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Abstract: In this paper, we introduced a new class of weak Hardy spaces, denoted by H;™, and
provided an analysis of their atomic decomposition. As an application, we established the boundedness
of Calder6n-Zygmund operators (CZOs) from H” to H,™ including cases at the critical exponent

n

P=uys

where ¢ represents the regularity index of the distributional kernel. Moreover, the boundedness of
CZOs from H”* to H,* was demonstrated for

n
— <p<l.
n
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1. Introduction

Hardy spaces are well-recognized as effective substitutes for Lebesgue spaces in analyzing the
boundedness of singular integral operators for 0 < p < 1. We consider 7 in Calder6n-Zygmund
operators (CZOs) with regularity 6 (where 0 < ¢ < 1) and satisfying

T"(1)=0
with T* denoting the adjoint operator of 7. It is known that 7" is bounded on H”(R") for

n
— <p<l,
n
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although T may fail to be bounded on H#3(R"). In this context, the weak Hardy space H"*(R") was
introduced in [1] and it was demonstrated that certain 7 in CZOs is bounded from H"*(R") to L"*(R").

Liu [2] showed that T in CZOs is bounded from H#5(R") to Hw°(R") by atomic decomposition. A
novel Littlewood-Paley characterization of weak Hardy spaces was introduced by He in [3], along
with a new inequality that parallels the Fefferman-Stein vector-valued inequality. This development
has contributed notably to the theoretical study of weak Hardy spaces. Furthermore, Yan et al. [4]
developed variable weak Hardy spaces via radial grand maximal functions, characterized these spaces
with atoms and the Littlewood-Paley theory, and established the boundedness of CZOs. Additionally,
for some discussions on generalized weak Hardy spaces, see [5—8].

On the other hand, Calderén and Zygmund extended the Hilbert and Riesz transforms by
introducing a broader class of singular integral operators, specifically those of convolution type. For
these operators, the L?-boundedness is established through the application of Plancherel’s Theorem.
Nevertheless, many significant singular integral operators, such as Calderén commutators and layer
potential operators, are not of convolution type, rendering Plancherel’s Theorem inapplicable to them.
To address this limitation, the 71 theorem was established by the authors in [9], providing a general
criterion for the L?>-boundedness of singular integral operators.

However, there are still cases where the T'1 theorem is not applicable, such as with the Cauchy
integral on Lipschitz curves. To extend such results to this case, a Tb theorem was established by
Mclntosh and Meyer in [10] by replacing the function 1 with an accretive function b. Building on this,
David et al. [11] developed a more general 7'b theorem using a para-accretive function b. Additionally,
Han et al. [12] introduced a class of Hardy spaces associated with para-accretive functions, denoted
as H}(R"), and provided the necessary and sufficient conditions for the boundedness of CZOs in these
new Hardy spaces, specifically for

L<p£1.
n

Further work has extended these results to Besov and Triebel-Lizorkin spaces (see [13—15]) and to the
variable index setting (see [16]).

It is natural to investigate whether the results in [4] can be extended to the weak Hardy spaces
associated with para-accretive functions. The aim of this paper is to develop the theory of weak Hardy
spaces and to investigate the boundedness of the operators. More precisely, we first introduce the weak
Hardy spaces associated with para-accretive functions, denoted as HZ "*(R"), and provide their atomic

decomposition. Building on this foundation, we establish the boundedness of CZOs from H”(R") to
H"™(R™) for
b

<p<l
n+o p

with & < e (where ¢ is the exponent in the approximation to the identity) and additionally show that
these operators are bounded from H”*(R") to H, ™ (R") for

<p<l.

n+o

This paper is organized as follows. In Section 2, we introduce the weak Hardy spaces associated
with para-accretive functions and show that such spaces are well defined. Next we give the atom
decomposition of these spaces in Section 3. In Section 4, we demonstrate that CZOs are bounded on
the weak Hardy spaces associated with para-accretive functions.
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2. Weak Hardy spaces associated with para-accretive functions

We introduce the new class of function spaces and show that these spaces are well defined in this
section. To further analyze the underlying structure of these spaces, it is necessary to review the
definitions of para-accretive functions and their associated approximations to the identity, as these
concepts are crucial for the definition and analysis of weak Hardy spaces.

Definition 2.1. [11] A bounded function b: R" — C is called a para-accretive function if there exists
v > 0 such that for every cube Q C R”,

é‘fg b(x)dx‘ >1,

where Q' is a subcube of Q satisfying y|Q| < Q')

From this point forward, any function denoted by b in this paper will refer to para-accretive
functions, unless explicitly stated otherwise.

Definition 2.2. [/1] Let € € (0,1]. A sequence of operators {S ;}cz is called an approximation to
the identity associated with para-accretive functions b with regularity index € if for all | € 7 and all
x,x',y,y € R" the kernel S (x,y) of S, satisfies the following conditions:

. 2—[8 .
(D) IS 1(x, 9| < oy’
(”) |S (X )_ S ( N < =1 \¢ 27 —V] < 2—1 _ 2-
1 ay ! -x9y )l ~ 2—1+|x_),| (2"+|x—y|)"+5 fOr |y y | —_ ( + |-x y|)/ i)
(iii) 1 ((x,) = S, )| < (F5L) G for o= X1 < @7+ 1x—))/2;

(i) 105106, 3) = S1(x', 1)) = (S1(x5, ) = S,y $ (F55) (75) e for li—¥ < @7+
X =y/2 and |x = x| < 27+ [x = y)/2;

(v) Jou S1(x, y)b(y)dy = 1;
i) [, S (x, y)b(x)dx = 1.

The class of all sequences defined above is denoted by AIP(g, b). Here is the definition of the test
function on R" associated with para-accretive functions.

Definition 2.3. [17] Let O < 8 < 1 and y > 0 be two fixed exponents. A function f: R" — C is called
a test function of type (B,7), centered at xy € R" with width r > 0, if there exists a constant C > 0 such
that

lf(l<C (2.1)

(r + |x = xo)'*’
|x =yl )ﬁ r’
r+|x—xol” (r+|x—xo))*”

) = Fol < € 2.2)

1
o=yl < S0+ = xol)
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and
f f(x)b(x)dx = 0.
Rn
Moreover, the class of all such functions is denoted by M(xy, r,8,7y), and the norm is defined as

I Mcxory) = INF{C 2 (2.1) and (2.2) hold}.

