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Abstract: The present study introduced modifications to the standard Adomian decomposition
method (ADM) by combining the Taylor series with orthogonal polynomials, such as Legendre
polynomials and the first and second kinds of Chebyshev polynomials. These improvements can
be applied to solve fractional differential equations with initial-value problems in the Caputo sense.
The approaches are based on the use of orthogonal polynomials, which are essential components
in approximation theories. The study carefully analyzed their respective absolute error differences,
highlighting the computational benefits of the proposed modifications, which offer improved accuracy
and require fewer computational steps. The effectiveness and accuracy of the approach were validated
through numerical examples, confirming its efficiency and reliability.
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1. Introduction

Fractional calculus is a branch of mathematical analysis that generalizes integration and
differentiation to arbitrary orders. Its origins can be traced back to the speculations of G. W. Leibniz
in 1695 and L. Euler in 1730. Despite a long history, fractional calculus and the corresponding
fractional differential equations (FDEs) are only gaining attention and popularity now. Different
definitions of fractional derivatives exist, such as Riemann-Liouville, Caputo, Grunwald-Letnikov,
Weyl, Marchaud, and Prabhakar. The history of this topic is available in [1–3]. Fractional calculus
has several practical applications in various functional sciences, engineering, and technology fields.
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These include economics [4], chaotic systems [5], viscoelastic materials dynamics [6], electrochemical
processes [7], traffic models in fluid dynamics [8], and optics [9]. Fractional derivatives are also
helpful in describing the history profile and heritable properties of various constituents and practices.
Furthermore, several researchers have investigated the existence and uniqueness of solutions for
FDEs [2,3]. Additionally, because most fractional differential equations lack exact analytical solutions,
approximate and numerical techniques, including semi-analytical methods, are widely employed to
address fractional differential models. These methods include the homotopy analysis method [10],
the variational iteration technique [11], Adams methods [12], Multi-Step Methods [13], Haar wavelet
method [14], as well as several others [15–18].

The Adomian decomposition method (ADM) [19] has seen extensive use over the past decades in
solving a broad range of different types of equations. Originally introduced by George Adomian in
the 1980s, the method has experienced numerous developments, modifications, and improvements.
For further details regarding the convergence and stability of the ADM in its application to different
types of equations, see [20–23]. The extended review by Duan et al. [24] covers the method and its
applications to fractional differential equations; see also [25, 26].

In recent times, ADM has been extensively used to provide analytical approximate solutions
for linear and nonlinear fractional differential equations [27–29]. The ADM has been improved in
several ways to enhance its accuracy, speed, and computational efficiency. These modifications have
also made it adaptable to different types of functional equations. The upgraded ADM has shown
significant progress by rapidly converging to a series solution compared to the standard ADM. It
has also proven to be computationally efficient in various models, which is crucial for researchers in
applied science [30–32]. Modifications to the ADM have produced notable results and offer flexibility
in solving complex higher-order equations. However, in specific cases, explicitly solving definite
integrals with parameters in the domain, or even performing approximate numerical integrations for
specific right-hand terms, is not possible. As a result, it becomes essential to approximate these
right-hand terms using series expansions before applying the ADM. Orthogonal functions are highly
esteemed in areas such as numerical methods and approximation theory.

However, in relation to their practical applications. Wazwaz et al. were the first to propose
approximating right-hand terms using the Taylor series before applying the ADM [33]. Later,
Hosseini [34] introduced the combination of ADM with the first kind of Chebyshev polynomials,
demonstrating the effectiveness and reliability of this method for both linear and nonlinear equations.
Following this, Liu [35] incorporated Legendre polynomials into the ADM and conducted a
comparative analysis with the previously used Chebyshev polynomials. Furthermore, in [36], it was
observed that using the second kind of Chebyshev polynomials with the ADM improved estimation
accuracy, outperforming the first kind. Another approach for approximating right-hand terms, as
suggested in [37], is through Gegenbauer and Jacobi polynomials. Finally, in [38], a study comparing
Chebyshev, Legendre, and Laguerre polynomials found that Legendre polynomials were superior
estimators to Chebyshev polynomials, contradicting earlier findings.

