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Abstract: In this paper, we introduced a new class of weak Hardy spaces, denoted by Hp,∞
b , and

provided an analysis of their atomic decomposition. As an application, we established the boundedness
of Calderón-Zygmund operators (CZOs) from Hp to Hp,∞

b including cases at the critical exponent

p =
n

n + δ
,

where δ represents the regularity index of the distributional kernel. Moreover, the boundedness of
CZOs from Hp,∞ to Hp,∞

b was demonstrated for

n
n + δ

< p ≤ 1.
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1. Introduction

Hardy spaces are well-recognized as effective substitutes for Lebesgue spaces in analyzing the
boundedness of singular integral operators for 0 < p ≤ 1. We consider T in Calderón-Zygmund
operators (CZOs) with regularity δ (where 0 < δ ≤ 1) and satisfying

T ∗(1) = 0

with T ∗ denoting the adjoint operator of T . It is known that T is bounded on Hp(Rn) for
n

n + δ
< p ≤ 1,
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although T may fail to be bounded on H
n

n+δ (Rn). In this context, the weak Hardy space H1,∞(Rn) was
introduced in [1] and it was demonstrated that certain T in CZOs is bounded from H1,∞(Rn) to L1,∞(Rn).
Liu [2] showed that T in CZOs is bounded from H

n
n+δ (Rn) to H

n
n+δ ,∞(Rn) by atomic decomposition. A

novel Littlewood-Paley characterization of weak Hardy spaces was introduced by He in [3], along
with a new inequality that parallels the Fefferman-Stein vector-valued inequality. This development
has contributed notably to the theoretical study of weak Hardy spaces. Furthermore, Yan et al. [4]
developed variable weak Hardy spaces via radial grand maximal functions, characterized these spaces
with atoms and the Littlewood-Paley theory, and established the boundedness of CZOs. Additionally,
for some discussions on generalized weak Hardy spaces, see [5–8].

On the other hand, Calderón and Zygmund extended the Hilbert and Riesz transforms by
introducing a broader class of singular integral operators, specifically those of convolution type. For
these operators, the L2-boundedness is established through the application of Plancherel’s Theorem.
Nevertheless, many significant singular integral operators, such as Calderón commutators and layer
potential operators, are not of convolution type, rendering Plancherel’s Theorem inapplicable to them.
To address this limitation, the T1 theorem was established by the authors in [9], providing a general
criterion for the L2-boundedness of singular integral operators.

However, there are still cases where the T1 theorem is not applicable, such as with the Cauchy
integral on Lipschitz curves. To extend such results to this case, a Tb theorem was established by
McIntosh and Meyer in [10] by replacing the function 1 with an accretive function b. Building on this,
David et al. [11] developed a more general Tb theorem using a para-accretive function b. Additionally,
Han et al. [12] introduced a class of Hardy spaces associated with para-accretive functions, denoted
as Hp

b (Rn), and provided the necessary and sufficient conditions for the boundedness of CZOs in these
new Hardy spaces, specifically for

n
n + δ

< p ≤ 1.

Further work has extended these results to Besov and Triebel-Lizorkin spaces (see [13–15]) and to the
variable index setting (see [16]).

It is natural to investigate whether the results in [4] can be extended to the weak Hardy spaces
associated with para-accretive functions. The aim of this paper is to develop the theory of weak Hardy
spaces and to investigate the boundedness of the operators. More precisely, we first introduce the weak
Hardy spaces associated with para-accretive functions, denoted as Hp,∞

b (Rn), and provide their atomic
decomposition. Building on this foundation, we establish the boundedness of CZOs from Hp(Rn) to
Hp,∞

b (Rn) for
n

n + δ
≤ p ≤ 1

with δ ≤ ε (where ε is the exponent in the approximation to the identity) and additionally show that
these operators are bounded from Hp,∞(Rn) to Hp,∞

b (Rn) for

n
n + δ

< p ≤ 1.

This paper is organized as follows. In Section 2, we introduce the weak Hardy spaces associated
with para-accretive functions and show that such spaces are well defined. Next we give the atom
decomposition of these spaces in Section 3. In Section 4, we demonstrate that CZOs are bounded on
the weak Hardy spaces associated with para-accretive functions.
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2. Weak Hardy spaces associated with para-accretive functions

We introduce the new class of function spaces and show that these spaces are well defined in this
section. To further analyze the underlying structure of these spaces, it is necessary to review the
definitions of para-accretive functions and their associated approximations to the identity, as these
concepts are crucial for the definition and analysis of weak Hardy spaces.

Definition 2.1. [11] A bounded function b: Rn → C is called a para-accretive function if there exists
γ > 0 such that for every cube Q ⊂ Rn,

1
|Q|

∣∣∣∣ ∫
Q′

b(x) dx
∣∣∣∣ ≳ 1,

where Q
′

is a subcube of Q satisfying γ|Q| ≤ |Q
′

|.

From this point forward, any function denoted by b in this paper will refer to para-accretive
functions, unless explicitly stated otherwise.

Definition 2.2. [11] Let ε ∈ (0, 1]. A sequence of operators {S l}l∈Z is called an approximation to
the identity associated with para-accretive functions b with regularity index ε if for all l ∈ Z and all
x, x′, y, y′ ∈ Rn, the kernel S l(x, y) of S l satisfies the following conditions:

(i) |S l(x, y)| ≲ 2−lε

(2−l+|x−y|)n+ε ;

(ii) |S l(x, y) − S l(x, y′)| ≲
(
|y−y′ |

2−l+|x−y|

)ε 2−lε

(2−l+|x−y|)n+ε for |y − y′| ≤ (2−l + |x − y|)/2;

(iii) |S l(x, y) − S l(x′, y)| ≲
(
|x−x′ |

2−l+|x−y|

)ε 2−lε

(2−l+|x−y|)n+ε for |x − x′| ≤ (2−l + |x − y|)/2;

(iv) |(S l(x, y) − S l(x′, y)) − (S l(x, y′) − S l(x′, y′))| ≲
(
|x−x′ |

2−l+|x−y|

)ε ( |y−y′ |
2−l+|x−y|

)ε 2−lε

(2−l+|x−y|)n+ε for |x− x′| ≤ (2−l+

|x − y|)/2 and |x − x′| ≤ (2−l + |x − y|)/2;

(v)
∫
Rn S l(x, y)b(y)dy = 1;

(vi)
∫
Rn S l(x, y)b(x)dx = 1.

The class of all sequences defined above is denoted by AIP(ε, b). Here is the definition of the test
function on Rn associated with para-accretive functions.

Definition 2.3. [17] Let 0 < β ≤ 1 and γ > 0 be two fixed exponents. A function f : Rn → C is called
a test function of type (β, γ), centered at x0 ∈ R

n with width r > 0, if there exists a constant C > 0 such
that

| f (x)| ≤ C
rγ

(r + |x − x0|)1+γ , (2.1)

| f (x) − f (y)| ≤ C
( |x − y|
r + |x − x0|

)β rγ

(r + |x − x0|)1+γ (2.2)

for

|x − y| ≤
1
2

(r + |x − x0|)
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and ∫
Rn

f (x)b(x)dx = 0.

