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Abstract: Two new classes of self-mappings defined on a complete metric space (M, d) are introduced.
The first one, called the class of p-contractions with respect to a family of mappings, includes mappings
F : M → M satisfying a contraction involving a finite number of mappings S i : M × M → M. The
second one, called the class of (ψ,Γ, α)-contractions, includes mappings F : M → M satisfying a
contraction involving the famous ratio ψ

(
Γ(t+1)
Γ(t+α)

)
, where ψ : [0,∞) → [0,∞) is a function, Γ is the

Euler Gamma function, and α ∈ (0, 1) is a given constant. For both classes, under suitable conditions,
we establish the existence and uniqueness of fixed points of F. Our results are supported by some
examples in which the Banach fixed point theorem is inapplicable. Moreover, the paper includes some
interesting questions related to our work for further studies in the future. These questions will push
forward the development of fixed point theory and its applications.
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1. Introduction

A contraction is a self-mapping F defined on a metric space (M, d) satisfying the inequality
d(Fu, Fv) ≤ ξd(u, v) for every u, v ∈ M, where ξ ∈ [0, 1) is a constant. The famous Banach fixed point
theorem [1], also called the Banach contraction principle, states that if (M, d) is a complete metric space
and F is a contraction defined on M, then F possesses a unique fixed point. Moreover, starting from
any element u0 ∈ M, the Picard sequence {Fnu0} converges to the fixed point. This theorem provides
an important tool for studying the existence of solutions for various kinds of nonlinear problems such
as integral equations, differential equations, partial differential equations, and evolution equations.
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A natural question to ask is whether it is possible to obtain a similar result to that of Banach for non-
contraction mapping F : M → M, where (M, d) is a metric space. For instance, if F is not continuous
on (M, d), then F is not a contraction. This question attracted the attentions of several mathematicians.
For instance, Kannan [2] considered the class of mappings F : M → M satisfying the inequality

d(Fu, Fv) ≤ ξ [d(u, Fu) + d(v, Fv)]

for every u, v ∈ M, where ξ ∈
[
0, 1

2

)
is a constant. Namely, Kannan proved that Banach’s fixed

point result holds true for this class of mappings. Motivated by the work of Kannan, Chatterjea [3]
established the same result for the class of mappings F : M → M satisfying the inequality

d(Fu, Fv) ≤ ξ [d(u, Fv) + d(v, Fu)]

for every u, v ∈ M, where ξ ∈
[
0, 1

2

)
is a constant. Reich [4, 5] investigated the class of mappings

F : M → M satisfying the inequality

d(Fu, Fv) ≤ ξ1d(u, v) + ξ2d(Fu, u) + ξ3d(Fv, v)

for every u, v ∈ M, where ξ1, ξ2, ξ3 ≥ 0 and ξ1 + ξ2 + ξ3 < 1. In [6], Ćirić introduced and studied
the class of quasi-contraction mappings. Namely, the class of mappings F : M → M satisfying the
inequality

d(Fu, Fv) ≤ ξmax{d(u, v), d(u, Fu), d(v, Fv), d(u, Fv), d(v, Fu)}

for every u, v ∈ M, where ξ ∈ [0, 1) is a constant. Berinde [7] introduced and studied the class of
almost contractions. Namely, the class of mappings F : M → M satisfying the inequality

d(Fu, Fv) ≤ ξd(u, v) + Ld(Fu, v)

for every u, v ∈ M, where ξ ∈ [0, 1) and L ≥ 0 are constants. In [8], Khojasteh et al. unified several
fixed point theorems by introducing the class of contractions involving simulation functions. In [9],
Górnicki established various extensions of Kannan’s fixed point theorem. Petrov [10] introduced and
studied the class of mappings contracting perimeters of triangles. Recently, Pǎcurar and Popescu [11]
investigated a new class of generalized Chatterjea-type mappings. We also refer to Branga and
Olaru [12], where new fixed point results for generalized contractions in spaces with altering metrics
were established.

Another kind of contribution was concerned with the study of fixed points when the set M is
equipped with a generalized metric, such as a b-metric [13], cone Eb-metric [14], G-metric [15], F-
metric [16], hemi metric [17], non-triangular metric [18, 19], or suprametric [20].

Assume now that (M, d) is a metric space and F : M → M is a contraction. Then, for all p ≥ 1 and
u, v ∈ M, we have

dp(Fu, F2u) + dp(F2u, Fv) ≤
[
ξd(u, Fu)

]p
+

[
ξd(Fu, v)

]p

= ξp [dp(u, Fu) + dp(Fu, v)] ,

that is,
dp(Fu, F2u) + dp(F2u, Fv) ≤ ξp [dp(u, Fu) + dp(Fu, v)] , (1.1)
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where ξp = ξp ∈ [0, 1) is a constant. We remark that (1.1) provides a new type of contractions. Notice
that a mapping F satisfying (1.1) is not necessarily a contraction (see Example 2.12). Based on this
observation, for a metric space (M, d), we introduce in Section 2 the class of mappings F : M → M
satisfying the inequality

dp(Fu, S 1(Fu, Fv)) +

k−1∑
i=1

dp(S i(Fu, Fv), S i+1(Fu, Fv)) + dp(S k(Fu, Fv), Fv)

≤ ξ

dp(u, S 1(u, v)) +

k−1∑
i=1

dp(S i(u, v), S i+1(u, v)) + dp(S k(u, v), v)


for every u, v ∈ M, where ξ ∈ [0, 1) is a constant and {S i}

k
i=1 is a family of mappings S i : M ×M → M.

A mapping F satisfying the above condition is called a p-contraction with respect to {S i}
k
i=1. Notice

that in the special case k = 1 and S 1(u, v) = Fu for every u, v ∈ M, a p-contraction with respect to
{S 1} is a mapping F satisfying (1.1). A fixed point theorem for p-contractions with respect to a family
of mappings is established in Section 2. Our obtained result is a generalization of the Banach fixed
point theorem. The result is supported by some examples where the Banach fixed point theorem is
not applicable. We also provide an application to the study of fixed points for single-valued mappings
defined on the set of positive integers.

On the other hand, it is well known that special functions arise in numerous applications. Indeed,
various classical problems of physics can be solved by making use of such functions. In particular, the
famous Euler Gamma function is one of the most important special functions, which plays a crucial
role in various branches of mathematics; see, e.g., [21–23]. Motivated by this fact, in Section 3, we are
concerned with the study of fixed points for mappings F : M → M satisfying contractions involving
the ratio

ψ

(
Γ(t + 1)
Γ(t + α)

)
, t > 0,

where (M, d) is a metric space, Γ is the Euler Gamma function, ψ : [0,∞) → [0,∞) is a function
satisfying a certain condition, and α ∈ (0, 1) is a constant. We call this class of mappings as the class
of (ψ,Γ, α)-contractions. Our obtained result is supported by an example where the Banach fixed point
theorem is not applicable.