The present manuscript proposes several modification procedures for the standard ADM aimed
at solving initial-value problems of fractional order. These procedures leverage the application of
orthogonal polynomials, which play a crucial role in approximation theories. Specifically, we will
explore the use of Legendre polynomials and Chebyshev polynomials of both the first and second
kinds to develop enhanced modification methods for the standard ADM. Additionally, a comparative
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analysis will be conducted to evaluate the accuracy and efficiency of the proposed approach. The
primary advantage of the proposed modification lies in its high level of accuracy, along with fewer
computational steps and reduced complexity in the calculations.

The organization of the manuscript is as follows: Section 2 recalls some basics on fractional calculus
and formulation and basic features of the Taylor series and orthogonal polynomials, Section 3 outlines
the modified approaches to the fractional differential equations, Section 4 applies the constructed
scheme on certain test models, while Section 5 presents some concluding notes.

2. Main concepts and theorems

In the current section, we present some definitions and properties of the fractional calculus. Further,
we discuss the formulation and basic features of the Taylor series and orthogonal polynomials.

2.1. Basic definitions and properties of the fractional calculus

Definition 2.1. For a function y(x) ∈ C([a, b]) and a < x < b, the Riemann-Liouville fractional integral
operator of order α > 0 is defined as [1, 2]

Iαa y(x) =
1

Γ(α)

∫ x

a
y(t)(x − t)α−1dt. (2.1)

Note from the above that for α = 0, we have I0
ay(x) = y(x), which is the identity operator. Additionally,

when α ∈ N, then Iαa y(x) coincides with that classical integral.

Definition 2.2. For y(x) ∈ C([a, b]), the Caputo fractional derivative of order α > 0 is defined by [1,2]

Dα
∗y(x) =

Im−αy(m)(x), m − 1 < α < m,
dm

dtm y(t), α = m.
(2.2)

In the following, we will outline some important properties for the fractional differential and integral
operators based on the aforementioned definitions [1, 2].

i)
Iαa Iβay(x) = Iα+βy(x), α, β ≥ 0. (2.3)

ii)

Iαa Dα
∗y(x) = y(x) −

m−1∑
k=0

y(k)(0+)
xk

Γ(k + 1)
, (2.4)

where m − 1 < α ≤ m.
iii)

Iαa xn =
Γ(n + 1)

Γ(α + n + 1)
xn+α, x > 0, (2.5)

where m − 1 < α ≤ m, n > −1.
iv)

Dα
∗C = 0, where C is a real constant. (2.6)
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v).

Dα
∗ xn =

 0, n < m − 1,
Γ(n+1)

Γ(n+1−α) xn−α, n ≥ m − 1.
(2.7)

In this study, we are solving fractional differential equations in the Caputo sense. We have chosen
the Caputo definition to solve the fractional differential equations because it allows us to obtain a unique
and exact solution by specifying additional initial conditions for the fractional equation. The Caputo
definition is widely accepted as it enables defining initial conditions related to the integer derivatives of
the derived functions in the considered models. It is worth noting that many studies have extensively
explored the geometric interpretation of fractional derivatives.

2.2. The structure and fundamental characteristics of the Taylor series and orthogonal polynomials

In this study, we focus on the function g(x), referred to as the “source term”. Our goal is to
approximate this term using various methods to reduce computational complexity and simplify the
solution process. The significance of orthogonal functions in estimation theory and numerical methods
is well known. Therefore, these functions and polynomials are utilized in this study to further enhance
the accuracy of the standard Adomian decomposition method (ADM). We begin by applying the Taylor
series expansion to the source term g(x), for an arbitrary positive integer l, as follows:

gTaylor(x) ≈
l−1∑
k=0

g(k)(0)
k!

xk. (2.8)

Thus, in the subsequent sections, we have developed a series of Adomian modification methods using
orthogonal polynomials. In particular, we employed orthogonal polynomials such as Legendre and the
first and second kinds of Chebyshev polynomials.