Moreover, the class of all such functions is denoted byM(x0, r, β, γ), and the norm is defined as

∥ f ∥M(x0,r,β,γ) = inf{C : (2.1) and (2.2) hold}.

The classM(β, γ) is defined as the set of functions f ∈ M(x0, 1, β, γ) for some fixed x0 and r. This
spaceM(β, γ) is a Banach space with respect to its norm. Importantly, for any x1 ∈ R

n and r > 0, the
spacesM(x1, r, β, γ) andM(β, γ) are equivalent, meaning that they have the same structural properties
and equivalent norms. For a para-accretive function b, the space bM(β, γ) is defined as

bM(β, γ) = {bg : g ∈ M(β, γ)}.

The norm of f = bg in bM(β, γ) is given by

∥ f ∥bM(β,γ) = ∥g∥M(β,γ).

The dual space (bM(β, γ))′ consists of all linear functionals £ defined on bM(β, γ) that satisfy

|£( f )| ≲ ∥ f ∥M(β,γ) for all f ∈ bM(β, γ).

Given ε ∈ (0, 1], let M̃(β, γ) denote the completion ofM(ε, ε) in the spaceM(β, γ), where 0 < β, γ ≤ ε.
Now we can introduce the desired space.

Definition 2.4. Let {S l}l∈Z be in AIP(ε, b) and

Dl = S l − S l−1

for l ∈ Z. For 0 < β, γ < ε, and 0 < p ≤ 1, the weak Hardy space Hp,∞
b (Rn) is defined as the set of all

functions f ∈
(
bM̃(β, γ)

)′ such that the function gb( f )(x) given by

gb( f )(x) =

∑
l∈Z

|Dlb f (x)|2


1
2

satisfies the condition
∥ f ∥Hp,∞

b
= ∥gb( f )∥Lp,∞ < ∞.

It is essential to establish that the weak Hardy space Hp,∞
b (Rn) is well defined, meaning its definition

does not depend on the specific choice of the approximation to the identity. To demonstrate this, we
must prove the following result.

Theorem 2.1. Suppose that 0 < p ≤ 1, and {P j} j∈Z and {S k}k∈Z are in AIP(ε,b). Let

D j = P j − P j−1
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and
Ek = S k − S k−1

for all k, j ∈ Z. Then∥∥∥∥∥∥
{∑

j

∑
Q j

(
sup
x∈Q j

|D jb f (x)|
)2
χQ j

} 1
2
∥∥∥∥∥∥

Lp,∞

≈

∥∥∥∥∥∥
{∑

k

∑
Qk

(
inf
x∈Qk
|Ekb f (x)|

)2
χQk

} 1
2
∥∥∥∥∥∥

Lp,∞

for all f ∈
(
bM̃(β, γ)

)′
.

To establish Theorem 2.1, it is necessary to review the following vector-valued inequality.

Lemma 2.1. [3, 18] Let 1 < p, q < ∞, and then for any sequence of functions { f j} j ⊂ X, we have∥∥∥∥∥∥
(∑

j

[M( f j)]q

)1/q∥∥∥∥∥∥
X

≲

∥∥∥∥∥∥
(∑

j

| f j|
q

)1/q∥∥∥∥∥∥
X

,

where X can be either Lp(Rn) or Lp,∞(Rn) and M is the Hardy-Littlewood maximal operator.

Let Ql be the collection of all dyadic cubes with side length 2−l−N , where l ∈ Z and N is a fixed
large positive integer. For each dyadic cube Ql, xQl denotes an arbitrary fixed point within Ql. With
this notion of dyadic cubes, the following Calderón reproducing formula is also required.

Lemma 2.2. [12] Suppose that all notations are as defined in Definition 2.4. Then there exists a family

of operators {˜̃Dl}l∈Z such that

f (y) =
∑

l

∑
Ql

Dlb f (xQl)
∫

Ql

˜̃Dl(x, y)b(x)dx

for f ∈
(
bM̃(β, γ)

)′
with 0 < β, γ < ε, where the series converge in the sense of distribution. Moreover,

the kernel ˜̃Dl(x, y) of ˜̃Dl satisfies: for 0 < ε′ < ε,

|
˜̃Dl(x, y)| ≲

2−lε′

(2−l + |x − y|)n+ε′ ,

|
˜̃Dl(x, y) − ˜̃Dl(x, y′)| ≲

( |y − y′|
2−l + |x − y|

)ε′ 2−lε′

(2−l + |x − y|)n+ε′

for

|y − y′| ≤
1
2

(2−l + |x − y|)

and ∫
Rn

˜̃Dl(x, y)b(y)dy =
∫
Rn

˜̃Dl(x, y)b(x)dx = 0.

With the necessary groundwork laid, we turn to demonstrating Theorem 2.1.
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Proof of Theorem 2.1. For 0 < ε′′ < ε′ < ε, we have

|Ekb
˜̃D j(x, y)| ≲ 2−| j−k|ε′′ 2−( j∧k)ε′

(2−( j∧k) + |x − y|)n+ε′ ,

which follows from Lemma 2.2 and the almost orthogonal estimate (see [19]). Let f ∈
(
bM̃(β, γ)

)′
and fix y ∈ Qk, and then

|Ekb( f )(y)| ≤
∑

j

∑
Q j

|D jb f (xQ j)|
∫

Q j

|Ekb
˜̃D j(x, y)|dx

≲
∑

j

∑
Q j

2−| j−k|ε′′ |D jb f (xQ j)|
∫

Q j

2−( j∧k)ε′

(2−( j∧k) + |x − y|)n+ε′ dx

≲
∑

j

∑
Q j

2−| j−k|ε′′2− jn 2−( j∧k)ε′

(2−( j∧k) + |y − xQ j |)n+ε′ |D jb f (xQ j)|.

By an estimate in [20],

∑
Q j

2−( j∧k)ε′

(2−( j∧k) + |y − xQ j |)n+ε′ |D j(b f )(xQ j)| ≲ 2( j∧k)n2[ j−( j∧k)]n/r Mr

∑
Q j

|D j(b f )(xQ j)|χQ j

 (y),

where
Mr( f )(x) := [M(| f |r)(x)]1/r

and
n

n + ε′′
< r < p.