The class M(B, y) is defined as the set of functions f € M(xy, 1,8, y) for some fixed x, and r. This
space M(B, ) is a Banach space with respect to its norm. Importantly, for any x; € R” and r > 0, the
spaces M(x,r,3,y) and M(B, y) are equivalent, meaning that they have the same structural properties
and equivalent norms. For a para-accretive function b, the space bM(B,y) is defined as

bM(B,y) = {bg : g € M(B,7)}.

The norm of f = bg in bM(B,y) is given by

”f”bM(ﬂ,y) = ||g||M(ﬂ,y)-

The dual space (bM(B,y)) consists of all linear functionals £ defined on bM(B, y) that satisfy

I < I1fllme.y) forall febM(EB,y).

Given e € (0, 1], let M(,B, v) denote the completion of M(e, €) in the space M(B,y), where 0 < B,y < €.
Now we can introduce the desired space.

Definition 2.4. Let {S},cz be in AIP(g, b) and
Dy =8,-811

forleZ. For0<pB,y <g and 0 < p < 1, the weak Hardy space H;""(R") is defined as the set of all
functions f € (bM(,B, ¥)) such that the function g,(f)(x) given by

1

2 ()(x) = {Z |Dzbf(x)|2}

leZ

satisfies the condition
WAl = lIgo(Pllr < o0.

It is essential to establish that the weak Hardy space H;"(R") is well defined, meaning its definition
does not depend on the specific choice of the approximation to the identity. To demonstrate this, we
must prove the following result.

Theorem 2.1. Suppose that 0 < p < 1, and {P;}jcz and {S i }kez are in AIP(g,b). Let
D] = P] - Pj—l
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and
Ey=8i—Sia

forallk,je Z. Then

H{ 33 (sup |D,-bf<x>|)2xQ,}2
J 9

XGQj

- { > > (in |Ekbf<x>|)2ka}2
k

Ok

Lp-> Lr->

forall f € (bM(B.7))

To establish Theorem 2.1, it is necessary to review the following vector-valued inequality.

Lemma 2.1. [3,18] Let 1 < p,q < oo, and then for any sequence of functions {f;}; C X, we have

1/ 1/
“(Z[M(ﬁ)]ff) q (Zlfm) q

where X can be either LP(R") or LP*(R") and M is the Hardy-Littlewood maximal operator.

b

X

<
X

Let Q; be the collection of all dyadic cubes with side length 27~V where [ € Z and N is a fixed
large positive integer. For each dyadic cube Q;, xo, denotes an arbitrary fixed point within Q;. With
this notion of dyadic cubes, the following Calderén reproducing formula is also required.

Lemma 2.2. [12] Suppose that all notations are as defined in Definition 2.4. Then there exists a family

of operators {El}leZ such that

F0)= 3, > Dbfxa) | Ditx. o
o !

l

for f € (bﬂ(ﬂ, 7)), with O < B,y < &, where the series converge in the sense of distribution. Moreover,

the kernel El(x, y) of D, satisfies: for 0 < & < g,

-lg

DI S G e
= = -y 2
Dix.y) = DN = (377 ) ey
for
-yl < 3@+l
and

f Di(x, b(y)dy = f D, y)b(x)dx = 0.

R’ R

With the necessary groundwork laid, we turn to demonstrating Theorem 2.1.
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Proof of Theorem 2.1. For 0 < £” < &' < &, we have

2-(irbE’
(270N 4 |xx — ylym+e”

|EbD(x,y)| < 27071

which follows from Lemma 2.2 and the almost orthogonal estimate (see [19]). Let f € (bM(,B, 7))’
and fix y € Oy, and then

|Ekb<f>(y)|<ZZ|D bf(xg)) f [EbD(x, idx

- (jAk)E

|j—kle”
<ZZQ e | p bf(xQJ)|f o (JAk)Hx_me,dx

) . ) 2- (jAk)E
< PR — Dbf(xp).
; ; (2—(J/\k) + |y _ ijl)n+s/| J f(xQ./)l

By an estimate in [20],

2—(j/\k)s’ . -

2 GO 1y = LBl $ 22, > IDj(bf)(xQ,-)ch,-] o),

0, Y Qj 0;
where

M, (f)(x) := [M(fI)(x)]""
and
" <r<p
n+¢g’

This result, combined with Holder’s inequality and
sup Z 1K p=ing(iNnLi=GAkIn/r o
k
k

sup | 27K iU UEGNOIIE < oo,
k N

leads to the result that
1
D> sup lEb ()P0,
k Ok YOk

1
2

2—(j/\k)£’

2
< {Zk: ; Z ; D-jny=lj-Kle PRI —— |D;(b f)(ij)l)(Qk()))) }

[ 2\ 3
S {; ; 2. 2‘]’"2""""8”2”“‘)"2”—““‘”"/’Mr( ; IDj(bf)(XQ,-)IXQj(X))XQk <y>] }
kL j
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=

2
< {Z Z - iny=li-Kle" 5 jAOm A Lj~kAj)In [M,( Z ID;(b f)(XQj)IXQj)(y):I }

ko 0

2y 3
< {Z [Mr(;|Dj(bf)(ij)lXQj)()’)] } :

J

Since xg, is any fixed point in @, then

% 2 %
{Z D, sup |Ekbf<y>|2ka<y>} < {Z [M( D inf |D,-<bf>(x>|xgj)<y>] } .
k Q J

kO YEQk ;

From Lemma 2.1 and 0 < r < p, we obtain

H{ Z Z ( sup IEkbf(y)DZXQk}%

kO YEQk

<

~

P

Lpe’

|23 ing wpreoxo
J J

By an analogue argument, we can obtain the converse inequality, and thus we get the desired result. O
The next result is necessary, with the proof omitted due to its similarity to [12, Theorem 3.3].