(1) Chebyshev’s polynomials of the first kind
The first kind of Chebyshev polynomial Tk(x) expanding g(x) is

gT (x) ≈
l−1∑
k=0

akTk(x), (2.9)

where 
T0(x) = 1,
T1(x) = x,

T2(x) = 2x2 − 1, and in general,
Tk+1(x) = 2xTk − Tk−1, k ≥ 1,

(2.10)

and

a0 =
1
π

∫ 1

−1

g(0.5x + 0.5)
√

1 − x2
T0(x)dx, (2.11)

ai =
2
π

∫ 1

−1

g(0.5x + 0.5)
√

1 − x2
Ti(x)dx. (2.12)
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(2) Chebyshev’s polynomials of the second kind
Similarly, we employ Chebyshev polynomials of the second kind to approximate the source
term g(x), rather than using Chebyshev polynomials of the first kind, as shown below:

gU(x) ≈
l−1∑
k=0

bkUk(x), (2.13)

where 
U0(x) = 1,
U1(x) = 2x,

U2(x) = 4x2 − 1, and in general,
Uk+1(x) = 2xUk − Uk−1, k ≥ 1,

(2.14)

and

bk =
2
π

∫ 1

−1
g(0.5x + 0.5)

√
1 − x2Uk(x)dx. (2.15)

Finally, to introduce a modification method utilizing Legendre polynomials, we represent the
source term g(x) as a series expansion of Legendre polynomials as follows.

(3) Legendre’s polynomials

gP(x) ≈
l−1∑
k=0

ckPk(x), (2.16)

where 

P0(x) = 1,
P1(x) = −x + 1,
P2(x) = 3

2 x2 − 1
2 ,

P3(x) = 5
2 x3 − 3

2 x,
...

(2.17)

and

ck =
2k + 1
π

∫ 1

−1
g(0.5x + 0.5)Pk(x)dx. (2.18)

3. Modified Adomian decomposition method

This section introduces modified Adomian decomposition methods with some orthogonal
polynomials for addressing initial-value problems (IVPs) of nonhomogeneous fractional differential
equations.

We consider the initial-value problem (IVP) for a nonlinear fractional differential equation as shown
below:

Dα
∗y(x) + Ry(x) + Ny(x) = g(x), α > 0. (3.1)

yk(0) = ck, k = 0, 1, 2, ...,m − 1, m − 1 < α < m.

In the above equation, y(x) is the unknown function, Dα
∗ is the Caputo fractional derivative operator of

high order α, which is easily invertible, N is the nonlinear operator, R is the remaining linear operator,
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which might include other Caputo fractional derivative operators Dv
∗ (v < α), and g is the given source

function.
To solve the above initial-value problem (IVP), the approach involves applying the operator Iα on

both sides of (3.1), which is indeed the inverse operator of Dα
∗ , and further make use of (2.4) to obtain

Iα[Dα
∗y(x) + Ry(x) + Ny(x)] = Iα[g(x)]. (3.2)

y(x) =

m−1∑
k=0

ck
xk

k!
+ [Iαg(x)] − [IαRy(x)] − [IαNy(x)]. (3.3)

Alternatively, by expressing the latter equation in accordance with the Adomian decomposition
method, we arrive at the following formulation:

∞∑
n=0

yn(x) =

m−1∑
k=0

ck
xk

k!
+ [Iαg(x)] − [IαR

∞∑
n=0

yn(x)] − [Iα
∞∑

n=0

An(x)], (3.4)

where the An’s are the Adomian polynomials, which are to be computed using the following compacted
formula:

An =
1
n!

dn

dλn

N  ∞∑
i=0

λiyi


λ=0

, n = 0, 1, 2, . . . .

The recurrence relation for y(x) can be established by simply defining: y0(x) =
∑m−1

k=0 ck
xk

k! + Iα[g(x)],
yn(x) = −IαR[yn−1(x)] − Iα[An−1], n ≥ 1.

(3.5)

This approach follows the structure outlined below, resulting in the corresponding recursive solution.

(1) Modification method via Taylor’s series y0(x) =
∑m−1

k=0 ck
xk

k! + Iα[
∑l−1

k=0
g(k)(0)

k! xk],
yn(x) = −IαR[yn−1(x)] − Iα[An−1], n ≥ 1.

(3.6)

(2) Modification method via the first kind of Chebyshev’s polynomials y0(x) =
∑m−1

k=0 ck
xk

k! + Iα[
∑l−1

k=0 akTk(x)],
yn(x) = −IαR[yn−1(x)] − Iα[An−1], n ≥ 1.

