1,∞) is a continuous function such that

1 < ϑ1 ≤ ϑ(x) ≤ ϑ2 < q :=
{ 2(n−1)

n−2 , n > 2;
∞, n = 1, 2,

where
ϑ1 := ess inf

x∈Γ1
ϑ(x), ϑ2 := ess inf

x∈Γ1
ϑ(x).
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(A2) θ : Γ1 → [1,∞) is a continuous function such that

1 < θ1 ≤ θ(x) ≤ ϑ2 < q :=
{ 2(n−1)

n−2 , n > 2;
∞, n = 1, 2,

where
θ1 := ess inf

x∈Γ1
θ(x), θ2 := ess inf

x∈Γ1
θ(x).

Moreover, the variable functions ϑ(x) and θ(x) satisfy the log-Hölder continuity condition.
For more details about the Lebesgue and Sobolev spaces with variable exponents (see [22–24]).

(A3) ψ : R → R is a C0 nondecreasing function satisfying, for c1, c2 > 0,

s2 + ψ2(s)| ≤ Ψ−1(sψ(s)) for all |s| ≤ r,

c1|s| ≤ |ψ(s)| ≤ c2|s| for all |s| ≥ r,

where Ψ : (0,∞) → (0,∞) is C1 function which is a linear or strictly increasing and strictly
convex C2 function on (0, r] with Ψ(0) = Ψ′(0) = 0.

Remark 2.1. Condition (A3) was introduced for the first time in 1993 by Lasiecka and Tataru [1].
Examples of such functions satisfying Condition (A3) are the following:

(1) If ψ(s) = csq and q ≥ 1, then Ψ(s) = cs
q+1

2 satisfies (A3).
(2) If ψ(s) = e−

1
s , then (A3) is satisfied for Ψ(s) =

√ s
2 e−
√

2
s near zero.

We define the energy functional E(t) associated to system (1.9) as follows:

E(t) :=
1
2

[
∥ωt∥

2
2 + ∥∇ω∥

2
2

]
−

∫
Γ1

1
θ(x)
|ω|θ(x)dx. (2.1)

Lemma 2.1. The energy functional E(t) satisfies

d
dt

E(t) = −
∫
Γ1

|ωt|
ϑ(x)dx −

∫
Ω

ωtψ(ωt)dx ≤ 0. (2.2)

Proof. Multiplying (1.9)1 by ωt integrating over the interval Ω, we have∫
Ω

ωωtt −

∫
Ω

ωt∆ωdx +
∫
Ω

ωtψ(ωt)dx = 0.

Using integration by parts, we obtain∫
Ω

ωωtt +

∫
Ω

∇ωt.∇ωdx −
∫
Γ1

ωt
∂ωt

∂η
dx +

∫
Ω

ωtψ(ωt)dx = 0.

Now, using (1.9)3, and doing some modifications, we get

d
dt

(
1
2

∫
Ω

ω2
t dx +

1
2

∫
Ω

|∇ω|2dx −
∫
Γ1

1
θ(x)
|ω|θ(x)dx

)
= −

∫
Γ1

|ωt|
ϑ(x)dx −

∫
Ω

ωtψ(ωt)dx,

which gives (2.2). □
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For completeness, we present the following existence result, which can be established using
the Faedo-Galerkin method and the Banach fixed point theorem, similar to the approaches taken
in [2, 25, 26] for analogous problems.

Theorem 2.1. (Local existence) Given (ω0, ω1) ∈ H1
Γ0

(Ω) × L2(Ω) and assume that (A1) − (A3) hold .
Then, there exists T > 0, such that problem (1.9) has a weak solution

ω ∈ L∞
(
(0,T ),H1

Γ0
(Ω)

)
∩ Lθ(.) (Γ1 × (0,T )) , ωt ∈ L∞

(
(0,T ), L2(Ω)

)
∩ Lϑ(.) (Γ1 × (0,T )) .

3. Global existence

In this section, we state and prove a global existence result under smallness conditions on the initial
data (ω0, ω1). For this purpose, we define the following functionals:

J(t) =
1
2
∥∇ω∥22 −

1
θ1

∫
Γ1

|ωt|
θ(x)dx (3.1)

and

I(t) = I(ω(t)) = ∥∇ω∥22 −
∫
Γ1

|ωt|
θ(x)dx. (3.2)

Clearly, we have

E(t) ≥ J(t) +
1
2
∥ωt∥

2
2. (3.3)

Lemma 3.1. Suppose that (A1) − (A3) hold and (ω0, ω1) ∈ H1
Γ0

(Ω) × L2(Ω), such that

cθ2
e E

θ2−2
2 (0) + cθ2

e E
θ1−2

2 (0) < 1, I(ω0) > 0, (3.4)

then

I(ω(t)) > 0, ∀t > 0.