Proposition 2.1. For

and f € (bM(B,))  define
Sp(f)(x) = [Z ||Dzb(f))(3/||iz]
1
with
Bl = B(X, 2_1)9

and then

1S 5 (Ollre = 1186 ()llLre.

3. Atomic decomposition of H;"(R")

Let b be a para-accretive function. We first introduce the notion of the (p, g, b) atom, which plays a
fundamental role in the atomic decomposition of H,*'(R").

Definition 3.1. Let 0 < p < 1 < g < o0. A function a is called a (p, q, b) atom centered at a ball B if it
satisfies:

(i) supp a C B;
(ii) llalls < |Bla77;

(iii) [, a(x)b(x)dx = 0.
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Next, we present the definition of H,' (R"), which is closely tied to the structure of para-accretive

functions. The class of atom spaces serves as a fundamental setting for analyzing the boundedness of
CZOs and other significant operators in harmonic analysis.

Definition 3.2. Let 0 < p < 1 < g < c0. A function f € H”” (R") if there exists a sequence of (p, q, b)

b,atom

atoms {a ;) jez.xen and a sequence of coefficients {11} jez.xen such that f € (bM(B, ¥)) can be expressed

as
F=00 At (3.1)

JEZ keN
where the above series hold in (bﬂ(ﬂ, ¥)). Moreover,
Ay 1= C2|B |7
forall j€Z and k € N, where B is the ball associated with the atom a ;. and satisfies

D Ken (0 < C

keN
ool
e}
1
et \ B jkl?

where the infimum is taken over all decomposition of f as in (3.1).

for all j € Z. The norm defined as

1Al = inf { sup

JEZ

b
Lr

Before presenting the major conclusion of this section, a useful and simple result is provided, which
corresponds to a special case of [4, Remark 2.5].

Lemma 3.1. Let 1 < <oco0and0 < r < p < oo, and then we have

ZX,BBk ZXBk
k k

< Cﬁn/r

Ly

b

L

since Lemma 2.1 and the inequality
X < B IM(xp)]""
hold for any ball B C R".

The following conclusion can be drawn, with the details omitted for brevity.
Remark 3.1. From the Definition 3.2 and Lemma 3.1, it can be showed that

1 1
(S| =25
Lr

JEZ

1l ~ sup2/
,atom

JEZ

keN keN Ly (3 2)
~ J ~ J
~sup2/| > xen | xsup2/|| > vl
JeZ keN Lp JEZ keN L

where the implicit equivalent positive constants are independent of f.
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The following useful result, known as the generalized Grafakos-Kalton lemma, is a special case
of [4, Lemma 4.5] and is also presented here.

Lemma 3.2. Let0 <r < p<landl < q < oo, and there exist two sequences of numbers {A;};cn C C
and functions {a;}en such that

(e

k

<

~

Ly

(Z |/lkXBk|r)1/r

k

2

Ly

where supp a;, C By and
1
llaallze < [Bil'.

The lemma originated from Grafakos and Kalton’s study of multilinear singular integral operators
on Hardy spaces, which was later generalized by Sawano in [21], Cruz-Uribe et al. in [22], and Tan
in [23]. This lemma plays a crucial role in establishing atomic decomposition and proving boundedness
on general Hardy spaces, especially in situations where a single atom cannot be handled effectively.
Next, the relationship between the two function spaces introduced above will be explored.

Theorem 3.1. Let

<p<l<g<oo,
n+e

and then
H) R = Hf (R

b,atom

with equivalent quasi-norms.

Proof. The proof starts by establishing that

HP'™ (R") C H'(R").

b,atom

Suppose that f € H,;> (R"), and it is suffice to prove that

,atom

-1
< ,00
o S Il

|LY{x:|gh<f><x>\>a}

From Definition 3.2 and Remark 3.1, there exist two sequences of (p, g, b) atoms {ax} jez ren, associated
with balls {B;} ez e, and coeflicients {4} jezenv € C such that the decomposition (3.1) holds in

(bM(,B, ¥))" and

ZXBj,k

keN

I fllep=  ~ sup 2/ (3.3)

JEZ

Lr

To proceed, it will be convenient to break the sum (3.1) into two parts:

Jjo=1 oo
f= Z Z Ajadji+ Z Z Ajxaji =2 fi + fa.
jm—o0 keN =jo keN

Choose jj € Z such that
2j0 S a < 2j0+1

AIMS Mathematics Volume 9, Issue 11, 30572-30596.
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for any given @ € (0, o). Therefore, it follows that

ot ‘LY{xaAfor:gb(fz)(x»%}

'LV{x:gh<f>(x)>a} w® ‘Ly{x:gmxm%} v H/\/{XEAjoigb(fz)(x)>%} 1%
=L+L+1,
where
ar = Jesw.

J=Jjo keN

We rewrite [; as

+
Lr

I
Ly

IA

Jo-1
“X{XI 2 X Ajkgp(ajn)(Xx2s;, (X)>f4”}
J

=—00 keN

Jo-1
'X{XI 2z X Ajx8p(@j)X @B e (X)>‘Z}

Jj=—00 keN

: 11’1 + 11,2.