We end this section by fixing some notations that will be used throughout this paper. By N (resp.
N∗), we mean the set of nonnegative (resp. positive) integers. We denote by M an arbitrary nonempty
set. For a given mapping F : M → M, we denote by {Fn} the sequence of mappings Fn : M → M
defined by

F0u = u, Fn+1u = F(Fnu), n ∈ N

for all u ∈ M. By Fix(F), we mean the set of fixed points of F, that is,

Fix(F) = {u ∈ M : Fu = u} .

Similarly, for a mapping S : M × M → M, we denote by Fix(S ) the set of fixed points of S , that is,

Fix(S ) = {u ∈ M : S (u, u) = u} .

AIMS Mathematics Volume 9, Issue 11, 30612–30637.
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2. The class of p-contractions with respect to a family of mappings

In this section, we introduce the class of p-contractions with respect to a family of mappings, and
study the existence and uniqueness of fixed points for such mappings.

Let (M, d) be a metric space. Let k ∈ N∗, p ≥ 1 be constants, and {S i}
k
i=1 be a family of mappings

S i : M × M → M.

Definition 2.1. A mapping F : M → M is called a p-contraction with respect to {S i}
k
i=1 if there exists

ξ ∈ [0, 1) such that

dp(Fu, S 1(Fu, Fv)) +

k−1∑
i=1

dp(S i(Fu, Fv), S i+1(Fu, Fv))

+ dp(S k(Fu, Fv), Fv)

≤ ξ

dp(u, S 1(u, v)) +

k−1∑
i=1

dp(S i(u, v), S i+1(u, v)) + dp(S k(u, v), v)

 (2.1)

for every u, v ∈ M.

Definition 2.2. We say that a mapping F : M → M is weakly Picard continuous on (M, d) if the
following condition holds: If for u, v ∈ M and

lim
n→∞

d(Fnu, v) = 0,

then there exists a subsequence {Fn ju} of {Fnu} such that

lim
j→∞

d(F(Fn ju), Fv) = 0.

Remark 2.3. It can be easily seen that if F : M → M is continuous on (M, d), then F is weakly Picard
continuous on (M, d). However, the converse is not necessarily true, as demonstrated in the following
example.

Example 2.4. Let d be the Euclidean metric on [0, 1], that is,

d(u, v) = |u − v|, u, v ∈ [0, 1].

Suppose that F : [0, 1]→ [0, 1] is the function defined by

Fu =


u
2
, if 0 ≤ u < 1,

1
4
, if u = 1.

It is clear that F is not continuous at u = 1. Notice that for every n ∈ N∗, it follows that

Fnu =


u
2n , if 0 ≤ u < 1,

1
2n+1 , if u = 1,

which shows that
lim
n→∞

d(Fnu, 0) = 0, u ∈ [0, 1].

Thus, F is weakly Picard continuous on ([0, 1], d).
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We recall below the famous Jensen inequality (see [24]) that will be used later.

Lemma 2.5. Let J : [0,∞) → R be a convex function. Then, for every q ∈ N∗ and {x1, x2, · · · , xq},

{a1, a2, · · · , aq} ⊂ [0,∞) with
q∑

i=1
ai > 0, we have

J


q∑

i=1
aixi

q∑
i=1

ai

 ≤
q∑

i=1
aiJ(xi)

q∑
i=1

ai

.

2.1. Fixed point results

In this subsection, we give a fixed point theorem and several corollaries. Moreover, we provide
some nontrivial examples to illustrate that our results can be used, but that Banach fixed point theorem
is not applicable.

Our first main result is the following fixed point theorem.

Theorem 2.6. Let (M, d) be a complete metric space and F : M → M a mapping. Suppose that the
following conditions hold:

(i) F is a p-contraction with respect to {S i}
k
i=1;

(ii) F is weakly Picard continuous on (M, d).

Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point u∗ in M;

(III) u∗ ∈
k⋂

i=1
Fix(S i).

Proof. (I) For an arbitrary u0 ∈ M, let us consider the sequence {un} ⊂ M defined by

un = Fnu0, n ∈ N.

By (i), taking (u, v) = (u0, u1) in (2.1), we obtain

dp(Fu0, S 1(Fu0, Fu1)) +

k−1∑
i=1

dp(S i(Fu0, Fu1), S i+1(Fu0, Fu1))

+ dp(S k(Fu0, Fu1), Fu1)

≤ ξ

dp(u0, S 1(u0, u1)) +

k−1∑
i=1

dp(S i(u0, u1), S i+1(u0, u1)) + dp(S k(u0, u1), u1)

 ,
that is,

dp(u1, S 1(u1, u2)) +

k−1∑
i=1

dp(S i(u1, u2), S i+1(u1, u2)) + dp(S k(u1, u2), u2)
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≤ ξ

dp(u0, S 1(u0, u1)) +

k−1∑
i=1

dp(S i(u0, u1), S i+1(u0, u1)) + dp(S k(u0, u1), u1)

 . (2.2)

Repeating the same process with (u, v) = (u1, u2), we obtain

dp(Fu1, S 1(Fu1, Fu2)) +

k−1∑
i=1

dp(S i(Fu1, Fu2), S i+1(Fu1, Fu2))

+ dp(S k(Fu1, Fu2), Fu2)

≤ ξ

dp(u1, S 1(u1, u2)) +

k−1∑
i=1

dp(S i(u1, u2), S i+1(u1, u2)) + dp(S k(u1, u2), u2)

 ,
that is,

dp(u2, S 1(u2, u3)) +

k−1∑
i=1

dp(S i(u2, u3), S i+1(u2, u3)) + dp(S k(u2, u3), u3)

≤ ξ

dp(u1, S 1(u1, u2)) +

k−1∑
i=1

dp(S i(u1, u2), S i+1(u1, u2)) + dp(S k(u1, u2), u2)

 . (2.3)

Thus, in view of (2.2) and (2.3), we have

dp(u2, S 1(u2, u3)) +

k−1∑
i=1

dp(S i(u2, u3), S i+1(u2, u3)) + dp(S k(u2, u3), u3)

≤ ξ2

dp(u0, S 1(u0, u1)) +

k−1∑
i=1

dp(S i(u0, u1), S i+1(u0, u1)) + dp(S k(u0, u1), u1)

 .
Continuing in the same way, we obtain

dp(un, S 1(un, un+1)) +

k−1∑
i=1

dp(S i(un, un+1), S i+1(un, un+1))

+dp(S k(un, un+1), un+1)
≤ λ0ξ

n (2.4)

for every n ∈ N, where

λ0 = dp(u0, S 1(u0, u1)) +

k−1∑
i=1

dp(S i(u0, u1), S i+1(u0, u1)) + dp(S k(u0, u1), u1).