Proof. Since I is continuous and I(ω0) > 0, then there exists Tm < T such that

I(ω(t)) ≥ 0, ∀t ∈ [0,Tm];

which gives

J(t) =
1
θ1
I(t) +

θ1 − 2
2θ1
∥∇ω∥22

≥
θ1 − 2

2θ1
∥∇ω∥22.

(3.5)

Now,

∥∇ω∥22 ≤
2θ1

θ1 − 2
J(t) ≤

2θ1

θ1 − 2
E(t) ≤

2θ1

θ1 − 2
E(0). (3.6)
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Using Young’s and Poincaré’s inequalities and the trace theorem, we get ∀t ∈ [0,Tm],∫
Γ1

|ω|θ(x)dx =
∫
Γ+1

|ω|θ(x)dx +
∫
Γ−1

|ω|θ(x)dx

≤

∫
Γ+1

|ω|θ2dx +
∫
Γ−1

|ω|θ1dx

≤

∫
Γ1

|ω|θ2dx +
∫
Γ1

|ω|θ1dx

≤ cθ2
e ∥∇ω∥

θ2
2 + cθ1

e ∥∇ω∥
θ1
2

≤
(
cθ2

e ∥∇ω∥
θ2−2
2 + cθ1

e ∥∇ω∥
θ1−2
2

)
∥∇ω∥22

< ∥∇ω∥22,

(3.7)

where
Γ−1 = {x ∈ Γ1 : |ω(x, t)| < 1} and Γ+1 = {x ∈ Γ1 : |ω(x, t)| ≥ 1}.

Therefore,

I(t) = ∥∇ω∥22 −
∫
Γ1

|ω|θ(x) > 0.

□

Proposition 3.1. Suppose that (A1)−(A3) hold. Let (ω0, ω1) ∈ H1
Γ0

(Ω)×L2(Ω) be given, satisfying (3.4).
Then, the solution of (1.9) is global and bounded.

Proof. It suffices to show that ∥∇ω∥22 + ∥ωt∥
2
2 is bounded independently of t. To achieve this, we

use (2.2), (3.2) and (3.5) to get

E(0) ≥ E(t) = J(t) +
1
2
∥ωt∥

2
2

≥
θ1 − 2

2θ1
∥∇ω∥22 +

1
2
∥ωt∥

2
2 +

1
θ1
I(t)

≥
θ1 − 2

2θ1
∥∇ω∥22 +

1
2
∥ωt∥

2
2.

(3.8)

Since I(t) is positive, Therefore
∥∇ω∥22 + ∥ωt∥

2
2 ≤ CE(0),

where C is a positive constant, which depends only on θ1 and the proof is completed. □

Remark 3.1. Using (3.6), we have

∥∇ω∥22 ≤
2θ1

θ1 − 2
E(0). (3.9)

4. Technical lemmas

In this section, we present and prove several essential lemmas for demonstrating the main results.

AIMS Mathematics Volume 9, Issue 11, 30638–30654.



30645

Lemma 4.1. The functional defined by

∆(t) =
∫
Ω

ωωtdx (4.1)

satisfies, along the solutions of (1.9),

∆′(t) ≤ −
1
2

∫
Ω

|∇ω|2dx +
∫
Ω

|ω|θ(x)dx + c
∫
Ω

ω2
t dx + c

∫
Ω

ψ2(ωt)dx

+ c
∫
Γ1

|ωt|
ϑ(x)dΓ + c

∫
Γ∗

|ωt|
2ϑ(x)−2dΓ,

(4.2)

where Γ∗ = {x ∈ Γ1 : ϑ(x) < 2}.

Proof.

∆′(t) =
∫
Ω

ω2
t dx +

∫
Ω

ω∆ωdx −
∫
Ω

ωψ(ωt)

=

∫
Ω

ω2
t dx −

∫
Ω

|∇ω|2dx +
∫
Γ1

ω
∂ω

∂η
dΓ −

∫
Ω

ωψ(ωt)

=

∫
Ω

ω2
t dx −

∫
Ω

|∇ω|2dx −
∫
Γ1

ω|ωt|
ϑ(x)−2ωtdΓ +

∫
Γ1

ω|ω|θ(x)−2ωdΓ

−

∫
Ω

ωψ(ωt).