This result, combined with Hölder’s inequality and

sup
k

∑
k

2−| j−k|ε′′2− jn2( j∧k)n2[ j−( j∧k)]n/r < ∞,

sup
k

∑
j

2−| j−k|ε′′2− jn2( j∧k)n2[ j−( j∧k)]n/r < ∞,

leads to the result that∑
k

∑
Qk

sup
y∈Qk

|Ekb f (y)|2χQk(y)


1
2

≲

∑k

∑
Qk

(∑
j

∑
Q j

2− jn2−| j−k|ε′′ 2−( j∧k)ε′

(2−( j∧k) + |y − xQk |)n+ε′ |D j(b f )(xQ j)|χQk(y)
)2


1
2

≲

∑k

∑
Qk

∑
j

2− jn2−| j−k|ε′′2( j∧k)n2[ j−( j∧k)]n/r Mr

(∑
Q j

|D j(b f )(xQ j)|χQ j(x)
)
χQk(y)


2

1
2
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≲

∑k

∑
j

2− jn2−| j−k|ε′′2( j∧k)n2[ j−(k∧ j)]n/r

Mr

(∑
Q j

|D j(b f )(xQ j)|χQ j

)
(y)


2

1
2

≲

∑j

Mr

(∑
Q j

|D j(b f )(xQ j)|χQ j

)
(y)


2

1
2

.

Since xQ j is any fixed point in Q j, then

{∑
k

∑
Qk

sup
y∈Qk

|Ekb f (y)|2χQk(y)
} 1

2

≲

∑k

Mr

(∑
Q j

inf
x∈Q j
|D j(b f )(x)|χQ j

)
(y)


2

1
2

.

From Lemma 2.1 and 0 < r < p, we obtain∥∥∥∥∥∥
{∑

k

∑
Qk

(
sup
y∈Qk

|Ekb f (y)|
)2
χQk

} 1
2
∥∥∥∥

Lp,∞
≲

∥∥∥∥∥∥{∑
j

∑
Q j

(
inf
x∈Q j
|D jb f (x)|

)2
χQ j

} 1
2
∥∥∥∥

Lp,∞
.

By an analogue argument, we can obtain the converse inequality, and thus we get the desired result. □

The next result is necessary, with the proof omitted due to its similarity to [12, Theorem 3.3].

Proposition 2.1. For
n

n + ε
≤ p ≤ 1

and f ∈
(
bM(β, γ)

)′
, define

S b( f )(x) =

∑
l

∥Dlb( f )χBl
∥2L2


1
2

with
Bl = B(x, 2−l),

and then
∥S b( f )∥Lp,∞ ≈ ∥gb( f )∥Lp,∞ .

3. Atomic decomposition of Hp,∞
b (Rn)

Let b be a para-accretive function. We first introduce the notion of the (p, q, b) atom, which plays a
fundamental role in the atomic decomposition of Hp,∞

b (Rn).

Definition 3.1. Let 0 < p ≤ 1 < q ≤ ∞. A function a is called a (p, q, b) atom centered at a ball B if it
satisfies:

(i) supp a ⊂ B;

(ii) ∥a∥Lq ≤ |B|
1
q−

1
p ;

(iii)
∫
Rn a(x)b(x)dx = 0.
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Next, we present the definition of Hp,∞
b,atom(Rn), which is closely tied to the structure of para-accretive

functions. The class of atom spaces serves as a fundamental setting for analyzing the boundedness of
CZOs and other significant operators in harmonic analysis.

Definition 3.2. Let 0 < p ≤ 1 < q ≤ ∞. A function f ∈ Hp,∞
b,atom(Rn) if there exists a sequence of (p, q, b)

atoms {a j,k} j∈Z,k∈N and a sequence of coefficients {λ j,k} j∈Z,k∈N such that f ∈
(
bM̃(β, γ)

)′ can be expressed
as

f =
∑
j∈Z

∑
k∈N

λ j,ka j,k, (3.1)

where the above series hold in
(
bM̃(β, γ)

)′. Moreover,

λ j,k := C2 j|B j,k|
1
p

for all j ∈ Z and k ∈ N, where B j,k is the ball associated with the atom a j,k and satisfies∑
k∈N

χcB j,k(x) ≤ C

for all j ∈ Z. The norm defined as

∥ f ∥Hp,∞
b,atom
= inf

{
sup
j∈Z

∥∥∥∥∥∥
{∑

k∈N

(
λ j,kχB j,k

|B j,k|
1
p

)p} 1
p
∥∥∥∥∥∥

Lp

}
,

where the infimum is taken over all decomposition of f as in (3.1).

Before presenting the major conclusion of this section, a useful and simple result is provided, which
corresponds to a special case of [4, Remark 2.5].

Lemma 3.1. Let 1 ≤ β < ∞ and 0 < r < p < ∞, and then we have∥∥∥∥∥∥∑
k

χβBk

∥∥∥∥∥∥
Lp

≤ Cβn/r

∥∥∥∥∥∥∑
k

χBk

∥∥∥∥∥∥
Lp

,

since Lemma 2.1 and the inequality
χβB ≤ β

n/r[M(χB)]1/r

hold for any ball B ⊂ Rn.

The following conclusion can be drawn, with the details omitted for brevity.

Remark 3.1. From the Definition 3.2 and Lemma 3.1, it can be showed that

∥ f ∥Hp,∞
b,atom
≈ sup

j∈Z
2 j

∥∥∥∥∥∥
(∑

k∈N

χB j,k

) 1
p
∥∥∥∥∥∥

Lp

≈ sup
j∈Z

2 j

∥∥∥∥∥∥
(∑

k∈N

χcB j,k

) 1
p
∥∥∥∥∥∥

Lp

≈ sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χcB j,k

∥∥∥∥∥∥
Lp

≈ sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

,

(3.2)

where the implicit equivalent positive constants are independent of f .
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The following useful result, known as the generalized Grafakos-Kalton lemma, is a special case
of [4, Lemma 4.5] and is also presented here.

Lemma 3.2. Let 0 < r < p ≤ 1 and 1 < q < ∞, and there exist two sequences of numbers {λk}k∈N ⊂ C

and functions {ak}k∈N such that∥∥∥∥∥∥
(∑

k

|λkak|
r

)1/r∥∥∥∥∥∥
Lp

≲

∥∥∥∥∥∥
(∑

k

|λkχBk |
r

)1/r∥∥∥∥∥∥
Lp

,

where supp ak ⊂ Bk and
∥ak∥Lq ≤ |Bk|

1/q.

The lemma originated from Grafakos and Kalton’s study of multilinear singular integral operators
on Hardy spaces, which was later generalized by Sawano in [21], Cruz-Uribe et al. in [22], and Tan
in [23]. This lemma plays a crucial role in establishing atomic decomposition and proving boundedness
on general Hardy spaces, especially in situations where a single atom cannot be handled effectively.
Next, the relationship between the two function spaces introduced above will be explored.

Theorem 3.1. Let n
n + ε

< p ≤ 1 < q ≤ ∞,

and then
Hp,∞

b (Rn) = Hp,∞
b,atom(Rn)

with equivalent quasi-norms.

Proof. The proof starts by establishing that

Hp,∞
b,atom(Rn) ⊂ Hp,∞

b (Rn).