(3.7)

(3) Modification method via the seconed kind of Chebyshev’s polynomials y0(x) =
∑m−1

k=0 ck
xk

k! + Iα[
∑l−1

k=0 bkUk(x)],
yn(x) = −IαR[yn−1(x)] − Iα[An−1], n ≥ 1.

(3.8)

(4) Modification method via Legendre’s polynomials y0(x) =
∑m−1

k=0 ck
xk

k! + Iα[
∑l−1

k=0 ckPk(x)],
yn(x) = −IαR[yn−1(x)] − Iα[An−1], n ≥ 1.

(3.9)

Considering the rapid convergence of the decomposition series, it will be demonstrated through a
representative example that only a small number of terms are needed to achieve an accurate solution.
Subsequently, a comparison will be made between the approximate y(x) and those derived from Taylor
expansion, Chebyshev expansion, and Legendre expansion. This comparison aims to validate both the
accuracy of the obtained solution and the efficacy of the proposed method.
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Algorithm 1 Coding algorithm for the modification method of the ADM
1: Input: Define the problem and the source term g(x).
2: Step 1: Apply the operator Iα on both sides of the problem.
3: Step 2: Expand g(x) using a Taylor series or using Legendre and Chebyshev polynomials.
4: Step 3: Apply the Adomian decomposition method (ADM) for further modification.
5: Step 4: Derive the recursive solution based on the approximation.
6: Step 5: Compute the numerical results.
7: Output: Recursive solution to the problem.

4. Numerical applications

This section makes use of some test IVPs to ascertain the effectiveness of the proposed recursive
schemes numerically for the classes of the fractional differential equations. All calculations are
performed, and the plots are generated by using Maple 22 with 8 digits precision.

Example 4.1. Consider the following inhomogeneous fractional differential equation [39]:

Dα
∗y(x) + y(x) = sin(x), y(0) = 0. (4.1)

0 < α ≤ 1, x ∈ [0, 1].

The exact solution of the above problem when α = 1 is

y(x) =
−1
2

cos(x) +
1
2

sin(x) +
1
2

e−x. (4.2)

In the above equation, y(x) is the unknown function, Dα
∗ is the Caputo fractional derivative operator

of high order α, and g(x) = sin(x).
To solve the above IVP, we apply the operator Iα to both sides of the IVP to get:

Iα[Dα
∗y(x)] + Iα[y(x)] = Iα[sin(x)], (4.3)

y(x) − y(0) + Iα[y(x)] = Iα[sin(x)]. (4.4)

Applying the standard Adomian decomposition method yields the following result:
∞∑

n=0

yn(x) + Iα[
∞∑

n=0

yn(x)] = Iα[sin(x)]. (4.5)

The recurrence relation for y(x) can be established by simply defining:y0(x) = Iα[sin(x)],
yn(x) = −Iα[yn−1(x)], ∀n ≥ 1.

(4.6)

It is essential to implement the suggested modifications while dealing with the complex source term
associated with the sin(x) term in computations. It is important to recognize that directly applying
the ADM has certain disadvantages, such as a large computation size, extended computation time,
and complicated computation of the remaining terms since it relies on the first term. Considering the
preceding discussion, we propose the following formulations to relieve these issues.
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• The expansion of g(x) = sin(x) using the Taylor series l = 6 isy0(x) = Iα[
∑5

k=0
g(k)(0)

k! xk] = Iα[x − 1
6 x3],

yn(x) = −Iα[yn−1(x)], ∀n ≥ 1,
(4.7)

such that upon summing the above components yields the following series solution:

yTaylor(x) =
xα+1

Γ(α + 2)
−

xα+3

Γ(α + 4)
+

x2α+1

Γ(2α + 2)
+ . . . (4.8)

• The expansion of g(x) = sin(x) using the first kind of Chebyshev polynomials l = 6 is
y0(x) = Iα[

∑5
k=0 akTk(x)]

= Iα[3.0908 × 10−7 + 0.99997898x + 0.0023523x2 − 0.16761545x3 + 0.001633897x4

+0.0072373478x5],
yn(x) = −Iα[yn−1(x)], ∀n ≥ 1,

(4.9)
such that their summation results in

yT (x) =
3.0908 × 10−7xα

Γ(α + 1)
+

0.99997898xα+1

Γ(α + 2)
+

0.0047046xα+2

Γ(α + 3)
+ . . . (4.10)