(4.3)

The use of Young’s and Poincaré’s inequalities and choosing ε1 =
1

4cp
give

−

∫
Ω

ωψ(ωt)dx ≤ ε1

∫
Ω

ω2dx +
1

4ε1

∫
Ω

ψ2(ωt)dx

≤ cpε1

∫
Ω

|∇ω|2dx +
1

4ε1

∫
Ω

ψ2(ωt)dx

≤
1
4

∫
Ω

|∇ω|2dx + cp

∫
Ω

ψ2(ωt)dx.

(4.4)

Define the following partition of Γ1:

Γ∗ = {x ∈ Γ1 : ϑ(x) < 2}, Γ∗∗ = {x ∈ Γ1 : ϑ(x) ≥ 2}.

Now, using Young’s and Poincaré’s inequalities, we obtain∫
Γ∗

ω|ωt|
ϑ(x)−2ωtdΓ ≤ λcp||∇ω||

2
2 +

1
4λ

∫
Γ∗

|ωt|
2ϑ(x)−2dΓ, (4.5)

choosing λ = 1
8cp

, then we have∫
Γ∗

ω|ωt|
ϑ(x)−2ωtdΓ ≤

1
8
||∇ω||22 + c

∫
Γ∗

|ωt|
2ϑ(x)−2dΓ. (4.6)

Using Young’s inequality with p(x) = ϑ(x)
ϑ(x)−1 and p′(x) = ϑ(x) so, for all x ∈ Ω, we have

|ωt|
ϑ(x)−2ωtω ≤ ε2|ωt|

ϑ(x) +Cε2(x)|ωt|
ϑ(x),
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where
Cε2(x) = ε1−ϑ(x)

2 (ϑ(x))−ϑ(x)(ϑ(x) − 1)ϑ(x)−1.

Hence, Young’s inequality gives∫
Γ∗∗

ω|ωt|
ϑ(x)−2ωtdΓ ≤ ε2

∫
Γ∗∗

|ω|ϑ(x)dΓ +
∫
Γ∗∗

Cε2(x)|ωt|
ϑ(x)dΓ

≤ cε2

1 +
(

2θ1

θ1 − 2
E(0)

) ϑ2−2
2

 ||∇ω||22 + ∫
Γ∗∗

Cε2(x)|ωt|
ϑ(x)dΓ.

(4.7)

Choosing ε2 =
1

8c

1+( 2θ1
θ1−2 E(0)

) ϑ2−2
2


, then Cε2(x) is bounded and noting that Γ∗∗ ⊂ Γ1, then we have

∫
Γ∗∗

ω|ωt|
ϑ(x)−2ωtdΓ ≤

1
8
||∇ω||22 + c

∫
Γ1

|ωt|
ϑ(x)dΓ. (4.8)

By combining the above estimates, the proof is completed. □

Lemma 4.2. Let us introduce perturbed energy functional as follows:

M(t) = NE(t) + ∆(t)

satisfies, for all t ≥ 0 and for a positive constant N,

M′(t) ≤ −cE(t) − cE′(t) + c
∫
Ω

(
ω2

t + ψ
2(ωt)

)
dx + c

∫
Γ∗

|ωt|
2ϑ(x)−2dΓ. (4.9)

Proof. We establish the proof by means of perturbed energy method. Taking the derivative ofM with
respect to t, and using the estimates in (4.2), and (2.2), we obtain

M′(t) ≤ − N
∫
Γ1

|ωt|
ϑ(x)dx − N

∫
Ω

ωtψ(ωt)dx

−
1
2

∫
Ω

|∇ω|2dx +
∫
Ω

|ω|θ(x)dx + c
∫
Ω

ω2
t dx + c

∫
Ω

ψ2(ωt)dx

+ c
∫
Γ1

|ωt|
ϑ(x)dΓ + c

∫
Γ∗

|ωt|
2ϑ(x)−2dΓ.