On the other hand, by the triangle inequality, we obtain that, for all n ∈ N,

d(un, un+1) ≤ d(un, S 1(un, un+1)) + d(S 1(un, un+1), S 2(un, un+1)) + · · ·

+ d(S k−1(un, un+1), S k(un, un+1)) + d(S k(un, un+1), un+1),
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which yields

dp(un, un+1) ≤
[
d(un, S 1(un, un+1)) +

k−1∑
i=1

d(S i(un, un+1), S i+1(un, un+1))

+d(S k(un, un+1), un+1)
]p
. (2.5)

Furthermore, since the function x 7→ xp is convex on [0,∞), using Lemma 2.5, we obtaind(un, S 1(un, un+1)) +

k−1∑
i=1

d(S i(un, un+1), S i+1(un, un+1)) + d(S k(un, un+1), un+1)

p

= (k + 1)p
[d(un, S 1(un, un+1))

k + 1
+

k−1∑
i=1

d(S i(un, un+1), S i+1(un, un+1))
k + 1

+
d(S k(un, un+1), un+1)

k + 1

]p

≤
(k + 1)p

k + 1

[
dp(un, S 1(un, un+1)) +

k−1∑
i=1

dp(S i(un, un+1), S i+1(un, un+1))

+ dp(S k(un, un+1), un+1)
]
,

which implies by (2.5) that

dp(un, un+1)

≤ (k + 1)p−1
[
dp(un, S 1(un, un+1)) +

k−1∑
i=1

dp(S i(un, un+1), S i+1(un, un+1))

+ dp(S k(un, un+1), un+1)
]
.

The above inequality yields

1
(k + 1)p−1 dp(un, un+1)

≤ dp(un, S 1(un, un+1)) +

k−1∑
i=1

dp(S i(un, un+1), S i+1(un, un+1))

+ dp(S k(un, un+1), un+1). (2.6)

Thus, it follows from (2.4) and (2.6) that

d(un, un+1) ≤
[
λ0(k + 1)p−1

] 1
p
ξn

p, n ∈ N, (2.7)

where
0 ≤ ξp := ξ

1
p < 1. (2.8)
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Next, thanks to (2.7) and (2.8), we obtain by the triangle inequality that, for all n ∈ N and any
m ∈ N∗,

d(un, un+m) ≤ d(un, un+1) + · · · + d(un+m−1, un+m)

≤
[
λ0(k + 1)p−1

] 1
p
(
ξn

p + · · · + ξn+m−1
p

)
=

[
λ0(k + 1)p−1

] 1
p
ξn

p

1 − ξm
p

1 − ξp

≤

[
λ0(k + 1)p−1

] 1
p

1 − ξp
ξn

p → 0 (n→ ∞),

which implies that {un} is a Cauchy sequence. Then, due to the completeness of (M, d), we infer that
there exists u∗ ∈ M such that

lim
n→∞

d(Fnu0, u∗) = lim
n→∞

d(un, u∗) = 0, (2.9)

and by (ii) it follows that there exists a subsequence {Fn ju0} of {Fnu0} such that

lim
j→∞

d(un j+1, Fu∗) = lim
j→∞

d(F(Fn ju0), Fu∗) = 0. (2.10)

Thus, in view of (2.9) and (2.10), we have u∗ = Fu∗, that is, u∗ ∈ Fix(F). This proves part (I) of
Theorem 2.6.

(II) By (I), it follows that u∗ ∈ Fix(F). If there still exists v∗ ∈ Fix(F), then by (2.1), we obtain

dp(Fu∗, S 1(Fu∗, Fv∗)) +

k−1∑
i=1

dp(S i(Fu∗, Fv∗), S i+1(Fu∗, Fv∗))

+ dp(S k(Fu∗, Fv∗), Fv∗)

≤ ξ

dp(u∗, S 1(u∗, v∗)) +

k−1∑
i=1

dp(S i(u∗, v∗), S i+1(u∗, v∗)) + dp(S k(u∗, v∗), v∗)

 ,
that is,

dp(u∗, S 1(u∗, v∗)) +

k−1∑
i=1

dp(S i(u∗, v∗), S i+1(u∗, v∗)) + dp(S k(u∗, v∗), v∗)

≤ ξ

dp(u∗, S 1(u∗, v∗)) +

k−1∑
i=1

dp(S i(u∗, v∗), S i+1(u∗, v∗)) + dp(S k(u∗, v∗), v∗)

 .
Since ξ ∈ [0, 1), the above inequality implies that

d(u∗, S 1(u∗, v∗)) = d(S 1(u∗, v∗), S 2(u∗, v∗)) = · · · = d(S k−1(u∗, v∗), S k(u∗, v∗))
= d(S k(u∗, v∗), v∗) = 0,

which yields u∗ = v∗. Consequently, F admits a unique fixed point u∗ in M, which proves part (II) of
Theorem 2.6.
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(III) From (II), we know that F admits a unique fixed point u∗ ∈ M. Taking (u, v) = (u∗, u∗) in (2.1),
we obtain

dp(Fu∗, S 1(Fu∗, Fu∗)) +

k−1∑
i=1

dp(S i(Fu∗, Fu∗), S i+1(Fu∗, Fu∗))

+ dp(S k(Fu∗, Fu∗), Fu∗)

≤ ξ

dp(u∗, S 1(u∗, u∗)) +

k−1∑
i=1

dp(S i(u∗, u∗), S i+1(u∗, u∗)) + dp(S k(u∗, u∗), u∗)

 ,
that is,

dp(u∗, S 1(u∗, u∗)) +

k−1∑
i=1

dp(S i(u∗, u∗), S i+1(u∗, u∗)) + dp(S k(u∗, u∗), u∗)

≤ ξ

dp(u∗, S 1(u∗, u∗)) +

k−1∑
i=1

dp(S i(u∗, u∗), S i+1(u∗, u∗)) + dp(S k(u∗, u∗), u∗)

 .
Since ξ ∈ [0, 1), the above inequality implies that

d(u∗, S 1(u∗, u∗)) = d(S 1(u∗, u∗), S 2(u∗, u∗)) = · · ·

= d(S k−1(u∗, u∗), S k(u∗, u∗)) = d(S k(u∗, u∗), u∗) = 0.

Consequently, we obtain

u∗ = S 1(u∗, u∗) = S 2(u∗, u∗) = · · · = S k(u∗, u∗),

that is, u∗ ∈
k⋂

i=1
Fix(S i). This proves part (III) of Theorem 2.6. �

We now discuss some special cases of Theorem 2.6. Taking k = 1 in Theorem 2.6, we obtain the
following result.

Corollary 2.7. Let (M, d) be a complete metric space, p ≥ 1 a constant, and S 1 : M × M → M a
mapping. Suppose that F : M → M is a mapping satisfying the following conditions:

(i) There exists a constant ξ ∈ [0, 1) such that

dp(Fu, S 1(Fu, Fv)) + dp(S 1(Fu, Fv), Fv)
≤ ξ [dp(u, S 1(u, v)) + dp(S 1(u, v), v)]

(2.11)

for every u, v ∈ M;
(ii) F is weakly Picard continuous on (M, d).

Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point u∗ in M;

(III) u∗ ∈ Fix(S 1).
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Taking S 1(u, v) = Fu for every u, v ∈ M, we deduce from Corollary 2.7 the following result.

Corollary 2.8. Let (M, d) be a complete metric space, p ≥ 1 a constant, and F : M → M a mapping.
Suppose that the following conditions hold:

(i) There exists a constant ξ ∈ [0, 1) such that

dp(Fu, F2u) + dp(F2u, Fv) ≤ ξ [dp(u, Fu) + dp(Fu, v)] (2.12)

for every u, v ∈ M;
(ii) F is weakly Picard continuous on (M, d).

Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point u∗ in M.

Taking k = 2 in Theorem 2.6, we obtain the following result.

Corollary 2.9. Let (M, d) be a complete metric space, S 1, S 2 : M × M → M two mappings and p ≥ 1
a constant. Suppose that F : M → M is a mapping satisfying the following conditions:

(i) There exists a constant ξ ∈ [0, 1) such that

dp(Fu, S 1(Fu, Fv)) + dp(S 1(Fu, Fv), S 2(Fu, Fv)) + dp(S 2(Fu, Fv), Fv)
≤ ξ [dp(u, S 1(u, v)) + dp(S 1(u, v), S 2(u, v)) + dp(S 2(u, v), v)]

for every u, v ∈ M;
(ii) F is weakly Picard continuous on (M, d).

Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point u∗ in M;

(III) u∗ ∈ Fix(S 1) ∩ Fix(S 2).

If F is continuous on (M, d) (see Remark 2.3), then we deduce from Theorem 2.6 the following
result.

Corollary 2.10. Let (M, d) be a complete metric space and F : M → M a mapping. Suppose that the
following conditions hold:

(i) F is a p-contraction with respect to {S i}
k
i=1;

(ii) F is continuous.

Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point u∗ in M;

(III) u∗ ∈
k⋂

i=1
Fix(S i).
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We now show that Theorem 2.6 includes the Banach fixed point theorem.

Corollary 2.11. (Banach fixed point theorem) Let (M, d) be a complete metric space and F : M → M
a mapping. Suppose that there exists a constant ξ ∈ [0, 1) such that

d(Fu, Fv) ≤ ξd(u, v) (2.13)

for every u, v ∈ M. Then, F possesses a unique fixed point u∗ in M. Moreover, for every u0 ∈ M, the
sequence {Fnu0} converges to u∗.

Proof. Let k = p = 1 and S 1 : M × M → M be the projection mapping defined by

S 1(u, v) = u, (u, v) ∈ M × M.

In this case, (2.1) reduces to

d(Fu, Fu) + d(Fu, Fv) ≤ ξ [d(u, u) + d(u, v)] ,

that is, (2.13). This shows that, if F satisfies (2.13), then F satisfies (2.1) with k = p = 1 and S 1 is
the mapping defined above. On the other hand, due to (2.13), the mapping F is continuous. Thus, by
Corollary 2.10, the desired result is completed. �

We provide below three examples illustrating our obtained results. In all the presented examples,
the Banach fixed point theorem is not applicable.

Example 2.12. Let F : [0, 1]→ [0, 1] be the mapping defined by

Fu =


0, if 0 ≤ u < 1,

1
4
, if u = 1.

We consider the Euclidean metric on [0, 1], that is,

d(u, v) = |u − v|, u, v ∈ [0, 1].

Notice that F is not continuous at u = 1, which implies that F is not a contraction. Thus, the Banach
fixed point theorem is not applicable in this example. Let us now estimate the ratio

R(u, v) =
d(Fu, F2u) + d(F2u, Fv)

d(u, Fu) + d(Fu, v)
, u, v ∈ [0, 1].

We distinguish four cases as follows.
Case 1. 0 ≤ u, v < 1. In this case, we obtain

d(Fu, F2u) + d(F2u, Fv) = d(0, F0) + d(F0, 0) = 2d(0, 0) = 0.

Case 2. u = v = 1. In this case, we have

R(u, v) =
d(F1, F21) + d(F21, F1)

d(1, F1) + d(F1, 1)
=

d(1
4 , 0) + d(0, 1

4 )

d(1, 1
4 ) + d( 1

4 , 1)
=

1
3
.
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Case 3. 0 ≤ u < 1 and v = 1. In this case, we have

R(u, v) =
d(Fu, F2u) + d(F2u, F1)

d(u, Fu) + d(Fu, 1)
=

d(0, F0) + d(F0, F1)
d(u, 0) + d(0, 1)

=
d(0, 0) + d(0, 1

4 )
u + 1

≤
1
4
.

Case 4. u = 1 and 0 ≤ v < 1. In this case, we have

R(u, v) =
d(F1, F21) + d(F21, Fv)

d(1, F1) + d(F1, v)
=

d(1
4 , 0) + d(0, 0)

d(1, 1
4 ) + d(1

4 , v)
=

1
4

3
4 + d( 1

4 , v)
≤

1
3
.

Generally speaking, from the above estimates, we deduce that

d(Fu, F2u) + d(F2u, Fv) ≤
1
3

[d(u, Fu) + d(Fu, v)]

for every u, v ∈ M, which shows that F satisfies (2.12) with p = 1.
On the other hand, for all u ∈ [0, 1], we have

Fnu = 0, n ≥ 2,

which shows that F is weakly Picard continuous. Consequently, Corollary 2.8 applies. Notice that

Fix(F) = {0},

which confirms Corollary 2.8.

Example 2.13. Let M = {m1,m2,m3} and F : M → M be the mapping defined by

Fm1 = m1, Fm2 = m1, Fm3 = m2.

Let d be the discrete metric on M, that is,

d(mi,m j) =

1, if i , j,

0, if i = j.
(2.14)

Notice that
d(Fm1, Fm3)

d(m1,m3)
=

d(m1,m2)
d(m1,m3)

= 1,

which shows that there is no ξ ∈ [0, 1) such that (2.13) holds for every u, v ∈ M. Consequently, the
Banach fixed point theorem is not applicable in this example.

Let us introduce the mapping S 1 : M × M → M defined by

S 1(mi,mi) = mi, S 1(mi,m j) = S 1(m j,mi), i, j ∈ {1, 2, 3}

and
S 1(m1,m2) = S 1(m2,m3) = m1, S 1(m1,m3) = m2.