• The expansion of g(x) = sin(x) using the second kind of Chebyshev polynomials l = 6 is
y0(x) = Iα[

∑5
k=0 bkUk(x)]

= Iα[1.00504 × 10−6 + 0.99996781x + 0.00028067x2 − 0.16767393x3 + 0.001648541x4

+0.0072481459x5],
yn(x) = −Iα[yn−1(x)], ∀n ≥ 1,

(4.11)
which results in the subsequent series solution:

yU(x) =
1.00504 × 10−6xα

Γ(α + 1)
+

0.99996781xα+1

Γ(α + 2)
+

0.00056134xα+2

Γ(α + 3)
+ . . . (4.12)

• The expansion of g(x) = sin(x) using Legendre polynomials l = 6 is
y0(x) = Iα[

∑5
k=0 ckPk(x)]

= Iα[6.6871 × 10−7 + 0.99997284x + 0.0002611x2 − 0.16764828x3 + 0.00164224x4

+0.007243161x5],
yn(x) = −Iα[yn−1(x)], ∀n ≥ 1,

(4.13)
that sums to the following:

yP(x) =
6.6871 × 10−7xα

Γ(α + 1)
+

0.99997284xα+1

Γ(α + 2)
+

0.0005222xα+2

Γ(α + 3)
+ . . . (4.14)
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Additionally, in the following Table 1, we present an analysis of the simulated error difference for
the orthogonal polynomial with n = 5, compared to the exact solution of the problem with α = 1.
In addition, we have visually represented the obtained solution for the IVP in the Figure 1(a)–(e),
showcasing the graphical visualization for various values of α.

Table 1. Comparison of the proposed modified ADM’s solution to the exact solution for
Example (4.1).

x |exact − yTaylor| |exact − yP(x)| |exact − yT (x)| |exact − yU(x)|
0 0 0 0 0
0.2 9.3 ×10−8 1.9×10−8 2.0×10−8 1.3 ×10−8

0.4 5.373 ×10−6 9.0×10−9 1.4 ×10−8 8.0 ×10−9

0.6 5.965×10−5 4.3 ×10−7 4.2 ×10−7 4.2 ×10−7

0.8 3.2628 ×10−4 3.76 ×10−6 3.77 ×10−6 3.76 ×10−6

1 1.21277 ×10−3 2.2040 ×10−5 2.2030 ×10−5 2.201×10−5
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(a) Exact and approximate solution
by the ADM with the Taylor series.

(b) Exact and approximate solution by
the ADM with Legendre polynomials.

(c) Exact and approximate solution
by the ADM with the first kind of
Chebyshev polynomials.

(d) Exact and approximate solution
by the ADM with the second kind
of Chebyshev polynomials.

(e) The absolute error between the exact
solution and proposed modified ADM.

Figure 1. The exact solution and proposed modified ADM of Example (4.1) for different
values of α.

Example 4.2. Let us make consideration of the nonlinear inhomogeneous fractional IVP as
follows [40]:

Dα
∗y(x) + 2y(x) − y3(x) = sin(x) cos2(x), y(0) = 0, y′(0) = 1. (4.15)

0 < α ≤ 2, x ∈ [0, 1].

The exact solution of the above problem when α = 2 is

y(x) = sin(x). (4.16)

In the above equation, y(x) is the unknown function, Dα
∗ is the Caputo fractional derivative operator

of high order α, y3(x) is a nonlinear term, and g(x) = sin(x) cos2(x).
To solve the above IVP, we apply the operator Iα to both sides of the IVP to get:

Iα[Dα
∗y(x)] + Iα[2y(x)] − Iα[y3(x)] = Iα[sin(x) cos2(x)], (4.17)

y(x) − y(0) − y′(0)x + Iα[2y(x)] − Iα[y3(x)] = Iα[sin(x) cos2(x)]. (4.18)
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Applying the standard Adomian decomposition method yields the following result:

∞∑
n=0

yn(x) − x + Iα[2
∞∑

n=0

yn(x)] − Iα[
∞∑

n=0

An] = Iα[sin(x) cos2(x)], (4.19)

where An are the Adomian polynomials for nonlinear term y3(x) which when computed iteratively takes
the following form:

A0 = y3
0,

A1 = 3(y0)2y1,

A2 = 3(y0)2y2 + 3y2
1y0,

A3 = 3(y0)2y3 + 6y0y1y2 + y3
1,

...