Let s € (0,p), t € (1, min{gq, 1}), and a € (0,1 — 1), and according to Hlder’s inequality, we have

N

Jo=1
Z Z Ax8p(aji)(X)x28,,(X)
Jj=—00 keN
IR N N
< ( Z 21“’) ( Z 2_1‘”(2 /lj,kgb(aj,k)(x))(ZB_,;k(x)))
j=—o i keN
DJjoa ool N
=— 1( Z 2"‘”(2 /lj,kgh(aj,k)(x))(zB,,k(x))) ,
Q" =D\ =, keN

where ¢ and ¢’ are conjugate exponents.
Since 1 < ¢’ < oo, then

0 < (2“” - 1)%’ < oo,

Set 1
C(a,t) = 2-2f(2af’ - 1)7',

and observe that s < 1 and p/s > 1. Then we obtain

1

. nNT
}X oo [t o
: X 2. AZN/lj,kgb(aj,k)XZBj_k >2/0
j=—00 ke

Tat’ 1/t
Jo—1 t
—jat
>, 2 X duenaovan, |

I <
L

< C(a, £)2~ho11-o
Lr

Jj=—00 keN
Jjo—1 IS5
—jor(1— 1-a)j
PR DY WZ(|L»(B,.,k||Lpgb<a,-,k>)(23«,.,k)
j=—c0 keN Lrls
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Jo—1 sy 1 .

s\ < IS S
< 2—J'ot(1—a)( Z H(-a)jts (Z (HXB,-_k”L”gb(aj,k))(ZBj,k) ) ) .
Jj=— keN Ly
Let
_4
r=-—,
t

and then 1 < r < co. For j € Z and k € N, using the Littlewood-Paley characterization of the Lebesgue
spaces by g,, we have

t
[(bes il gntapinn,) |, < sl lgntaiol,

S Il llagallzy

1
SUBjilr.

Thus, Lemmas 3.1 and 3.2, and (3.3) yield that

Jo—1 % s %
I < 2_“[(1_0)( Z p(-aits (ZXZB}'.k) )
Lp

j=—o0 keN

Jo—1 % s %
< 2—j0t(1—a)( 2(1—a)jfb‘ ( XYeB, ) )
2 2 e y (3.4)

j=—o keN
Jo—1 1
1(1- [(A-a)-1]
< 2ol a)( Z ol(1-a ]Y) sup 2/ ZXBJk
Jj=—o0 Jjez keN Ly
N

b,atom

To deal with I; ,, we need some estimates on g,(ajx). Let
Bj = B(xjk, rjx)

forall jeZ, ke N. If j € ZN[jy, o) and x € (2B;;)°, then using the cancellation condition of a; and
Holder’s inequality, we have

|Diba(x)| =' fB b(y)ajx((Di(x,y) = Di(x, xjx))dy

| .Xjkl & 2_18
. d
f |a’k(y)l(2 Tt |x - x; kl) 271+ |x — xjilyr+e Y
. - —le
< Bl f la;x(WIdy
B

(2—1 + |X _ xj,kl)n+28 ”
1

. 27 a
il [ voraf( [ o]
1B 271+ |x — xjplyr2e \sz iy 2B g

ik
—I.
27 1-lye
< |B il
(2 Iy |x x; |)n+2£ I

=
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which implies that

en(@ =( 3 IDba0F)
1

1
2- 2le 2
1-Lye
< Bl z "(Z 27+ |x — x; k|)2n+4s)

2—2[5 2—218 % (35)
SIBul Y et .
Jik |x — x; 24 D—I(2n+4s)
271 <] x—x 4 f’ 2712 x—x 4
_l,e e
< IBjal v — el

n+e

< |Bjk|_;[M(XBJ/\)('x)]7'

Choose u € (0,

), € (o 1), and w € (0,1 — 1). By Holder’s inequality, it is available that

Jo—1

2j ow Jo—1 %
Z 2 Am@m@x (o y () < o ( Z 2 JW”(Zﬂjkgh(a,k)(x)x(zB ) (x)) ) . (30

—o0 keN keN

where v and V" are conjugate indices.
Combining estimates (3.5) and (3.6) with Lemma 2.1, we get
1

Ly < _ !
{ QoW (/(r1
Xi—F———7
J

v
TN » 2*jWV(kg‘N/lj,kgb(aj,k)(X)X(ZBj,k)"(x))) >2j0_2}

=—00

Lp

Jo—1 '
—iov(1—
< 2 Jovd-w) Z 2” JWV(Z/lfkgb(aJk)(x)X(zBﬂ‘)L)
keN
Jo—l :
. ) (n+s)\u
< 2 Jovd-w) Z P Z[M(XBM)] P)
J— keN L
Jo—1 :
(Sl
jm—oo keN
Jo—1 oy
S 2—]0V(1—W) Z 2[(1—W)V—1]2]M (ZXcB_,;k) )
= keN L
<a'sup2/ ZXB;A
JEZ keN Lr

-1
sa || fllaps

b,atom

Thus, we can conclude that
-1
Iy s & I fllgrs .
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For I,, we choose ;| € [i, o), and from Lemma 3.1 and (3.2), we get

L<

A

A

A

A

2/\

Let

The value of A;;, Lemma 2.1, and (3.5)

'X{xe(A o) ;

-

L <

A
R

=jo keN

[

Z

=T

A
R

A
Q

-2 Z X

J=Jo

(o9
—r n
Sa 2nve

J=Jo

N

sup 2/
JEZ

keN

Nl

b,atom

2/\

>

J=Jo

J=Jo

sup 2/

JEZ

Z /lj,kgb(aj,k)(x)>(l/2} L

ZXB]k

P

J=Jjo keN

Z Z)(B,k

Jj=Jjo keN

ZXB,k

keN

Lp

Ly

Zw@zmﬂ

keN

ZXB/k

keN

o]
IS Mg

b,atom

— <<l
p(n+e¢)

imply that

ix8p(aji)]”? X(Ajo)c

Z [4x86(a;i)] X,

J=Jo ( keN

r2 (n +&) n” (n +8)
D MG, )1

keN
rp(n+e)
) (n+a) n
: XB] k
keN Lr
0

Lr j=Jo

Together with the estimates of /,—I5, we obtain

WAl = sup_afeqonimmal,,

a€(0,00)

AIMS Mathematics

r
LP(R™) )

J)

(2]

J=Jo

n
) rp(n+e)
L

r

r(n+e)
n

rp(n+e)p
n

ro(n+e)

n
ry(n+e)p )
L%

ry(n+e) (n+e)

o (Z Niden~ ('1+E)rz)

S Al

b,atom
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which implies that f € H, " (R").
The converse result is now proved, showing that

HPS(R") C H'® (R™).

b,atom

For f € (bM(B,7)) . [24, Theorem 4] provides that
£ = 3> 10IDI(x, xg)Dib )5
L O

where

1
by = — b(x)d
2 =0 fQ (x)dx

and the series converges in the sense of distribution. Denote
=] Je
I Qeg;

For j € Z, let
Qi={xeR":S,(NHx) > 27}

and

10l 10l
Rjz{Qer:|QmQj|z% and |QmQ,-+1|<%}.