We claim that F satisfies (2.11) with p = 1 and ξ = 1
2 , that is,

d(Fmi, S 1(Fmi, Fm j)) + d(S 1(Fmi, Fm j), Fm j)
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≤
1
2

[
d(mi, S 1(mi,m j)) + d(S 1(mi,m j),m j)

]
(2.15)

for every i, j ∈ {1, 2, 3}.
Indeed, notice that for all i ∈ {1, 2, 3}, we have

d(Fmi, S 1(Fmi, Fmi)) + d(Fmi, S 1(Fmi, Fmi))
= d(Fmi, Fmi) + d(Fmi, Fmi) = 0,

which shows that (2.15) holds for all i = j ∈ {1, 2, 3}.
On the other hand, due to the symmetry of S 1, we just have to show that (2.15) holds for (i, j) ∈

{(1, 2), (1, 3), (2, 3)}. For this purpose, we divide it into three cases below.
Case 1. (i, j) = (1, 2). In this case, we have

d(Fmi, S 1(Fmi, Fm j)) + d(Fm j, S 1(Fmi, Fm j))
= d(Fm1, S 1(Fm1, Fm2)) + d(Fm2, S 1(Fm1, Fm2))
= d(m1, S 1(m1,m1)) + d(m1, S 1(m1,m1))
= d(m1,m1) + d(m1,m1)
= 0,

which shows that (2.15) is satisfied for (i, j) = (1, 2).
Case 2. (i, j) = (1, 3). In this case, we have

d(Fmi, S 1(Fmi, Fm j)) + d(Fm j, S 1(Fmi, Fm j))
d(mi, S 1(mi,m j)) + d(m j, S 1(mi,m j))

=
d(Fm1, S 1(Fm1, Fm3)) + d(Fm3, S 1(Fm1, Fm3))

d(m1, S 1(m1,m3)) + d(m3, S 1(m1,m3))

=
d(m1, S 1(m1,m2)) + d(m2, S 1(m1,m2))
d(m1, S 1(m1,m3)) + d(m3, S 1(m1,m3))

=
d(m1,m1) + d(m2,m1)
d(m1,m2) + d(m3,m2)

=
1
2
,

which confirms (2.15).
Case 3. (i, j) = (2, 3). In this case, we have

d(Fmi, S 1(Fmi, Fm j)) + d(Fm j, S 1(Fmi, Fm j))
d(mi, S 1(mi,m j)) + d(m j, S 1(mi,m j))

=
d(Fm2, S 1(Fm2, Fm3)) + d(Fm3, S 1(Fm2, Fm3))

d(m2, S 1(m2,m3)) + d(m3, S 1(m2,m3))

=
d(m1, S 1(m1,m2)) + d(m2, S 1(m1,m2))
d(m2, S 1(m2,m3)) + d(m3, S 1(m2,m3))

=
d(m1,m1) + d(m2,m1)
d(m2,m1) + d(m3,m1)

=
1
2
,
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which shows that (2.15) is also satisfied for (i, j) = (2, 3).
From the above discussions, we deduce that (2.15) holds for every i, j ∈ {1, 2, 3}.
Since F is continuous (because M is a finite set), then F is weakly Picard continuous on (M, d).

Consequently, Corollary 2.7 applies. Notice that

Fix(F) = {m1}

and
S 1(m1,m1) = m1,

which confirms Corollary 2.7.

Example 2.14. Let us consider the mapping F : [0, 1]→ [0, 1] defined by

Fu =

 1
2e−u, if 0 ≤ u < 1,
1
2 , if u = 1.

Let d be the metric on [0, 1] defined by

d(u, v) = |u − v|, u, v ∈ [0, 1].

Notice that F is not continuous at u = 1, which implies that F is not a contraction. Then, the Banach
fixed point theorem is not applicable in this case.

Let us introduce the mapping S : [0, 1] × [0, 1]→ [0, 1] defined by

S (u, v) = Fu, u, v ∈ [0, 1].

We consider the following four cases.

Case 1. 0 ≤ u, v < 1. Taking into consideration that∣∣∣∣∣∣ d
dx

(
1
2

e−x

)∣∣∣∣∣∣ =
1
2

e−x ≤
1
2
, 0 ≤ x ≤ 1 (2.16)

and F([0, 1)) ⊂ [0, 1), we obtain by the mean value theorem that

d(Fu, S (Fu, Fv)) + d(S (Fu, Fv), Fv)
= |Fu − F(Fu)| + |F(Fu) − Fv|

≤
1
2
|u − Fu| +

1
2
|Fu − v|

=
1
2

(|u − S (u, v)| + |S (u, v) − v|)

=
1
2

(d(u, S (u, v)) + d(S (u, v), v)) .

Case 2. 0 ≤ u < 1, v = 1. In this case, on the one hand, using that F1 = F0 and (2.16), we obtain
by the mean value theorem that

d(Fu, S (Fu, F1)) + d(S (Fu, F1), F1)
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= |Fu − F(Fu)| + |F(Fu) − F0|

≤
1
2
|u − Fu| +

1
2
|Fu − 0|

=
1
2

(d(u, S (u, 1)) + Fu) .

On the other hand,
2Fu = e−u ≤ 1,

which implies that
Fu ≤ 1 − Fu = |Fu − 1| = d(S (u, 1), 1).

Consequently, we have

d(Fu, S (Fu, F1)) + d(S (Fu, F1), F1) ≤
1
2

(d(u, S (u, 1)) + d(S (u, 1), 1)) .

Case 3. u = 1, 0 ≤ v < 1. In this case, we obtain

d(F1, S (F1, Fv)) + d(S (F1, Fv), Fv)
= |F1 − F21| + |F21 − Fv|

= |F0 − F(F0)| + |F(F0) − Fv|

≤
1
2

(|0 − F0| + |F0 − v|)

=
1
2

(F1 + |F1 − v|)

=
1
2

(F1 + d(S (1, v), v)) .

Moreover, we have

F1 =
1
2

= 1 − F1 = d(1, S (1, v)).

Consequently, we arrive at

d(F1, S (F1, Fv)) + d(S (F1, Fv), Fv) ≤
1
2

(d(1, S (1, v)) + d(S (1, v), v)) .

Case 4. u = v = 1. In this case, we have

d(F1, S (F1, F1)) + d(S (F1, F1), F1)
= d(F1, F21) + d(F21, F1)
= 2d(F0, F(F0))

≤ 2 ·
1
2
|0 − F0|

= F0

=
1
2
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=
1
2

(d(1, S (1, 1)) + d(S (1, 1), 1)) .

Thus, from the above discussion, we deduce that F satisfies (2.11) with p = 1, S 1 = S , and ξ = 1
2 .

Furthermore, for all u ∈ [0, 1], we have {Fnu} ⊂ [0, 1
2 ]. Then, by the continuity of F on [0, 1

2 ], if for
some u, v ∈ [0, 1] we have

lim
n→∞

d(Fnu, v) = 0,

so v ∈ [0, 1
2 ], and

lim
n→∞

d(F(Fnu), Fv) = 0.

This shows that F is weakly Picard continuous on ([0, 1], d). Finally, by Corollary 2.7, we deduce that
F has one and only one fixed point u∗ ≈ 0.3517. Figure 1 confirms our conclusion.