Suppose that f ∈ Hp,∞
b,atom(Rn), and it is suffice to prove that∥∥∥∥χ{x:|gb( f )(x)|>α

}∥∥∥∥
Lp
≲ α−1∥ f ∥Hp,∞

b,atom
.

From Definition 3.2 and Remark 3.1, there exist two sequences of (p, q, b) atoms {a j,k} j∈Z,k∈N, associated
with balls {B j,k} j∈Z,k∈N, and coefficients {λ j,k} j∈Z,k∈N ⊂ C such that the decomposition (3.1) holds in(
bM̃(β, γ)

)′ and

∥ f ∥Hp,∞
b,atom
≈ sup

j∈Z
2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

. (3.3)

To proceed, it will be convenient to break the sum (3.1) into two parts:

f =
j0−1∑

j=−∞

∑
k∈N

λ j,ka j,k +

∞∑
j= j0

∑
k∈N

λ j,ka j,k =: f1 + f2.

Choose j0 ∈ Z such that
2 j0 ≤ α < 2 j0+1
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for any given α ∈ (0,∞). Therefore, it follows that∥∥∥∥χ{x:gb( f )(x)>α
}∥∥∥∥

Lp
≲

∥∥∥∥χ{x:gb( f1)(x)> α2
}∥∥∥∥

Lp
+

∥∥∥∥χ{x∈A j0 :gb( f2)(x)> α2
}∥∥∥∥

Lp
+

∥∥∥∥χ{x∈(A j0 )c:gb( f2)(x)> α2
}∥∥∥∥

Lp

=: I1 + I2 + I3,

where

A j0 =

∞⋃
j= j0

⋃
k∈N

(2B j,k).

We rewrite I1 as

I1 ≤

∥∥∥∥∥∥χ{x:
j0−1∑
j=−∞

∑
k∈N
λ j,kgb(a j,k)(x)χ2B j,k (x)> α4

}∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥χ{x:
j0−1∑
j=−∞

∑
k∈N
λ j,kgb(a j,k)(x)χ(2B j,k )c (x)> α4

}∥∥∥∥∥∥
Lp

=: I1,1 + I1,2.

Let s ∈ (0, p), t ∈
(
1,min{q, 1

s }
)
, and a ∈ (0, 1 − 1

t ), and according to Hölder’s inequality, we have

j0−1∑
j=−∞

∑
k∈N

λ j,kgb(a j,k)(x)χ2B j,k(x)

≤

( j0−1∑
j=−∞

2 jat′
) 1

t′
( j0−1∑

j=−∞

2− jat

(∑
k∈N

λ j,kgb(a j,k)(x)χ2B j,k(x)
)t) 1

t

=
2 j0a

(2at′ − 1)
1
t′

( j0−1∑
j=−∞

2− jat

(∑
k∈N

λ j,kgb(a j,k)(x)χ2B j,k(x)
)t) 1

t

,

where t and t′ are conjugate exponents.
Since 1 < t′ < ∞, then

0 <
(
2at′ − 1

) 1
t′
< ∞.

Set

C(a, t) = 2−2t
(
2at′ − 1

) 1
t′
,

and observe that ts < 1 and p/s > 1. Then we obtain

I1,1 ≤

∥∥∥∥∥∥χ{
x: 2 j0a

(2at′ −1)1/t′

(
j0−1∑
j=−∞

2− jat

( ∑
k∈N
λ j,kgb(a j,k)χ2B j,k

)t) 1
t

>2 j0−2
}
∥∥∥∥∥∥

Lp

≤ C(a, t)2− j0t(1−a)

∥∥∥∥∥∥ j0−1∑
j=−∞

2− jat

(∑
k∈N

λ j,kgb(a j,k)χ2B j,k

)t∥∥∥∥∥∥
Lp

≲ 2− j0t(1−a)

∥∥∥∥∥∥ j0−1∑
j=−∞

2(1−a) jts
∑
k∈N

(
∥χB j,k∥Lpgb(a j,k)χ2B j,k

)ts∥∥∥∥∥∥
1
s

Lp/s
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≲ 2− j0t(1−a)
( j0−1∑

j=−∞

2(1−a) jts

∥∥∥∥∥∥
(∑

k∈N

(
∥χB j,k∥Lpgb(a j,k)χ2B j,k

)ts) 1
s
∥∥∥∥∥∥s

Lp

) 1
s

.

Let
r =

q
t
,

and then 1 < r < ∞. For j ∈ Z and k ∈ N, using the Littlewood-Paley characterization of the Lebesgue
spaces by gb, we have ∥∥∥∥(∥χB j,k∥Lpgb(a j,k)χ2B j,k

)t∥∥∥∥
Lr
≤ ∥χB j,k∥

t
Lp∥gb(a j,k)∥tLq

≲ ∥χB j,k∥
t
Lp∥a j,k∥

t
Lq

≲ |B j,k|
1
r .

Thus, Lemmas 3.1 and 3.2, and (3.3) yield that

I1,1 ≲ 2− j0t(1−a)
( j0−1∑

j=−∞

2(1−a) jts

∥∥∥∥∥∥
(∑

k∈N

χ2B j,k

) 1
s
∥∥∥∥∥∥s

Lp

) 1
s

≲ 2− j0t(1−a)
( j0−1∑

j=−∞

2(1−a) jts

∥∥∥∥∥∥
(∑

k∈N

χcB j,k

) 1
s
∥∥∥∥∥∥s

Lp

) 1
s

≲ 2− j0t(1−a)
( j0−1∑

j=−∞

2[(1−a)t−1] js

) 1
s

sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

≲ α−1∥ f ∥Hp,∞
b,atom
.

(3.4)

To deal with I1,2, we need some estimates on gb(a j,k). Let

B j,k := B(x j,k, r j,k)

for all j ∈ Z, k ∈ N. If j ∈ Z∩ [ j0,∞) and x ∈ (2B j,k)c, then using the cancellation condition of a j,k and
Hölder’s inequality, we have

|Dlba(x)| =
∣∣∣∣ ∫

B j,k

b(y)a j,k(y)(Dl(x, y) − Dl(x, x j,k))dy

≲

∫
B j,k

|a j,k(y)|
( |y − x j,k|

2−l + |x − x j,k|

)ε 2−lε

(2−l + |x − x j,k|)n+εdy

≲ |B j,k|
ε
n

2−lε

(2−l + |x − x j,k|)n+2ε

∫
B j,k

|a j,k(y)|dy

≲ |B j,k|
ε
n

2−lε

(2−l + |x − x j,k|)n+2ε

( ∫
2B j,k

|a(y)|qdy
) 1

q
( ∫

2B j,k

1dy
) 1

q′

≲
2−lε

(2−l + |x − x j,k|)n+2ε |B j,k|
1− 1

p+
ε
n ,
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which implies that

gb(a j,k)(x) =
(∑

l

|Dlb(a j,k)(x)|2
) 1

2

≲ |B j,k|
1− 1

p+
ε
n

(∑
l

2−2lε

(2−l + |x − x j,k|)2n+4ε

) 1
2

≲ |B j,k|
1− 1

p+
ε
n

( ∑
2−l≤|x−x j,k |

2−2lε

|x − x j,k|
2n+4ε +

∑
2−l≥|x−x j,k |

2−2lε

2−l(2n+4ε)

) 1
2

≲ |B j,k|
1− 1

p+
ε
n |x − x j,k|

−n−ε

≲ |B j,k|
− 1

p [M(χB j,k)(x)]
n+ε

n .