Denote the maximal dyadic cubes in R; by {Q;«}« for any j € Z. Thus, we can rewrite

=333 10D x0)De(b ) xgbo

J k QeR;, 0Ok

= Z Z ﬂj,kaj,k(x),
G

where
DQ = Dk

if
(Q) =27"",

with a similar notation used for EQ. Additionally,

/lj,k = 2j”/YCQj’k||L1'

and

1 =

ap@ == 10IDo(x.x0)Do(/)(x0)bo.
K 0eR;.0c0

(3.7)
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Next, it will be shown that a ; is a multiple of a (p, g, b) atom corresponding to cQ ;. By definitions
of aj; and Dy, it is clear that supp a;x C ¢Qjx and

faj,k(x)b(x)dx =0.
Let
— 1
Qj ={xe R": M(/\/Qj)(X) > E}

Since

10N Q| >10l/2
for any Q € R;, it follows that O C Q ;- Given this fact, along with

10N Q.| <101/2,

then

Xow
M gz, 2 5

Moreover, we have

M 2()( Qn(ﬁj\s:j“))(x) 2 X 0(x)

for x € Q.
Now we estimate ||ajx|ls. Since 1 < g < oo, from Holder’s inequality and Lemma 2.1, we can
deduce that

. =
llallzs = —— sup f Z 101D o(x, x0)Do(bf ) (x0)h(x)bodx
ik Wil <t \JRY o500
1 5 .
- L f . Db H(xo)Dyh)xg)boxo(x)dx
Jok Al g <1 | JR? Q€R;,0CQ ik
1 _ 12
< { |DQ(bf)(xQ)|2XQ(x)}
Jok 0eR;,0COx L
1 _ 1/2
< ™ |DQ(bf)(xQ)|2M2(XQH(Q_/\Q./H))}
Jok 0eR;,0C0x L
1 _ 172
s { Z IDo(bf )(xQ)lzXQﬂ(Qj\QjH)}
ik 0eR;,0C0x Lt
| _ 12
s T { Z |DQ(bf)(xQ)|2} XQ_/Ykﬂ(ﬁj\QjH)
Jok 0eR;,0COx I
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1
/l—ll2 ol
< |Q |1/q l/p

Finally, by Definition 3.2 and (3.7), it can be immediately obtained that

Wfllges, < sup2]| > x|, < sup2va |, < USs(HIL < Ifllpe,
J i J
J

which shows that H,"™ c H}"

b,atom

and thereby concludes Theorem 3.1. O

4. Boundedness of CZOs

Recall the definition of Calderén-Zygmund operators, as initated in [25], which are a class of
singular integral operators fundamental to harmonic analysis. Generally, the space

CoR") ={f € CoR" : AC > 0, Yx,y € R", |f(x) - fO)| < Clx ="},

and its norm
|f(x) = f)
up ————— < o

X#EY |)C - y|7l

||f||cg(Rn) = I/l +

Suppose that b, and b, are both para-accretive functions. We define b;Cj(R") as the set {g : g =
bif, f € Cl} and (b,CJ(R")) as the dual space of b,CJ(R").

Definition 4.1. [/1] Let T be a continuous linear operator defined from blcg(R”) to (szg(R”))' for
alln > 0. Then T is called a generalized singular integral operator if it can be written in the form

(Tbf,brg) = f f K(x, )b (x)g(x)b1(y) f (y)dydx,
R JR?

for f,g € Co(R") with
supp(f) N supp(g) = 0
and the kernel K(x,y) defined on R" X R"\{x =y : x,y € R"} satisfies:

1
Kyl s ——. (.1)
lx =yl
;o =g , =)
Kn) = KWl € oy for b= x| < =55, (42)
o = yP =
|K<x,y>—1<(x,y>|<% for Iy=y1< ===, (4.3)

where 0 < 6 < 1. A generalized singular integral operator T that is bounded on L*(R") is referred to
as a CZO.
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We say that 7*(b) = 0 if
f f K6, »b(x)¢()dy dx = 0
Rl’l Rl’l

for any ¢ € D,, where

Dy R") := {¢ eEDMRY): f d(x)b(x)dx = 0} .
Rn

The following results present two theorems that examine the behavior of CZOs with respect to weak
Hardy spaces. We provide detailed proofs for these theorems to illustrate their validity and significance.

Theorem 4.1. Let T be a CZO with regularity exponent 6. Suppose that

" cp<1

n+5_p_
and

T*(b) =0,

and then T is bounded from H?(R") to H;"™(R").

Proof. To prove Theorem 4.1, observe that

HP(R") N L2(R") = HP(R"),

and thus we only need to verify

I fllgr= < W fllaw (4.4)
for
e HP®RM (| LR,
Let
fe H'@® () L®Y,

and there exists a sequence of (p,2) atoms {a;}ien, €ach corresponding to a ball B, and coefficients

{ A} e, such that
f= Z Aray

holds in L*(R") and

lfllzr = inf {(Z |/1k|”) Cf = Z/lkak,where ay is a (p,2) atom andZ |Al? < oo}.

keN keN keN

S =

To prove (4.4), it is sufficient to show that

sup a/p‘{x eR": g,(Ta)(x) > a}| <1, 4.5)

O<a<oo
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where a is a (p, 2) atom and supp a C B. In fact, if
fe H'@®) (| L®Y,
then we have

a”‘{x ER" : gp(TF)(x) > a}‘ < ozp‘{x ER': Y gyTha)(x) > a”

keN
<a? Z '{x e R" : gu(T Lrap)(x) > af}‘
keN
< )b,
keN

where the second inequality arises from [26, Theorem 6.1] (see also in [27, Lemma 1.8]). Therefore,
we conclude (4.4).
Denote
B := B(xy, 1)

and
4B := B(xg, 4r).