(4.20)

The recurrence relation for y(x) can be established by simply defining:y0(x) = x + Iα[sin(x) cos2(x)],
yn(x) = −Iα[2yn−1(x)] + Iα[An−1(x)], ∀n ≥ 1.

(4.21)

To simplify the complexity of g(x) = sin(x) cos2(x), we recommend using the following formulations:

• The expansion of g(x) = sin(x) cos2(x) using the Taylor series l = 6 isy0(x) = x + Iα[
∑5

k=0
g(k)(0)

k! xk] = x + Iα[x − 7
6 x3],

yn(x) = −Iα[2yn−1(x)] + Iα[An−1(x)], ∀n ≥ 1,
(4.22)

leading to the following series solution:

yTaylor(x) =
xα+1

Γ(α + 2)
−

7xα+3

Γ(α + 4)
+

x2α+1

Γ(2α + 2)
+ . . . (4.23)

• The expansion of g(x) = sin(x) cos2(x) using the first kind of Chebyshev polynomials l = 6 is
y0(x) = x + Iα[

∑5
k=0 akTk(x)]

= x + Iα[0.0001117718 + 0.99203869x + 0.09116705x2 − 1.5421702x3 + 0.67021928x4

+0.034394566x5],
yn(x) = −Iα[2yn−1(x)] + Iα[An−1(x)], ∀n ≥ 1,

(4.24)
that sums to the following:

yT (x) =
0.0001117718xα

Γ(α + 1)
+

0.99203869xα+1

Γ(α + 2)
+

0.18233410xα+2

Γ(α + 3)
+ . . . (4.25)
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• The expansion of g(x) = sin(x) cos2(x) using the second kind of Chebyshev polynomials l = 6 is
y0(x) = x + Iα[

∑5
k=0 bkUk(x)]

= x + Iα[0.0003936422 + 0.9875480x + 0.10989235x2 − 1.570291x3 + 0.68366181x4

+0.034844186x5],
yn(x) = −Iα[2yn−1(x)] + Iα[An−1(x)], ∀n ≥ 1,

(4.26)
that leads to the following series solution:

yU(x) =
0.0003936422xα

Γ(α + 1)
+

0.9875480xα+1

Γ(α + 2)
+

0.21978470xα+2

Γ(α + 3)
+ . . . (4.27)

• The expansion of g(x) = sin(x) cos2(x) using Legendre polynomials l = 6 is
y0(x) = x + Iα[

∑5
k=0 ckPk(x)]

= x + Iα[0.0002485684 + 0.98967633x + 0.1012779x2 − 1.5574782x3 + 0.6775396x4

+0.034636179x5],
yn(x) = −Iα[2yn−1(x)] + Iα[An−1(x)], ∀n ≥ 1,

(4.28)
which totals to the following:

yP(x) =
0.0002485684xα

Γ(α + 1)
+

0.98967633xα+1

Γ(α + 2)
+

0.2025558xα+2

Γ(α + 3)
+ . . . (4.29)

In the following Table 2, we present an analysis of the simulated error difference for the orthogonal
polynomial with n = 5, compared to the exact solution of the problem with α = 2. Further, we
graphically visualize the obtained solution for the IVP in Figure 2(a)–(e), showcasing the various
visualizations for different values of α.

Based on the provided illustration and the outcomes obtained through analyses and comparisons,
we can conclude that incorporating orthogonal polynomials such as Chebyshev, Legendre, and Taylor
series can significantly enhance the performance of the ADM. Comparison between the standard
ADM and Taylor series with Legendre and Chebyshev polynomials shows that the latter provide more
accurate estimations.