(3.5)

Choose u ∈ (0, n
n+ε ), v ∈ ( n

(n+ε)u ,
1
u ), and w ∈ (0, 1 − 1

v ). By Hölder’s inequality, it is available that

j0−1∑
j=−∞

∑
k∈N

λ j,kgb(a j,k)(x)χ(
2B j,k

)c(x) ≤
2 j0w

(2wv′ − 1)
1
v′

( j0−1∑
j=−∞

2− jwv

(∑
k∈N

λ j,kgb(a j,k)(x)χ(
2B j,k

)c(x)
)v) 1

v

, (3.6)

where v and v′ are conjugate indices.
Combining estimates (3.5) and (3.6) with Lemma 2.1, we get

I1,2 ≤

∥∥∥∥∥∥χ{
x: 2 j0w

(2wv′ −1)1/v′

(
j0−1∑
j=−∞

2− jwv

( ∑
k∈N
λ j,kgb(a j,k)(x)χ(2B j,k )c (x)

)v) 1
v

>2 j0−2
}
∥∥∥∥∥∥

Lp

≲ 2− j0v(1−w)

∥∥∥∥∥∥ j0−1∑
j=−∞

2− jwv

(∑
k∈N

λ j,kgb(a j,k)(x)χ(2B j,k)c

)v∥∥∥∥∥∥
Lp

≲ 2− j0v(1−w)
( j0−1∑

j=−∞

2(1−w) jvu

∥∥∥∥∥∥∑
k∈N

[M(χB j,k)]
(n+ε)vu

n

∥∥∥∥∥∥
L

p
u

) 1
u

≲ 2− j0v(1−w)
( j0−1∑

j=−∞

2(1−w) jvu

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥
L

p
u

) 1
u

≲ 2− j0v(1−w)
( j0−1∑

j=−∞

2[(1−w)v−1]2 ju

∥∥∥∥∥∥
(∑

k∈N

χcB j,k

) 1
u
∥∥∥∥∥∥u

Lp

) 1
u

≲ α−1 sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

≲ α−1 ∥ f ∥Hp,∞
b,atom
.

Thus, we can conclude that

I1 ≲ α
−1∥ f ∥Hp,∞

b,atom
.
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For I2, we choose r1 ∈ [ 1
p ,∞), and from Lemma 3.1 and (3.2), we get

I2 ≤

∥∥∥∥∥∥ ∞∑
j= j0

∑
k∈N

χ2B j,k

∥∥∥∥∥∥
Lp

≲

∥∥∥∥∥∥ ∞∑
j= j0

∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

≲

( ∞∑
j= j0

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
1
r1

Lp(Rn)

)r1

≲

( ∞∑
j= j0

2−
j

r1

(
2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

) 1
r1
)r1

≲ sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

( ∞∑
j= j0

2−
j

r1

)r1

≲ α−1 ∥ f ∥Hp,∞
b,atom
.

Let n
p(n + ε)

< r2 < 1.

The value of λ j,k, Lemma 2.1, and (3.5) imply that

I3 ≤

∥∥∥∥∥∥χ{x∈(A j0 )c:
∞∑

j= j0

∑
k∈N
λ j,kgb(a j,k)(x)>α/2

}∥∥∥∥∥∥
Lp

≲ α−r2

∥∥∥∥∥∥ ∞∑
j= j0

∑
k∈N

[λ j,kgb(a j,k)]r2χ(A j0 )c

∥∥∥∥∥∥
Lp

≲ α−r2

( ∞∑
j= j0

∥∥∥∥∥∥
(∑

k∈N

[λ j,kgb(a j,k)]r2χ(A j0 )c

) n
r2(n+ε)

∥∥∥∥∥∥
L

r2(n+ε)p
n

) r2(n+ε)
n

≲ α−r2

( ∞∑
j= j0

2
jn

n+ε

∥∥∥∥∥∥
(∑

k∈N

[M(χB j,k)]
r2(n+ε)

n

) n
r2(n+ε)

∥∥∥∥∥∥
L

r2(n+ε)p
n

) r2(n+ε)
n

≲ α−r2

( ∞∑
j= j0

2
jn

n+ε

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
n

r2(n+ε)

Lp

) r2(n+ε)
n

≲ sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

α−r2

( ∞∑
j= j0

2
jn

n+ε2−
jn

(n+ε)r2

) r2(n+ε)
n

≲ α−1∥ f ∥Hp,∞
b,atom
.

Together with the estimates of I1–I3, we obtain

∥ f ∥Hp,∞
b
= sup
α∈(0,∞)

α
∥∥∥∥χ{x:gb( f )(x)>α}

∥∥∥∥
Lp
≲ ∥ f ∥Hp,∞

b,atom
,
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which implies that f ∈ Hp,∞
b (Rn).

The converse result is now proved, showing that

Hp,∞
b (Rn) ⊂ Hp,∞

b,atom(Rn).

For f ∈
(
bM̃(β, γ)

)′
, [24, Theorem 4] provides that

f (x) =
∑

l

∑
Ql

|Ql|Dl(x, xQl)
˜̃Dl(b f )(xQl)bQl ,

where
bQl =

1
|Ql|

∫
Ql

b(x)dx

and the series converges in the sense of distribution. Denote

Ω :=
⋃

l

⋃
Q∈Ql

Q.

For j ∈ Z, let

Ω j = {x ∈ Rn : S b( f )(x) > 2 j} (3.7)

and

R j =
{
Q ∈ Ω j : |Q ∩Ω j| ≥

|Q|
2

and |Q ∩Ω j+1| <
|Q|
2

}
.

Denote the maximal dyadic cubes in R j by {Q j,k}k for any j ∈ Z. Thus, we can rewrite

f (x) =
∑

j

∑
k

∑
Q∈R j,Q⊂Q j,k

|Q|DQ(x, xQ)˜̃DQ(b f )(xQ)bQ

=:
∑

j

∑
k

λ j,ka j,k(x),

where
DQ := Dk

if
l(Q) = 2−k−N ,

with a similar notation used for ˜̃DQ. Additionally,

λ j,k = 2 j∥χcQ j,k∥Lp

and

a j,k(x) =
1
λ j,k

∑
Q∈R j,Q⊂Q j,k

|Q|DQ(x, xQ)˜̃DQ( f )(xQ)bQ.
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Next, it will be shown that a j,k is a multiple of a (p, q, b) atom corresponding to cQ j,k. By definitions
of a j,k and Dl, it is clear that supp a j,k ⊂ cQ j,k and∫

a j,k(x)b(x)dx = 0.