Figure 1. The unique fixed point of F.

2.2. An application: A discrete fixed point result

In this subsection, as an application of Theorem 2.6, we obtain sufficient conditions under which a
mapping F : N∗ → N∗ admits a unique fixed point.

Theorem 2.15. Let F : N∗ → N∗ be a mapping satisfying the inequality

2F(n)+F(m)+1 − F(n) − F(m) ≤ ξ
(
2n+m+1 − n − m

)
(2.17)

for every n,m ∈ N∗ with F(n) , F(m), where ξ ∈ [0, 1) is a constant. Then, F possesses a unique fixed
point.

Proof. Let us consider the mapping S 1 : N∗ × N∗ → N∗ defined by

S 1(n,m) =

2n+m, if n , m,

n, if n = m.

We claim that
|F(n) − S 1(F(n), F(m))| + |S 1(F(n), F(m)) − F(m)|
≤ ξ (|n − S 1(n,m)| + |S 1(n,m) − m|)

(2.18)
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for every n,m ∈ N∗. To this end, we discuss two cases.
Case 1. F(n) = F(m). In this case, by the definition of S 1, we obtain

|F(n) − S 1(F(n), F(m))| + |S 1(F(n), F(m)) − F(m)|
= |F(n) − S 1(F(n), F(n))| + |S 1(F(n), F(n)) − F(n)|
= 2|F(n) − S 1(F(n), F(n))|
= 2|F(n) − F(n)|
= 0,

which shows that (2.18) holds in this case.

Case 2. F(n) , F(m). In this case, n , m. By the definition of S 1, we obtain

|F(n) − S 1(F(n), F(m))| + |S 1(F(n), F(m)) − F(m)|
= |F(n) − 2F(n)+F(m)| + |2F(n)+F(m) − F(m)|
= 2F(n)+F(m) − F(n) + 2F(n)+F(m) − F(m)
= 2F(n)+F(m)+1 − F(n) − F(m),

which implies by (2.17) that

|F(n) − S 1(F(n), F(m))| + |S 1(F(n), F(m)) − F(m)| ≤ ξ
(
2n+m+1 − n − m

)
. (2.19)

Note that
2n+m+1 − n − m = 2n+m − n + 2n+m − m

= |2n+m − n| + |2n+m − m|,

that is,
2n+m+1 − n − m = |n − S 1(n,m)| + |S 1(n,m) − m|. (2.20)

Thus, by (2.19) and (2.20), we get (2.18). Consequently, F satisfies (2.11) with k = p = 1, M = N∗,
and

d(n,m) = |n − m|, n,m ∈ M.

On the other hand, since F is defined on N∗, then F is continuous on (M, d), which shows that
condition (ii) of Corollary 2.7 is satisfied. Therefore, by Corollary 2.7, we obtain that F possesses
a unique fixed point. This completes the proof of Theorem 2.15. �

We now illustrate Theorem 2.15 by an example in which the Banach fixed point theorem is not
applicable.

Example 2.16. Let us consider the mapping F : N∗ → N∗ defined by

F(n) =

1, if n = 1,
n − 1, if n ≥ 2.

First, notice that

lim
n→∞

|F(n) − F(1)|
n − 1

= lim
n→∞

n − 2
n − 1

= 1,
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which shows that there is no ξ ∈ [0, 1) such that

|F(n) − F(m)| ≤ ξ|n − m|

for every n,m ∈ N∗. Consequently, F is not a contraction on (N∗, d), where d(n,m) = |n − m| for every
n,m ∈ N∗. Thus, the Banach fixed point theorem is not applicable in this example.

Now, we show that F satisfies (2.17) for every n,m ∈ N∗ with F(n) , F(m). Notice that for every
n,m ∈ N∗, we have

F(n) , F(m)⇐⇒ (n,m) ∈ V ∪ V ′,

where
V = {(n,m) ∈ N∗ × N∗ : n = 1, m ≥ 3; or n > m ≥ 2}

and
V ′ = {(n,m) ∈ N∗ × N∗ : (m, n) ∈ V}.

Due to the symmetry of (2.17), without restriction of the generality, we may assume that (n,m) ∈ V .
So, we have two possible cases.

Case 1. n = 1 and m ≥ 3. In this case, we have

2F(n)+F(m)+1 − F(n) − F(m)
2n+m+1 − n − m

=
2F(1)+F(m)+1 − F(1) − F(m)

21+m+1 − 1 − m

=
2m+1 − m

2m+2 − 1 − m

=
2m+2 − 2m

2
(
2m+2 − 1 − m

)
≤

1
2
.

Case 2. n > m ≥ 2. In this case, we have

2F(n)+F(m)+1 − F(n) − F(m)
2n+m+1 − n − m

=
2n+m−1 − n − m + 2

2n+m+1 − n − m

=
2n+m − 2n − 2m + 4
2(2n+m+1 − n − m)

≤
1
2
.

From the above estimates, we deduce that

2F(n)+F(m)+1 − F(n) − F(m) ≤
1
2

(
2n+m+1 − n − m

)
for every n,m ∈ N∗ with F(n) , F(m). Thus, F satisfies (2.17) with ξ = 1

2 , and Theorem 2.15 applies.
On the other hand, we have Fix(F) = {1}, which confirms Theorem 2.15.
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3. The class of (ψ,Γ, α)-contractions

Before introducing the class of (ψ,Γ, α)-contractions, let us briefly recall some properties related to
the Euler gamma function. For more details, we refer to Abramowitz and Stegun [21].

The Euler gamma function is the function Γ defined by

Γ(s) =

∫ ∞

0
ts−1e−t dt, s > 0.

An integration by parts shows that

Γ(s + 1) = sΓ(s), s > 0. (3.1)

In particular, when s = k ∈ N∗, we obtain

Γ(k + 1) = k!.

For all n ∈ N, we have

Γ

(
n +

1
2

)
=

(2n)!
22nn!

√
π. (3.2)

The function Γ is ln-convex, i.e.,

Γ(αs + (1 − α)t) ≤ Γα(s)Γ1−α(t), s, t > 0, α ∈ (0, 1). (3.3)

Let us denote by Ψ the set of functions ψ : [0,∞)→ [0,∞) satisfying

ψ(t) ≥ ctτ, t ≥ 0, (3.4)

where c, τ > 0 are constants. Remark that by (3.4), if ψ ∈ Ψ, then

ψ(t) > 0, t > 0. (3.5)

Notice that no continuity assumption is imposed on ψ ∈ Ψ.

Definition 3.1. Let (M, d) be a metric space and F : M → M a mapping. We say that F is a (ψ,Γ, α)-
contraction, if there exist α, β ∈ (0, 1) and ψ ∈ Ψ such that

ψ

(
Γ(d(Fu, Fv) + 1)
Γ(d(Fu, Fv) + α)

)
≤ βψ

(
Γ(d(u, v) + 1)
Γ(d(u, v) + α)

)
(3.6)

for every u, v ∈ M with Fu , Fv.