(4.10)

Choosing N large enough such that M ∼ E, and recalling (2.2), therefore the proof of (4.9) is
completed. □

Lemma 4.3. If 1 < ϑ1 < 2, then the following estimate holds:∫
Γ∗

|ωt|
2ϑ(x)−2dΓ ≤ cE(t) −

cE′(t)

(E(t))
2−ϑ1

2ϑ1−2

− cE′(t). (4.11)

Proof. First, we define the following partition:

Γ∗1 = {x ∈ Γ∗ : |ωt(t)| ≤ 1}, Γ∗2 = {x ∈ Γ∗ : |ωt(t)| > 1},
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and use the fact that 2ϑ(x)−2
ϑ(x) ≥

2ϑ1−2
ϑ1

, and Jensen’s inequality to obtain∫
Γ∗

|ωt|
2ϑ(x)−2dΓ =

∫
Γ∗1

|ωt|
2ϑ(x)−2dΓ +

∫
Γ∗2

|ωt|
2ϑ(x)−2dΓ

=

∫
Γ∗1

[
|ωt|

ϑ(x)
] 2ϑ(x)−2

ϑ(x) dΓ +
∫
Γ∗2

|ωt|
ϑ(x)+ϑ(x)−2dΓ

≤ c
∫
Γ∗1

[
|ωt|

ϑ(x)
] 2ϑ1−2

ϑ1 dΓ + c
∫
Γ∗2

|ωt|
ϑ(x)dΓ

≤ c
[
−E′(t)

] 2ϑ1−2
ϑ1 − cE′(t).

(4.12)

Using Young’s inequality, we find that

[
−E′(t)

] 2ϑ1−2
ϑ1 =

(E(t))
2−ϑ1
2ϑ1−2 [−E′(t)]

2ϑ1−2
ϑ1

(E(t))
2−ϑ1
2ϑ1−2

≤
ε (E(t))

ϑ1
2ϑ1−2 −CεE′(t)

(E(t))
2−ϑ1

2ϑ1−2

= εE(t) −
CεE′(t)

(E(t))
2−ϑ1
2ϑ1−2

.

(4.13)

Choosing ε small enough, the proof of (4.11) is completed. □

Remark 4.1. If ϑ1 ≥ 2 and since meas(Γ∗) = 0 then∫
Γ∗

|ωt|
2ϑ(x)−2dΓ = 0. (4.14)

Lemma 4.4. Under assumption (A3), the following estimates hold:∫
Ω

ωtψ(ωt)dx ≤ −cE′(t), if ψ is linear, (4.15)∫
Ω

ωtψ(ωt)dx ≤ cΨ−1(Λ(t)) − cE′(t), if ψ is nonlinear, (4.16)

where Λ(t) is defined in the proof.

Proof. Case 1: ψ is linear, then

c
∫
Ω

(
ω2

t + ψ
2(ωt)

)
dx ≤ −cE′(t).

Case 2: ψ is nonlinear, we define the following partition of Ω

Ω1 = {x ∈ Ω : |ωt| ≤ r}, Ω2 = {x ∈ Ω : |ωt| ≥ r},

where r is small enough such that

sψ(s) ≤ min {r, ψ(r)}, |s| ≤ r.
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We also define

Λ(t) =
∫
Ω1

ωtψ(ωt)dx.

Now, using hypothesis (A3) and Jensen’s inequality, we get∫
Ω1

(
ω2

t + ψ
2(ωt)

)
dx ≤

∫
Ω1

Ψ−1(ωtψ(ωt))dx ≤ cΨ−1(Λ). (4.17)

□

5. Stability result

In this section, we state and prove the stability result of system (1.9).

Theorem 5.1. Assume that ϑ1 ≥ 2 and ψ is linear. Then

E(t) ≤ κ1e−κ2t, (5.1)

for some positive constants κ1 and κ2.

Proof. Combining (4.9), (4.15) with (4.14), we obtain,

M′(t) ≤ −cE(t) − cE′(t).

Therefore,M + cE ∼ E and a simple integration over (0, t) yields, for some κ1, κ2 > 0,

E(t) ≤ κ1e−κ2t, t ≥ 0.

□

Theorem 5.2. Assume that 1 < ϑ1 < 2 and ψ is linear. Then

E(t) ≤ c (1 + t)−
1
α , (5.2)

where α = 2−ϑ1
2ϑ1−2 > 0.