Let

Ω j = {x ∈ Rn : M(χΩ j)(x) ≥
1
2
}.

Since
|Q ∩Ω j| ≥ |Q|/2

for any Q ∈ R j, it follows that Q ⊂ Ω j. Given this fact, along with

|Q ∩Ω j+1| ≤ |Q|/2,

then

M
(
χQ∩(Ω j\Ω j+1)

)
(x) ≥

χQ(x)

2
.

Moreover, we have

4M2
(
χQ∩(Ω j\Ω j+1)

)
(x) ≥ χQ(x)

for x ∈ Q.
Now we estimate ∥a j,k∥Lq . Since 1 < q < ∞, from Hölder’s inequality and Lemma 2.1, we can

deduce that

∥a∥Lq =
1
λ j,k

sup
∥h∥

Lq′≤1

∣∣∣∣∣∣∣∣
∫
Rn

∑
Q∈R j,Q⊂Q j,k

|Q|DQ(x, xQ)˜̃DQ(b f )(xQ)h(x)bQdx

∣∣∣∣∣∣∣∣
=

1
λ j,k

sup
∥h∥

Lq′≤1

∣∣∣∣∣∣∣∣
∫
Rn

∑
Q∈R j,Q⊂Q j,k

˜̃Dl(b f )(xQ)D∗Q(h)(xQ)bQχQ(x)dx

∣∣∣∣∣∣∣∣
≤

1
λ j,k

∥∥∥∥∥∥∥∥
{ ∑

Q∈R j,Q⊂Q j,k

|
˜̃DQ(b f )(xQ)|2χQ(x)

}1/2
∥∥∥∥∥∥∥∥

Lq

≲
1
λ j,k

∥∥∥∥∥∥∥∥
{ ∑

Q∈R j,Q⊂Q j,k

|
˜̃DQ(b f )(xQ)|2M2

(
χQ∩(Ω j\Ω j+1)

)}1/2
∥∥∥∥∥∥∥∥

Lq

≲
1
λ j,k

∥∥∥∥∥∥∥∥
{ ∑

Q∈R j,Q⊂Q j,k

|
˜̃DQ(b f )(xQ)|2χQ∩(Ω j\Ω j+1)

}1/2
∥∥∥∥∥∥∥∥

Lq

≲
1
λ j,k

∥∥∥∥∥∥∥∥
{ ∑

Q∈R j,Q⊂Q j,k

|
˜̃DQ(b f )(xQ)|2

}1/2

χQ j,k∩(Ω j\Ω j+1)

∥∥∥∥∥∥∥∥
Lq
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≲
1
λ j,k
∥2 jχQ j,k∥Lq

≲ |Q j,k|
1/q−1/p.

Finally, by Definition 3.2 and (3.7), it can be immediately obtained that

∥ f ∥Hp,∞
b,atom
≲ sup

j
2 j

∥∥∥∥∑
j

χQ j,k

∥∥∥∥
Lp
≲ sup

j
2 j

∥∥∥∥χΩ j

∥∥∥∥
Lp
≲ ∥S b( f )∥Lp,∞ ≲ ∥ f ∥Hp,∞

b
,

which shows that Hp,∞
b ⊂ Hp,∞

b,atom and thereby concludes Theorem 3.1. □

4. Boundedness of CZOs

Recall the definition of Calderón-Zygmund operators, as initated in [25], which are a class of
singular integral operators fundamental to harmonic analysis. Generally, the space

C
η
0(Rn) = { f ∈ C0(Rn) : ∃C > 0, ∀x, y ∈ Rn, | f (x) − f (y)| ≤ C|x − y|η} ,

and its norm

∥ f ∥Cη0(Rn) = ∥ f ∥∞ + sup
x,y

| f (x) − f (y)|
|x − y|η

< ∞.

Suppose that b1 and b2 are both para-accretive functions. We define b1C
η
0(Rn) as the set {g : g =

b1 f , f ∈ Cη0} and (b2C
η
0(Rn))′ as the dual space of b2C

η
0(Rn).

Definition 4.1. [11] Let T be a continuous linear operator defined from b1C
η
0(Rn) to (b2C

η
0(Rn))′ for

all η > 0. Then T is called a generalized singular integral operator if it can be written in the form

〈
Tb1 f , b2g

〉
=

∫
Rn

∫
Rn

K(x, y)b2(x)g(x)b1(y) f (y)dydx,

for f , g ∈ Cη0(Rn) with
supp( f ) ∩ supp(g) = ∅,

and the kernel K(x, y) defined on Rn × Rn\{x = y : x, y ∈ Rn} satisfies:

|K(x, y)| ≲
1

|x − y|n
, (4.1)

|K(x, y) − K(x′, y)| ≲
|x − x′|δ

|x − y|n+δ
for |x − x′| ≤

|x − y|
2
, (4.2)

|K(x, y) − K(x, y′)| ≲
|y − y′|δ

|x − y|n+δ
for |y − y′| ≤

|x − y|
2
, (4.3)

where 0 < δ < 1. A generalized singular integral operator T that is bounded on L2(Rn) is referred to
as a CZO.
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We say that T ∗(b) = 0 if ∫
Rn

∫
Rn

K(x, y)b(x)ϕ(y)dy dx = 0

for any ϕ ∈ D1, where

D1 (Rn) :=
{
ϕ ∈ D (Rn) :

∫
Rn
ϕ(x)b(x)dx = 0

}
.

The following results present two theorems that examine the behavior of CZOs with respect to weak
Hardy spaces. We provide detailed proofs for these theorems to illustrate their validity and significance.

Theorem 4.1. Let T be a CZO with regularity exponent δ. Suppose that

n
n + δ

≤ p ≤ 1

and
T ∗(b) = 0,

and then T is bounded from Hp(Rn) to Hp,∞
b (Rn).

Proof. To prove Theorem 4.1, observe that

Hp(Rn) ∩ L2(Rn) = Hp(Rn),

and thus we only need to verify

∥T f ∥Hp,∞
b
≲ ∥ f ∥Hp (4.4)

for
f ∈ Hp(Rn)

⋂
L2(Rn).

Let
f ∈ Hp(Rn)

⋂
L2(Rn),

and there exists a sequence of (p, 2) atoms {ak}k∈N, each corresponding to a ball Bk and coefficients
{λk}k∈N, such that

f =
∑
k∈N

λkak

holds in L2(Rn) and

∥ f ∥Hp = inf
{(∑

k∈N

|λk|
p
) 1

p : f =
∑
k∈N

λkak,where ak is a (p, 2) atom and
∑
k∈N

|λk|
p < ∞

}
.