We write

ozp‘{x eR": g,(Ta)(x) > cy” < ap‘{x €4B: gy(Ta)(x) > 01}‘ + a”‘{x € 4B)° : gp(Ta)(x) > a}‘
= Ji+ /.

We first consider J;. The application of the Holder inequality and the fact that 7" is bounded on
L*(R") result in

5= [ laraepds < lgals < 1.
4B

In order to deal with J,, we begin by presenting some estimates of D;bT a(x). Here we fix ¢ as the
regularity exponent of D, forall / € Z. If z € B and x € (4B)°, then

1
Xo— 2 £ =|x—2.
lxo — 2] 2| |

Choose n7 and 7 such that 0 < 7 < 6 < € and ¢ > 7, and then the properties of atom a and [28, (2.4)]
imply that

|DibT a(x)| =

jl- | |.H|b(y) L K(y,z)a(z)dle(x,y)dy‘
y—X0 ZTO n

< f la(z)|
R

Iz - X0|)6 1
< d
fRn la(z)| ( x—2) T ) Z
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I”” l(t 1)
<
|x — xol7 (27 + |x x|y f la(z)|dz

7l 2 ~—lt=m)

|x = xol7 (27" + Ix = Xl

< B[

Thus, for x € (4B)¢, then

1

+n

r _1
(T a)(x) = (Z |le(Ta)(x)|2] s

and taking the infimum over 0 < 5 < ¢ for the above estimates, we have

n+o n+d

g(Ta)(x) s ———IB[7 < (M(xs)) " |BI7. (4.6)

|)C _ x0|n+6

Note that s
p(n +9) -1

n

b

and using the fact that the maximal operator is weak (@, @)—type bounded, we get that
Jr < a"‘{x € 4B) : gy(Ta)(x) > a}'

<af

{x € (4B) : (M(XB)(x))H B 7 > a}

s a’

{x € (4B)° : M(yp)(x) > (a|B|£)"n*‘5}

pn+6)
n

1\ =545
< ap((awv) ||XB||LW)
=C.
Combining these majorizations yields (4.4) and we conclude the proof of Theorem 4.1. m|

Theorem 4.2. Under the hypothesis of Theorem 4.1, T is bounded from H»®(R") to H,"™(R") if

n
n+o

<p<l

Proof. The goal is to prove that

‘{ lgo(T ) (x)]| > }l (Ilflzlpm).

From [4, Definition 4.2, Remark 4.3 and Theorem 4.4] with replacing p(x) with p, there exist two
sequences of (p, g) atoms {a} jez ken, €ach corresponding to a ball B;; and coeflicients {4} jez ker Such
that (3.1) holds in the sense of distribution and

ZXB/k

keN

11l = SUP2

Lr
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Choose jj € Z such that 2/° < @ < 2/*! for any given @ € (0, 00). We write

Jo—1

f= Z Z/lfkafk—l—zz/lfkafk

Therefore, we have

b lenT P01 > ]

Jj=—00 keN

= fit+ fo

J=Jo keN

< [fr: s > S| +|{re B : euT )00 > S|+ |fx e B : T 20 > 5|

=: H1 +H2+H3,

where

We split H; into two parts,

Jo—1
H,;
Jj=—00 keN
=: Hl,l + H1’2.
Let

BP = 0 | Jas;.

J=Jjo keN

{ Z Z Aj8p(Taj)(X)x 4, (x) > }

1
t

Jo—1

j=—00 keN

+—-=1

l-l

Choose s € (0, p). ¢ € (1, min{g, 1}), and a € (0, 1 - 1) such that

Jo—1

Jj=—c0 keN

oa

Jj=—00 keN

where we use Holder’s inequality. Notice that ts < 1, p/s > 1, and

for 1 <t < oo. These facts and (4.7) imply that

Hi, <

< 2—j0t(l—a)p

< p-otl=a)p

D Joa
{x : Q" — 1)1/:'

AIMS Mathematics

Jo—1

E 2—jat
Jj=—0
Jo—1

|

Jo—1

( Z 2" J‘"(Z /ljkgb(Tajk)(x)X4B]k(X)) )

Jj=—00

t
Z Ajxgp(Taj)(x)x. 43]-,,()

keN

Z (1-a)jts Z

Jj=—00

keN

=

0<(2‘”’—1) < o

keN
p

Lr

ts
(| ¥z, ||Lpgb(Taj,k)X43j,k)

{ Z Z/ljkgb(Tajk)(x)X@BM)((x) > }‘

1

2 Jo—1 7
Z Z Aix8p(Taji)(X)x4p;, (x) < (—( Z 2” J‘”(Z /l]kgb(Tajk)(x))@BM(x))) 4.7)

~—

> 2j°‘2}

4

N
Lp /s
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Jo—1

Z y(-a)jt

Jj=—00

< 2—10:(1—a)p(

Let

ts
5 (Z(”/YBJ'J(||Lpgb(Taj,k)X4Bj,k) )
keN
_4q
r=-,
t

4

K

4

N ).v
Lr

andthen 1 < r < co. For j € Z and k € N, in view of the Littlewood-Paley characterization of Lebesgue
spaces and the size condition of atom a, we have

H(“’\/B./.k lzrgo(Ta;

X 43_,,k)

t !
t
‘L’ < ”XB,/.k”Lp”gb(Taj,k)HLq

t
< ||)(B,,k||tLpHTaj,kHLq

t
< m,lisfase]|

1
S |Bjilr.

From Lemmas 2.1 and 3.1, and (3.2), it follows that

H < 2—j0t(1—a)p

< 2_j01(1_a)P

< p-joti-a)p

jo—1 Ths (2
)i

Z A(1-a)jts (Z X4B,-,k) )

j=—o0 keN Ly

Jo—1 HILEY
)i

Z 2 (1-a)jts (Z Xch,k) )

j=—c0 keN Ly

Jo—1

Z pl0-ar-1js gyp i ZXB,k

J— Jjez e

< a1

According to Lemmas 2.1 and 3.1, and (4.6), we can conclude

DJjoa foo] /
His < [x: (zaz_—l)l/t( Z 2 M(Z/lfkgb(TaJk)(x)X<4BzA>‘(x))) > 207
keN
. Jo—1 ) il
< pjori-ap Z 2‘1‘”(2 /lj,kgb(Taj,k)(x)/\/(étBj,k)C)
j=—00 keN L
Jo—1 :
. . (n+6)ls
< p-or1-a)g Z p-a)jts Z[M(XB,k)] )
j:—oo keN Lg
Jo—1

< pjot(i-a)p
Jj=—o0

Jo—1
< p~jot1-a)p

]——00
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Z 2(1—a)jts
Z l(-ay-1ly js

ZXBJ‘J( LP '
keN
(ZXCBJI\

keN

)

J

s

)

Volume 9, Issue 11, 30572-30596.