Proof. From (4.9), (4.11) and (4.15), we have

M′1(t) ≤ −cE(t) −
cE′(t)

(E(t))
2−ϑ1

2ϑ1−2

, (5.3)

whereM1 =M + cE ∼ E. Multiply both sides of (5.13) by (E(t))α where α = 2−ϑ1
2ϑ1−2 , to obtain

M′2(t) ≤ −cEα+1(t), (5.4)

where M2 = (E(t))αM1 + cE ∼ E. Integrating over (0, t) and using the equivalence relation lead
to (5.2). □
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Theorem 5.3. Assume that ϑ1 ≥ 2 and ψ is nonlinear. Then, for some positive constants ϱ1 and ϱ2, we
have

E(t) ≤ Ψ−1
1 (ϱ1t + ϱ2), ∀t ≥ 0, (5.5)

where Ψ1(t) =
∫ 1

t
1
Ψ2(s)ds and Ψ2(t) = tΨ′(ε0t)

Proof. From (4.9), (4.1) and (4.15), we have

M′(t) ≤ −cE(t) + cΨ−1(Λ(t)). (5.6)

Now, for ε0 < r, using the fact that E′ ≤ 0, Ψ′ > 0,Ψ′′ > 0 on (0, r], we find that the functional M̃, by

M̃(t) := Ψ′
(
ε0

E(t)
E(0)

)
M(t) + c0E(t),

satisfies, for some α1, α1 > 0,
α1M̃(t) ≤ E(t) ≤ α2M̃(t), (5.7)

and

M̃′(t) = ε0
E′(t)
E(0)
Ψ′′

(
ε0

E(t)
E(0)

)
M(t) + Ψ′

(
ε0

E(t)
E(0)

)
M′(t) + c0E′(t)

≤ −cE(t)Ψ′
(
ε0

E(t)
E(0)

)
+ cΨ′

(
ε0

E(t)
E(0)

)
Ψ−1(Λ(t)) + c0E′(t).

(5.8)

Let Ψ∗ be the convex conjugate of Ψ in the sense of Young with A = Ψ′
(
ε0

E(t)
E(0)

)
and B = Ψ−1(Λ(t)), we

arrive at

M̃′(t) ≤ −cE(t)Ψ′
(
ε0

E(t)
E(0)

)
+ cΨ∗

(
Ψ′

(
ε0

E(t)
E(0)

))
+ cΛ(t) + c0E′(t)

≤ −cE(t)Ψ′
(
ε0

E(t)
E(0)

)
+ cε0

E(t)
E(0)
Ψ′

(
ε0

E(t)
E(0)

)
− cE′(t) + c0E′(t).

Consequently, with a suitable choice of ε0 and c0, we obtain, for all t ≥ 0,

M̃′(t) ≤ −c
E′(t)
E(0)
Ψ′

(
ε0

E(t)
E(0)

)
= −cΨ2

(
ε0

E(t)
E(0)

)
, (5.9)

where Ψ2(t) = tΨ′(ε0t). Since Ψ′2(t) = Ψ′(ε0t) + ε0tΨ′′(ε0t), then, using the strict convexity of Ψ on
(0, r], we find that Ψ′2(t),Ψ2(t) > 0 on (0, 1]. Thus, with

Φ(t) = ε
α1M̃(t)

E(0)
, 0 < ε < 1,

taking in account (5.7) and (5.9), we have

Φ(t) ∼ E(t), (5.10)

and then
Φ′(t) ≤ −cΨ2(Φ(t)), ∀t ≥ 0.

Then, a simple integration gives, for some ϱ1, ϱ2 > 0,

Φ(t) ≤ Ψ−1
1 (ϱ1t + ϱ2), ∀t ≥ 0, (5.11)

where Ψ1(t) =
∫ 1

t
1
Ψ2(s)ds. A combination of (5.10) and (5.11) gives (5.5). □
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Theorem 5.4. Assume that 1 < ϑ1 < 2 and ψ is nonlinear. Then, for some positive constants ϱ3 and
ϱ4, we have

E(t) ≤ χ−1
1 (ϱ3t + ϱ4) , ∀t ≥ 0, (5.12)

where χ1(t) =
∫ 1

t
1
Ψ2(s)ds, χ2(t) = tχ′(ε0t), χ =

(
G−1 + Ψ−1

)−1
and G(t) = t

ϑ1
2ϑ1−2 .

Proof. From (4.9) and (4.13), we have

M′(t) ≤ −cE(t) +
(
−E′(t)

) 2ϑ1−2
ϑ1 + cΨ−1(Λ)(t), (5.13)

whereM = EαM + cE ∼ E. Let G(t) = t
ϑ1

2ϑ1−2 . Then the last inequality can be written as

M′(t) ≤ −cE(t) + G−1 (
−E′(t)

)
+ cΨ−1(Λ)(t). (5.14)

Therefore, (5.14) becomes

M′(t) ≤ −cE(t) + cχ−1 (ξ(t)) , (5.15)

where χ =
(
G−1 + Ψ−1

)−1
and ξ(t) = max{−E′(t),Λ(t)}.