To prove (4.4), it is sufficient to show that

sup
0<α<∞

αp
∣∣∣∣{x ∈ Rn : gb(Ta)(x) > α

}∣∣∣∣ ≲ 1, (4.5)
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where a is a (p, 2) atom and supp a ⊂ B. In fact, if

f ∈ Hp(Rn)
⋂

L2(Rn),

then we have

αp
∣∣∣∣{x ∈ Rn : gb(T f )(x) > α

}∣∣∣∣ ≤ αp
∣∣∣∣{x ∈ Rn :

∑
k∈N

gb(Tλkak)(x) > α
}∣∣∣∣

≤ αp
∑
k∈N

∣∣∣∣{x ∈ Rn : gb(Tλkak)(x) > α
}∣∣∣∣

≤
∑
k∈N

|λk|
p,

where the second inequality arises from [26, Theorem 6.1] (see also in [27, Lemma 1.8]). Therefore,
we conclude (4.4).

Denote
B := B(x0, r)

and
4B := B(x0, 4r).

We write

αp
∣∣∣∣{x ∈ Rn : gb(Ta)(x) > α

}∣∣∣∣ ≤ αp
∣∣∣∣{x ∈ 4B : gb(Ta)(x) > α

}∣∣∣∣ + αp
∣∣∣∣{x ∈ (4B)c : gb(Ta)(x) > α

}∣∣∣∣
=: J1 + J2.

We first consider J1. The application of the Hölder inequality and the fact that T is bounded on
L2(Rn) result in

J1 ≤

∫
4B

[gb(Ta)(x)]pdx ≲ ∥gb(Ta)∥p
L2 |B|

1− p
2 ≲ 1.

In order to deal with J2, we begin by presenting some estimates of DlbTa(x). Here we fix ε as the
regularity exponent of Dl for all l ∈ Z. If z ∈ B and x ∈ (4B)c, then

|x0 − z| ≤
1
2
|x − z|.

Choose η and t such that 0 < η < δ ≤ ε and t > η, and then the properties of atom a and [28, (2.4)]
imply that

|DlbTa(x)| =

∣∣∣∣∣∣
∫
|y−x0 |≥

|x−x0 |
2

b(y)
∫
Rn

K(y, z)a(z)dzDl(x, y)dy

∣∣∣∣∣∣
≤

∫
Rn
|a(z)|

∣∣∣∣∣∫
Rn

Dl(x, y)b(y)[K(y, z) − K(y, x0)]dy
∣∣∣∣∣ dz

≲

∫
Rn
|a(z)|

(
|z − x0|

|x − z|

)δ 1
(2−l + |x − z|)n dz
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≲
rη

|x − x0|
η

2−l(t−η)

(2−l + |x − x0|)n+t−η

∫
Rn
|a(z)|dz

≲ rn|B|−
1
p

rη

|x − x0|
η

2−l(t−η)

(2−l + |x − x0|)n+t−η .

Thus, for x ∈ (4B)c, then

gb(Ta)(x) =

∑
l

|Dlb(Ta)(x)|2


1
2

≲
rn+η

|x − x0|
n+η |B|

− 1
p ,

and taking the infimum over 0 < η < δ for the above estimates, we have

gb(Ta)(x) ≲
rn+δ

|x − x0|
n+δ |B|

− 1
p ≲

(
M(χB)(x)

) n+δ
n
|B|−

1
p . (4.6)

Note that
p(n + δ)

n
≥ 1,

and using the fact that the maximal operator is weak ( p(n+δ)
n ,

p(n+δ)
n )-type bounded, we get that

J2 ≲ α
p
∣∣∣∣{x ∈ (4B)c : gb(Ta)(x) > α

}∣∣∣∣
≲ αp

∣∣∣∣∣∣
{

x ∈ (4B)c :
(
M(χB)(x)

) n+δ
n
|B|−

1
p > α

}∣∣∣∣∣∣
≲ αp

∣∣∣∣∣{x ∈ (4B)c : M(χB)(x) >
(
α|B|

1
p
) n

n+δ
}∣∣∣∣∣

≲ αp

((
α|B|

1
p
)− n

n+δ
∥χB∥L

p(n+δ)
n

) p(n+δ)
n

= C.

Combining these majorizations yields (4.4) and we conclude the proof of Theorem 4.1. □

Theorem 4.2. Under the hypothesis of Theorem 4.1, T is bounded from Hp,∞(Rn) to Hp,∞
b (Rn) if

n
n + δ

< p ≤ 1.

Proof. The goal is to prove that ∣∣∣∣{x : |gb(T f )(x)| > α
}∣∣∣∣ ≤ (

∥ f ∥Hp,∞

α

)p

.

From [4, Definition 4.2, Remark 4.3 and Theorem 4.4] with replacing p(x) with p, there exist two
sequences of (p, q) atoms {a j,k} j∈Z,k∈N, each corresponding to a ball B j,k and coefficients {λ j,k} j∈Z,k∈N such
that (3.1) holds in the sense of distribution and

∥ f ∥Hp,∞
b
≈ sup

j∈Z
2i

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

.
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Choose j0 ∈ Z such that 2 j0 ≤ α < 2 j0+1 for any given α ∈ (0,∞). We write

f =
j0−1∑

j=−∞

∑
k∈N

λ j,ka j,k +

∞∑
j= j0

∑
k∈N

λ j,ka j,k

=: f1 + f2.

Therefore, we have∣∣∣∣{x : |gb(T f )(x)| > α
}∣∣∣∣

≤

∣∣∣∣{x : gb(T f1)(x) >
α

2

}∣∣∣∣ + ∣∣∣∣{x ∈ B j0 : gb(T f2)(x) >
α

2

}∣∣∣∣ + ∣∣∣∣{x ∈ (B j0)c : gb(T f2)(x) >
α

2

}∣∣∣∣
=: H1 + H2 + H3,

where

B j0 =

∞⋃
j= j0

⋃
k∈N

(4B j,k).

We split H1 into two parts,

H1 ≲

∣∣∣∣∣∣{x :
j0−1∑

j=−∞

∑
k∈N

λ j,kgb(Ta j,k)(x)χ4B j,k(x) >
α

4

}∣∣∣∣∣∣ +
∣∣∣∣∣∣{x :

j0−1∑
j=−∞

∑
k∈N

λ j,kgb(Ta j,k)(x)χ(4B j,k)c(x) >
α

4

}∣∣∣∣∣∣
=: H1,1 + H1,2.

Let
1
t
+

1
t′
= 1.