30593

<a ”( sup 2/
JEZ

ZXB]k

keN

)17
Lp

S a P f Il

By an analogue argument to /, in the previous section, we have

H2 Sa p”f”Hl)oo

The value of 4, Lemma 2.1, and (4.6) deduce that

where

Hy <

Jj=Jo keN

[Se]

Z Z[/lj,kgh(Ta XA,

< a,—rzp

(59

2,

J=Jo

n r2 (n+§)
E 2 n+o E M (X B] B

J=Jo keN

ZXB/k

JEZ

ZXB,k

keN

=

Sa?

keN

< a,—rzp

[ee)

Jjn
E Qs

J=Jo

< a,—rzp

r2(n+d) ) n
Lr

< a Pl sup2’

JEZ

S @l fllpes

Lr J=o

_n
p(n+9)

Combining with the estimates of H,—H3, we have

‘{x: lgn(T f)(x)| > a” < (

which completes the proof of Theorem 4.2.

5. Conclusions

( Z [4x86(Ta; )] xa;, )c)

) (Z 25" ('1+5)V2)

{x € (A s ). > Augn(Ta)(x) > a/2}|

P

Ly

ry(n+e)p
n

(n+0)
Lr2 nn p

ro(n+6)p
n

n
) 2 (n+0)
L

rp(n+d)p
n

rp(n+d)p

ry(n+d)p
jn

<r<l.

p
| /1l zp )
a b

We developed the theory of weak Hardy spaces by introducing a new class of function spaces,

HJ™ @),

associated with para-accretive functions.

Additionally, we derived their atomic

decomposition and established two general criterions for the boundedness of Calderén-Zygmund
singular integral operators.

AIMS Mathematics

Volume 9, Issue 11, 30572-30596.



30594

Author contributions

Yan Wang: methodology, writing—review and editing; Xintian Dong: writing—original draft, formal
analysis; Fanghui Liao: conceptualization, methodology, writing—review and editing, supervision,
funding acquisition. All authors have read and approved the final version of the manuscript for
publication.

Use of AI tools declaration

The authors acknowledge the use of ChatGPT to assist with language refinement during the
preparation of this manuscript. After using this tool, the authors thoroughly reviewed and edited the
content as necessary and assume full responsibility for the final content of the publication.

Acknowledgments

The authors would like to thank the reviewers for their patient and invaluable comments and
suggestions. This work was supported by the National Natural Science Foundation of China (No.
11901495) and the Hunan Education Department Project, China (22B0155).

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. R. Ferfferman, F. Soria, The space weak H', Stud. Math., 85 (1986), 1-16.
https://doi.org/10.4064/sm-85-1-1-16

2. H. Liu, The weak H” spaces on homogeneous groups, In: M. T. Cheng, D. G. Deng, X. W. Zhou,
Harmonic analysis, Springer, 1991. https://doi.org/10.1007/BFb0087762

3. D. He, Square function characterization of weak Hardy spaces, J. Fourier Anal. Appl., 20 (2014),
1083-1110. https://doi.org/10.1007/s00041-014-9346-1

4. X. Yan, D. Yang, W. Yuan, C. Zhuo, Variable weak Hardy spaces and their applications, J. Funct.
Anal., 271 (2016), 2822-2887. https://doi.org/10.1016/j.jfa.2016.07.006

5. J. Liu, F. Weisz, D. Yang, W. Yuan, Littlewood-Paley and finite atomic characterizations of
anisotropic variable Hardy-Lorentz spaces and their applications, J. Fourier Anal. Appl., 25 (2019),
874-922. https://doi.org/10.1007/s00041-018-9609-3

6. J. Sun, D. Yang, W. Yuan, Weak Hardy spaces associated with ball quasi-Banach function spaces
on spaces of homogeneous type: decompositions, real interpolation, and Calderén-Zygmund
operators, J. Geom. Anal., 32 (2022), 191. https://doi.org/10.1007/s12220-022-00927-x

7. J. Sun, D. Yang, W. Yuan, Molecular characterization of weak Hardy spaces associated
with ball quasi-Banach function spaces on spaces of homogeneous type with its applications
to Littlewood-Paley function -characterizations, Forum Math., 34 (2022), 1539-1589.
https://doi.org/10.1515/forum-2022-0074

AIMS Mathematics Volume 9, Issue 11, 30572-30596.


https://dx.doi.org/https://doi.org/10.4064/sm-85-1-1-16
https://dx.doi.org/https://doi.org/10.1007/BFb0087762
https://dx.doi.org/https://doi.org/10.1007/s00041-014-9346-1
https://dx.doi.org/https://doi.org/10.1016/j.jfa.2016.07.006
https://dx.doi.org/https://doi.org/10.1007/s00041-018-9609-3
https://dx.doi.org/https://doi.org/10.1007/s12220-022-00927-x
https://dx.doi.org/https://doi.org/10.1515/forum-2022-0074

30595

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Y. Zuo, K. Saibi, Y. Jiao, Variable Hardy-Lorentz spaces associated to operators satisfying Davies-
Gaffney estimates, Banach J. Math. Anal., 13 (2019), 769-797. https://doi.org/10.1215/173587877-
2018-0035

G. David, J. L. Journé, A boundedness criterion for generalized Calderén-Zygmund operators, Ann.
Math., 120 (1984), 371-397. https://doi.org/10.2307/2006946

A. Mclntosh, Y. Meyer, Algebres d’opérateurs définis par intégrales singulieres, C. R. Acad. Sci.
Paris, Sér. I Math., 301 (1985), 395-397.