Our second main result is the following fixed point theorem.

Theorem 3.2. Let (M, d) be a complete metric space and F : M → M a mapping. Suppose that the
following conditions hold:

(i) F is a (ψ,Γ, α)-contraction;
(ii) F is weakly Picard continuous on (M, d).
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Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point.

Proof. (I) For an arbitrary u0 ∈ M, let

un = Fnu0, n ∈ N.

We distinguish two cases as follows:
Case 1. There exists m ∈ N such that

um = um+1.

In this case, we obtain um = Fum and
un = um, n ≥ m,

which shows that um ∈ Fix(F) and {un} converges to um.
Case 2. For all n ∈ N, we have

un , un+1,

that is,
d(Fun−1, Fun) > 0, n ∈ N∗.

In this case, using (3.6) with (u, v) = (u0, u1), we obtain

ψ

(
Γ(d(Fu0, Fu1) + 1)
Γ(d(Fu0, Fu1) + α)

)
≤ βψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)
,

that is,

ψ

(
Γ(d(u1, u2) + 1)
Γ(d(u1, u2) + α)

)
≤ βψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)
. (3.7)

Again using (3.6) with (u, v) = (u1, u2), we obtain

ψ

(
Γ(d(Fu1, Fu2) + 1)
Γ(d(Fu1, Fu2) + α)

)
≤ βψ

(
Γ(d(u1, u2) + 1)
Γ(d(u1, u2) + α)

)
,

that is,

ψ

(
Γ(d(u2, u3) + 1)
Γ(d(u2, u3) + α)

)
≤ βψ

(
Γ(d(u1, u2) + 1)
Γ(d(u1, u2) + α)

)
. (3.8)

Then, it follows from (3.7) and (3.8) that

ψ

(
Γ(d(u2, u3) + 1)
Γ(d(u2, u3) + α)

)
≤ β2ψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)
.

Repeating the same argument, we obtain by induction that

ψ

(
Γ(d(un, un+1) + 1)
Γ(d(un, un+1) + α)

)
≤ βnψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)
, n ∈ N. (3.9)

AIMS Mathematics Volume 9, Issue 11, 30612–30637.



30632

On the other hand, by (3.4), we have

ψ

(
Γ(d(un, un+1) + 1)
Γ(d(un, un+1) + α)

)
≥ c

(
Γ(d(un, un+1) + 1)
Γ(d(un, un+1) + α)

)τ
,

which implies together with (3.9) that

Γ(d(un, un+1) + 1)
Γ(d(un, un+1) + α)

≤ β
n
τ

[
1
c
ψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)] 1
τ

, n ∈ N. (3.10)

Furthermore, by the ln-convexity of Γ (see (3.3)), for any n ∈ N, we have

Γ(d(un, un+1) + α) = Γ ((1 − α)d(un, un+1) + α(d(un, un+1) + 1))

≤ Γ1−α(d(un, un+1))Γα(d(un, un+1) + 1).
(3.11)

Subsequently, by (3.1), we have

Γ(d(un, un+1) + 1) = d(un, un+1)Γ(d(un, un+1)),

which yields
Γ1−α(d(un, un+1)) = [d(un, un+1)]α−1Γ1−α(d(un, un+1) + 1).

Hence, from (3.11), we deduce that

Γ(d(un, un+1) + α) ≤ [d(un, un+1)]α−1Γ1−α(d(un, un+1) + 1)Γα(d(un, un+1) + 1)
= [d(un, un+1)]α−1Γ(d(un, un+1) + 1),

which implies that
Γ(d(un, un+1) + 1)
Γ(d(un, un+1) + α)

≥ d1−α(un, un+1), n ∈ N. (3.12)

Now, using both inequalities (3.10) and (3.12), we obtain

d1−α(un, un+1) ≤ β
n
τ

[
1
c
ψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)] 1
τ

, n ∈ N,

which is equivalent to
d(un, un+1) ≤ σnψ0, n ∈ N, (3.13)

where
σ = β

1
τ(1−α) ∈ (0, 1)

and

ψ0 =

[
1
c
ψ

(
Γ(d(u0, u1) + 1)
Γ(d(u0, u1) + α)

)] 1
τ(1−α)

.

Next, using (3.13) and the triangle inequality, we obtain that for all n ∈ N and q ∈ N∗,

d(un, un+q) ≤ d(un, un+1) + · · · + d(un+q−1, un+q)

≤
(
σn + · · · + σn+q−1

)
ψ0

=
σn(1 − σq)

1 − σ
ψ0

≤
σn

1 − σ
ψ0,

which shows (since 0 < σ < 1) that {un} is a Cauchy sequence. Then, by the completeness of (M, d),
we infer that there exists u∗ ∈ M such that
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lim
n→∞

d(Fnu0, u∗) = 0.

Thus, using the weakly Picard continuity of F and proceeding as in the proof of Theorem 2.6, we
obtain that u∗ ∈ Fix(F). This proves part (I) of Theorem 3.2.

(II) From part (I), we know that u∗ ∈ Fix(F). Assume that there exists another different v∗ ∈ Fix(F)
(so, d(Fu∗, Fv∗) > 0). Then, using (3.6), we obtain

ψ

(
Γ(d(Fu∗, Fv∗) + 1)
Γ(d(Fu∗, Fv∗) + α)

)
≤ βψ

(
Γ(d(u∗, v∗) + 1)
Γ(d(u∗, v∗) + α)

)
,

that is,

ψ

(
Γ(d(u∗, v∗) + 1)
Γ(d(u∗, v∗) + α)

)
≤ βψ

(
Γ(d(u∗, v∗) + 1)
Γ(d(u∗, v∗) + α)

)
. (3.14)

Moreover, since
Γ(d(u∗, v∗) + 1)
Γ(d(u∗, v∗) + α)

> 0,

it follows immediately from (3.5) that

ψ

(
Γ(d(u∗, v∗) + 1)
Γ(d(u∗, v∗) + α)

)
> 0.

Then, from (3.14), we reach a contradiction with β ∈ (0, 1). Therefore, u∗ is the unique fixed point
of F. This proves part (II) of Theorem 3.2. �

In the special case when F is continuous on (M, d), we deduce from Theorem 3.2 the following
result.

Corollary 3.3. Let (M, d) be a complete metric space and F : M → M a mapping. Suppose that the
following conditions hold:

(i) F is a (ψ,Γ, α)-contraction;
(ii) F is continuous.

Then:

(I) For every u0 ∈ M, the sequence {Fnu0} converges to a fixed point of F;
(II) F possesses a unique fixed point.

We now give an example to illustrate Theorem 3.2.