Define the following functional

K(t) := χ′
(
ε0

E(t)
E(0)

)
M(t) + c0E(t), (5.16)

satisfies, for some α2, α3 > 0,
α2K(t) ≤ E(t) ≤ α3K(t). (5.17)

Combining (5.15) and (5.16), we obtain

K ′(t) ≤ −cE(t)χ′
(
ε0

E(t)
E(0)

)
+ χ′

(
ε0

E(t)
E(0)

)
χ−1(ξ(t)) + c0E′(t). (5.18)

Let χ∗ be the convex conjugate of χ in the sense of Young, then

χ∗(s) = s(χ′)−1(s) − χ
[
(χ′)−1(s)

]
, if s ∈ (0, χ′(r)] (5.19)

and χ∗ satisfies the following generalized Young inequality

AB ≤ χ∗(A) + χ(B), if A ∈ (0, χ′(r)], B ∈ (0, r]. (5.20)

Thus, with A = χ′
(
ε0

E(t)
E(0)

)
and B = χ−1(ξ(t)), we arrive at

K ′(t) ≤ −cE(t)χ′
(
ε0

E(t)
E(0)

)
+ cε0

E(t)
E(0)

χ′
(
ε0

E(t)
E(0)

)
− cE′(t) + c0E′(t).

Choosing c0, ε0 small enough, we get

K ′(t) ≤ −cε0
E(t)
E(0)

χ′
(
ε0

E(t)
E(0)

)
= −cχ2

(
ε0

E(t)
E(0)

)
,

AIMS Mathematics Volume 9, Issue 11, 30638–30654.



30651

where χ2(t) = tχ′(ε0t). Letting

Y(t) = ε
α3K(t)

E(0)
, 0 < ε < 1,

and taking in account (5.7) and (5.9), we have

Y(t) ∼ E(t), (5.21)

and then
Y ′(t) ≤ −cχ2(Y(t)), ∀t ≥ 0.

Then, a simple integration gives, for some ϱ3, ϱ4 > 0,

Y(t) ≤ χ−1
1 (ϱ3t + ϱ4), ∀t ≥ 0, (5.22)

where χ1(t) =
∫ 1

t
1

χ2(s)ds, which finishes the proof. □

Examples 5.1. The following examples illustrate our results:

(1) If ψ(t) = ct and ϑ(x) = 2, then
E(t) ≤ c1e−c2t, (5.23)

which is an exponential decay.
(2) If ψ(t) = ct and ϑ(x) = 2 − 3

4+x , then ϑ1 =
5
4 and ϑ2 =

7
5 , then the energy functional satisfies

E(t) ≤ c (1 + t)−
2
3 . (5.24)

(3) If ψ(t) = ct2 and ϑ(x) = 2 + 1
1+x , then ϑ1 =

5
2 , ϑ2 = 3 and ψ(t) = ct

3
2 . Then,

Ψ1
−1(t) = (ct + 1)−2 .

Therefore, we obtain

E(t) ≤ c (1 + t)−2 . (5.25)

(4) If ψ(t) = ct5 and ϑ(x) = 2 − 3
4+x , then ϑ1 =

5
4 , ϑ2 =

7
5 and ψ(t) = ct3. Then,

χ(s) = (G−1 + Ψ−1)−1 =

−1 +
√

1 + 4s
2

3

and

χ2(s) =
3s

√
1 + 4s

−1 +
√

1 + 4s
2

2

=
3s

2
√

1 + 4s
+

3s2

√
1 + 4s

−
3s
2

≤
3s
2
+

3s2

2
√

s
−

3s
2
= cs

3
2 .

Therefore, we obtain

E(t) ≤
c

(1 + t)
1
3

.
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6. Conclusions

In this work, we consider a nonlinear wave equation with internal and boundary damping and a
source term of variable exponent type. We prove the global existence and stability of solutions to this
problem problem. We study the interaction between the internal nonlinear frictional damping and the
nonlinear boundary damping of variable exponent type. In addition, we establish general decay rates,
including optimal exponential and polynomial decay rates as the special cases.
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