G. David, J. L. Journé, S. Semmes, Opérateurs de Calderén-Zygmund, fonctions para-accrétives et
interpolation, Rev. Mat. Iberoam., 1 (1985), 1-56. https://doi.org/10.4171/RMI/17

Y. Han, M. Y. Lee, C. C. Lin, Hardy spaces and the 7'b theorem, J. Geom. Anal., 14 (2004), 291—
318. https://doi.org/10.1007/BF02922074

D. Deng, D. Yang, Some new Besov and Triebel-Lizorkin spaces associated with para-
accretive functions on spaces of homogeneous type, J. Aust. Math. Soc., 80 (2006), 229-262.
https://doi.org/10.1017/S1446788700013094

F. Liao, Z. Liu, X. Zhang, The Tb theorem for inhomogeneous Besov and Triebel-Lizorkin spaces
and its application, Georgian Math. J., 23 (2016), 253-267. https://doi.org/10.1515/gmj-2015-
0062

X. Tao, Y. Kang, T. Zheng, The 7b theorem for some inhomogeneous Besov and Triebel-
Lizorkin spaces over space of homogeneous type, J. Math. Anal. Appl., 531 (2024), 127879.
https://doi.org/10.1016/j.jmaa.2023.127879

J. Tan, Weighted variable Hardy spaces associated with Para-accretive functions and boundedness
of Calder6n-Zygmund operators, J. Geom. Anal., 33 (2023), 61. https://doi.org/10.1007/s12220-
022-01121-9

R. R. Coifman, G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math.
Soc., 83 (1977), 569-645. https://doi.org/10.1090/S0002-9904-1977-14325-5

C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math., 124 (1970),
9-36. https://doi.org/10.1007/BF02394567

Y. Han, E. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and classical function
spaces, Mem. Amer. Math. Soc., 110 (1994), 530. https://doi.org/10.1090/memo/0530

M. Frazier, B. Jawerth, A discrete transform and decomposition of distridution spaces, J. Funct.
Anal., 93 (1990), 34—170. https://doi.org/10.1016/0022-1236(90)90137-A

Y. Sawano, Atomic decompositions of Hardy spaces with variable exponents and its
application to bounded linear operators, Integral Equations Oper. Theory, 77 (2013), 123-148.
https://doi.org/10.1007/s00020-013-2073-1

D. Cruz-Uribe, K. Moen, H. V. Nguyen, A new approach to norm inequalities
on weighted and variable Hardy spaces, Ann. Fenn. Math., 45 (2020), 175-198.
https://doi.org/10.5186/aasfm.2020.4526

J. Tan, Boundedness of multilinear fractional type operators on Hardy spaces with variable
exponents, Anal. Math. Phys., 10 (2020), 70. https://doi.org/10.1007/s13324-020-00415-x

AIMS Mathematics Volume 9, Issue 11, 30572-30596.


https://dx.doi.org/https://doi.org/10.1215/17358787-2018-0035
https://dx.doi.org/https://doi.org/10.1215/17358787-2018-0035
https://dx.doi.org/https://doi.org/10.2307/2006946
https://dx.doi.org/https://doi.org/10.4171/RMI/17
https://dx.doi.org/https://doi.org/10.1007/BF02922074
https://dx.doi.org/https://doi.org/10.1017/S1446788700013094
https://dx.doi.org/https://doi.org/10.1515/gmj-2015-0062
https://dx.doi.org/https://doi.org/10.1515/gmj-2015-0062
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2023.127879
https://dx.doi.org/https://doi.org/10.1007/s12220-022-01121-9
https://dx.doi.org/https://doi.org/10.1007/s12220-022-01121-9
https://dx.doi.org/https://doi.org/10.1090/S0002-9904-1977-14325-5
https://dx.doi.org/https://doi.org/10.1007/BF02394567
https://dx.doi.org/https://doi.org/10.1090/memo/0530
https://dx.doi.org/https://doi.org/10.1016/0022-1236(90)90137-A
https://dx.doi.org/https://doi.org/10.1007/s00020-013-2073-1
https://dx.doi.org/https://doi.org/10.5186/aasfm.2020.4526
https://dx.doi.org/https://doi.org/10.1007/s13324-020-00415-x

30596

24. M. Y. Lee, C. C. Lin, Carleson spaces associated to para-accretive functions, Commun. Contemp.
Math., 14 (2012), 1250002. https://doi.org/10.1142/S0219199712500022

25. R. R. Coifman, G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes,

Springer-Verlag, 1971. https://doi.org/10.1007/BFb0058946
26. N. J. Kalton, Linear operators on L, for 0 < p < 1, Trans. Amer. Math. Soc., 259 (1980), 319-355.

https://doi.org/10.2307/1998234

27. E. M. Stein, M. H. Taibleson, G. Weiss, Weak type estimates for maximal operators on certain H”
classes, Rend. Circ. Mat. Palermo., 1981, 81-97.

28. W. Chen, Y. Han, C. Miao, A note on the boundedness of Calderén-Zygmund operators on Hardy
spaces, J. Math. Anal. Appl., 310 (2005), 57-67. https://doi.org/10.1016/j.jmaa.2005.01.021

@ AIMS Press

AIMS Mathematics

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

Volume 9, Issue 11, 30572-30596.


https://dx.doi.org/https://doi.org/10.1142/S0219199712500022
https://dx.doi.org/https://doi.org/10.1007/BFb0058946
https://dx.doi.org/https://doi.org/10.2307/1998234
https://dx.doi.org/https://doi.org/10.1016/j.jmaa.2005.01.021
https://creativecommons.org/licenses/by/4.0

	Introduction
	 Weak Hardy spaces associated with para-accretive functions
	Atomic decomposition of Hp,b(Rn) 
	Boundedness of CZOs
	Conclusions