Example 3.4. Let M = {q1, q2, q3} and F : M → M be the mapping defined by

Fq1 = q1, Fq2 = q3, Fq3 = q1.

Let d : M × M → [0,∞) be the mapping defined by

d(qi, qi) = 0, d(qi, q j) = d(q j, qi), i, j ∈ {1, 2, 3}
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and
d(q1, q2) = 1, d(q1, q3) = 2, d(q2, q3) = 3. (3.15)

Observe that
d(q1, q2) = 1 < 5 = d(q1, q3) + d(q3, q2),
d(q1, q3) = 2 < 4 = d(q1, q2) + d(q2, q3),
d(q2, q3) = 3 = d(q2, q1) + d(q1, q3),

which shows that d is a metric on M.
Notice that

d(Fq1, Fq2)
d(q1, q2)

=
d(q1, q3)
d(q1, q2)

= 2 > 1,

which shows that there is no ξ ∈ [0, 1) such that

d(Fqi, Fq j) ≤ ξd(qi, q j)

for all i, j ∈ {1, 2, 3}. Consequently, the Banach fixed point theorem is not applicable in this case.
Consider now the function ψ : [0,∞)→ [0,∞) defined by

ψ(t) =



√
π

2
t + 1, if 0 ≤ t ≤

2
√
π
,

3
√
π

8
t, if

2
√
π
< t ≤

8
3
√
π
,

5
√
π

32
t +

5
2
, if t >

8
3
√
π
.

It can easily be seen that

ψ(t) ≥
5
√
π

32
t, t ≥ 0,

which shows that ψ ∈ Ψ (indeed, ψ satisfies (3.4) with c =
5
√
π

32
and τ = 1).

From the definition of F, for all i, j ∈ {1, 2, 3}, we have

d(Fqi, Fq j) > 0⇐⇒ (i, j) ∈ {(1, 2), (2, 1), (2, 3), (3, 2)}. (3.16)

Moreover, by (3.15), the definition of ψ, and (3.2), we obtain

ψ

Γ(d(Fq1, Fq2) + 1)
Γ(d(Fq1, Fq2) + 1

2 )


ψ

Γ(d(q1, q2) + 1)
Γ(d(q1, q2) + 1

2 )

 =

ψ

 Γ(3)
Γ(2 + 1

2 )


ψ

 Γ(2)
Γ(1 + 1

2 )

 =
ψ

(
8

3
√
π

)
ψ

(
2
√
π

) =
1
2

and

ψ

Γ(d(Fq2, Fq3) + 1)
Γ(d(Fq2, Fq3) + 1

2 )


ψ

Γ(d(q2, q3) + 1)
Γ(d(q2, q3) + 1

2 )

 =

ψ

 Γ(3)
Γ(2 + 1

2 )


ψ

 Γ(4)
Γ(3 + 1

2 )

 =
ψ

(
8

3
√
π

)
ψ

(
16

5
√
π

) =
1
3
.
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Then, by (3.16), the above calculations, and the symmetry of d, we deduce that for all i, j ∈ {1, 2, 3}

and
1
2
≤ β < 1,

d(Fqi, Fq j) > 0 =⇒ ψ

Γ(d(Fqi, Fq j) + 1)

Γ(d(Fqi, Fq j) + 1
2 )

 ≤ βψ Γ(d(qi, q j) + 1)

Γ(d(qi, q j) + 1
2 )

 ,
which means that F satisfies (3.6) with α =

1
2

and
1
2
≤ β < 1. Furthermore, since M is a finite set of

elements, then F is continuous on M with respect to the metric d. This shows that Theorem 3.2 (or,
more precisely, Corollary 3.3) applies. On the other hand, we have

Fix(F) = {q1},

which confirms Theorem 3.2.

4. Conclusions

The Banach fixed point theorem is a very important result in fixed point theory that has numerous
applications in nonlinear analysis. However, when the mapping does not belong to the class of
contractions, the theorem is inapplicable. Thus, the development of fixed point theory for non-
contraction mappings is of great importance. Motivated by this fact, two new classes of self-mappings
defined on a complete metric space (M, d) are introduced in this work. The first one is the class of
p-contractions with respect to a family of mappings {S i}

k
i=1, where S i : M × M → M. For such

a class of mappings, a fixed point theorem was established (see Theorem 2.6). Namely, we proved
that, if F : M → M is weakly Picard continuous on (M, d) and F is a p-contraction with respect to
{S i}

k
i=1, then F possesses a unique fixed point, which is also a common fixed point of the mappings S i

(i = 1, 2, · · · , k). Moreover, for any u0 ∈ M, the Picard sequence {Fnu0} converges to this fixed point.
We also proved that our obtained result recovers the Banach fixed point theorem. The second class
introduced in this work is the class of (ψ,Γ, α)-contractions, where Γ is the Euler gamma function,
ψ : [0,∞)→ [0,∞) satisfies condition (3.4), and α ∈ (0, 1). A fixed point theorem was proved for this
class of mappings (see Theorem 3.2). Namely, as for the previous class of mappings, we proved that,
if F : M → M is weakly Picard continuous on (M, d) and F is a (ψ,Γ, α)-contraction, then F admits a
unique fixed point, and for any u0 ∈ M, the sequence {Fnu0} converges to this fixed point.

Some questions related to this work need to be investigated. For this purpose, we provide below
some interesting questions for further studies:

I. Consider the class of mappings F : (M, d)→ (M, d) satisfying the inequality

ψ

(
Γ(d(Fu, Fv) + 1)
Γ(d(Fu, Fv) + α)

)
≤ β

[
ψ

(
Γ(d(u, Fu) + 1)
Γ(d(u, Fu) + α)

)
+ ψ

(
Γ(d(v, Fv) + 1)
Γ(d(v, Fv) + α)

)]
for all u, v ∈ M with d(Fu, Fv) > 0, where α ∈ (0, 1) and β > 0 are constants. Is it possible to
obtain sufficient conditions on β and ψ so that F admits one and only one fixed point?

II. We reiterate the previous question for the class of mappings F : (M, d)→ (M, d) satisfying

ψ

(
Γ(d(Fu, Fv) + 1)
Γ(d(Fu, Fv) + α)

)
≤ β

[
ψ

(
Γ(d(u, Fv) + 1)
Γ(d(u, Fv) + α)

)
+ ψ

(
Γ(d(v, Fu) + 1)
Γ(d(v, Fu) + α)

)]
.
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III. It would be also interesting to study the multi-valued version of Theorem 3.2 by considering
the class of multi-valued mappings F : M → CB(M), where CB(M) denotes the family of all
nonempty bounded and closed subsets of M, satisfying the inequality

ψ

(
Γ(H(Fu, Fv) + 1)
Γ(H(Fu, Fv) + α)

)
≤ βψ

(
Γ(d(u, v) + 1)
Γ(d(u, v) + α)

)
,

where H is the Hausdorff-Pompeiu metric on CB(M).
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