Choose s ∈ (0, p), t ∈
(
1,min{q, 1

s }
)
, and a ∈ (0, 1 − 1

t ) such that

j0−1∑
j=−∞

∑
k∈N

λ j,kgb(Ta j,k)(x)χ4B j,k(x) ≤
2 j0a

(2at′ − 1)
1
t′

( j0−1∑
j=−∞

2− jat

(∑
k∈N

λ j,kgb(Ta j,k)(x)χ4B j,k(x)
)t) 1

t

, (4.7)

where we use Hölder’s inequality. Notice that ts < 1, p/s > 1, and

0 <
(
2at′ − 1

) 1
t′
< ∞

for 1 < t′ < ∞. These facts and (4.7) imply that

H1,1 ≤

∣∣∣∣∣∣{x :
2 j0a

(2at′ − 1)1/t′

( j0−1∑
j=−∞

2− jat
(∑

k∈N

λ j,kgb(Ta j,k)(x)χ4B j,k(x)
)t) 1

t

> 2 j0−2
}∣∣∣∣∣∣

≲ 2− j0t(1−a)p

∥∥∥∥∥∥ j0−1∑
j=−∞

2− jat

(∑
k∈N

λ j,kgb(Ta j,k)(x)χ4B j,k

)t∥∥∥∥∥∥p

Lp

≲ 2− j0t(1−a)p

∥∥∥∥∥∥ j0−1∑
j=−∞

2(1−a) jts
∑
k∈N

(
∥χB j,k∥Lpgb(Ta j,k)χ4B j,k

)ts∥∥∥∥∥∥
p
s

Lp/s
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≲ 2− j0t(1−a)p

( j0−1∑
j=−∞

2(1−a) jts

∥∥∥∥∥∥
(∑

k∈N

(
∥χB j,k∥Lpgb(Ta j,k)χ4B j,k

)ts) p
s
∥∥∥∥∥∥s

Lp

) p
s

.

Let
r =

q
t
,

and then 1 < r < ∞. For j ∈ Z and k ∈ N, in view of the Littlewood-Paley characterization of Lebesgue
spaces and the size condition of atom a, we have∥∥∥∥(∥χB j,k∥Lpgb(Ta j,k)χ4B j,k

)t∥∥∥∥
Lr
≲ ∥χB j,k∥

t
Lp

∥∥∥∥gb(Ta j,k)
∥∥∥∥t

Lq

≲ ∥χB j,k∥
t
Lp

∥∥∥∥Ta j,k

∥∥∥∥t

Lq

≲ ∥χB j,k∥
t
Lp

∥∥∥∥a j,k

∥∥∥∥t

Lq

≲ |B j,k|
1
r .

From Lemmas 2.1 and 3.1, and (3.2), it follows that

H1,1 ≲ 2− j0t(1−a)p

( j0−1∑
j=−∞

2(1−a) jts

∥∥∥∥∥∥
(∑

k∈N

χ4B j,k

) 1
s
∥∥∥∥∥∥s

Lp

) p
s

≲ 2− j0t(1−a)p

( j0−1∑
j=−∞

2(1−a) jts

∥∥∥∥∥∥
(∑

k∈N

χcB j,k

) 1
s
∥∥∥∥∥∥s

Lp

) p
s

≲ 2− j0t(1−a)p

( j0−1∑
j=−∞

2[(1−a)t−1] js sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

) p
s

≲ α−p∥ f ∥p
Hp,∞

b
.

According to Lemmas 2.1 and 3.1, and (4.6), we can conclude

H1,2 ≤

∣∣∣∣∣∣{x :
2 j0a

(2at′ − 1)1/t′

( j0−1∑
j=−∞

2− jat
(∑

k∈N

λ j,kgb(Ta j,k)(x)χ(4B j,k)c(x)
)t) 1

t

> 2 j0−2
}∣∣∣∣∣∣

≲ 2− j0t(1−a)p

∥∥∥∥∥∥ j0−1∑
j=−∞

2− jat

(∑
k∈N

λ j,kgb(Ta j,k)(x)χ(4B j,k)c

)t∥∥∥∥∥∥p

Lp

≲ 2− j0t(1−a)q
( j0−1∑

j=−∞

2(1−a) jts

∥∥∥∥∥∥∑
k∈N

[M(χB j,k)]
(n+δ)ts

n

∥∥∥∥∥∥
L

p
s

) p
s

≲ 2− j0t(1−a)p

( j0−1∑
j=−∞

2(1−a) jts

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥
L

p
s

) p
s

≲ 2− j0t(1−a)p

( j0−1∑
j=−∞

2[(1−a)t−1]2 js

∥∥∥∥∥∥
(∑

k∈N

χcB j,k

) 1
s
∥∥∥∥∥∥s

Lp

) p
s
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≲ a−p

(
sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

)p

≲ a−p∥ f ∥pHp,∞ .

By an analogue argument to I2 in the previous section, we have

H2 ≲ α
−p∥ f ∥pHp,∞ .

The value of λ j,k, Lemma 2.1, and (4.6) deduce that

H3 ≤

∣∣∣∣∣∣
{

x ∈ (A j0)
c :

∞∑
j= j0

∑
k∈N

λ j,kgb(Ta j,k)(x) > α/2
}∣∣∣∣∣∣

≲ α−r2 p

∥∥∥∥∥∥ ∞∑
j= j0

∑
k∈N

[λ j,kgb(Ta j,k)]r2χ(A j0 )c

∥∥∥∥∥∥p

Lp

≲ α−r2 p

( ∞∑
j= j0

∥∥∥∥∥∥
(∑

k∈N

[λ j,kgb(Ta j,k)]r2χ(A j0 )c

) n
r2(n+δ)

∥∥∥∥∥∥
L

r2(n+δ)p
n

) r2(n+ε)p
n

≲ α−r2 p

( ∞∑
j= j0

2
jn

n+δ

∥∥∥∥∥∥
(∑

k∈N

[M(χB j,k)]
r2(n+δ)

n

) n
r2(n+δ)

∥∥∥∥∥∥
L

r2(n+δ)p
n

) r2(n+δ)p
n

≲ α−r2 p

( ∞∑
j= j0

2
jn

n+δ

∥∥∥∥∥∥∑
j∈Z

χB j,k

∥∥∥∥∥∥
n

r2(n+δ)

Lp

) r2(n+δ)p
n

≲ α−r2 p

(
sup
j∈Z

2 j

∥∥∥∥∥∥∑
k∈N

χB j,k

∥∥∥∥∥∥
Lp

)p( ∞∑
j= j0

2
jn

n+δ2−
jn

(n+δ)r2

) r2(n+δ)p
n

≲ α−p∥ f ∥pHp,∞ ,

where n
p(n + δ)

< r2 < 1.

Combining with the estimates of H1–H3, we have∣∣∣∣{x : |gb(T f )(x)| > α
}∣∣∣∣ ≲ (

∥ f ∥Hp,∞

α

)p

,

which completes the proof of Theorem 4.2. □

5. Conclusions

We developed the theory of weak Hardy spaces by introducing a new class of function spaces,
Hp,∞

b (Rn), associated with para-accretive functions. Additionally, we derived their atomic
decomposition and established two general criterions for the boundedness of Calderón-Zygmund
singular integral operators.
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