Table 2. Comparison of the proposed modified ADM’s solution to the exact solution for
Example (4.2).

x |exact − yTaylor| |exact − yP(x)| |exact − yT (x)| |exact − yU(x)|
0 0 0 0 0
0.2 1.54 ×10−7 2.447737×10−7 9.41263×10−7 7.65213 ×10−7

0.4 1.93662 ×10−5 1.517810×10−7 2.74701 ×10−7 1.62808 ×10−6

0.6 3.21843×10−4 1.600035 ×10−7 5.02968 ×10−7 2.27452 ×10−6

0.8 2.32654×10−3 3.882715 ×10−7 1.81022×10−6 2.5491 ×10−6

1 1.06477 ×10−2 7.837075 ×10−6 9.06708 ×10−6 4.60779×10−6
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(a) Exact and approximate solution by the
ADM with the Taylor series.

(b) Exact and approximate solution by the
ADM with Legendre polynomials.

(c) Exact and approximate solution by the
ADM with the first kind of Chebyshev
polynomials.

(d) Exact and approximate solution by the
ADM with the second kind of Chebyshev
polynomials.

(e) The absolute error between the exact
solution and proposed modified of ADM.

Figure 2. The exact solution and proposed modified ADM of Example (4.2) for different
values of α.

AIMS Mathematics Volume 9, Issue 11, 30548–30571.



30561

4.1. Special application

Consider the fractional order forced Duffing-van der Pol oscillator equation as follows

Dα
∗y(x) − µ(1 − y2(x))y′(x) + ay(x) + by3(x) = f cos(ωx), y(0) = 1, y′(0) = 0. (4.30)

1 < α ≤ 2, x ∈ [0, 1].

• (Single-well a > 0, b > 0). a = b = 0.5, µ = 0.1, f = 0.5, and ω = 0.79.
• (Double-well a < 0, b > 0). a = −0.5, b = 0.5, µ = 0.1, f = 0.5, and ω = 0.79.
• (Double-hump a > 0, b < 0). a = 0.5, b = −0.5, µ = 0.1, f = 0.5, and ω = 0.79.

To solve Eq (4.30) using the modification method of the ADM, we apply the previously outlined
algorithm as follows:

y(x) − 1 − Iα[µy′(x)] + Iα[y2(x)y′(x)] + Iα[ay(x)] + Iα[by3(x)] = Iα[ f cos(ωx)], (4.31)

such that when the ADM is deployed reveals
∞∑

n=0

yn(x)−1−Iα
[
µ

∞∑
n=0

y′n(x)
]
−Iα

[ ∞∑
n=0

An(x)
]
+Iα

[
a
∞∑

n=0

yn(x)
]
+Iα

[
b
∞∑

n=0

Bn(x)
]

= Iα
[

f cos(ωx)
]
, (4.32)

where An and Bn are Adomian polynomials corresponding to the nonlinear terms y2(x)y′(x) and y3(x)
respectively, defined as follows:

A0 = y0(x)2
(

d
dx

y0(x)
)
,

A1 = 2y0(x)
(

d
dx

y0(x)
)

y1(x) + y0(x)2
(

d
dx

y1(x)
)
,

A2 = y1(x)2
(

d
dx

y0(x)
)

+ 2y0(x)
(

d
dx

y1(x)
)

y1(x) + 2y0(x)
(

d
dx

y0(x)
)

y2(x) + y0(x)2
(

d
dx

y2(x)
)
,

...

(4.33)

B0 = y0(x)3 ,

B1 = 3 · y0(x)2
· y1(x) ,

B2 = 3 · y0(x) · y1(x)2 + 3 · y0(x)2
· y2(x) ,

...

(4.34)

Moreover, the formal recursive relationship for the governing fractional IVP is obtained as follows:
y0(x) = 1 + Iα

[
f cos(ωx)

]
,

yn(x) = Iα
[
µy′n−1(x)

]
− Iα

[
An−1(x)

]
− Iα

[
ayn−1(x)

]
− Iα

[
bBn−1(x)

]
, n ≥ 1.

(4.35)

In the subsequent discussion, to avoid the complexity of calculating the source term f cos(ωx), we
will apply the proposed modification methods to solve the governing equation of the forced Duffing-
van der Pol oscillator. We will first introduce the classical Taylor series approach, followed by the
proposed schemes. The solution will be represented based on the respective modifications as follows:
yTaylor(x) for the Taylor series expansion, yP(x) for the Legendre series expansion, and yT (x) and yU(x)
for the first and second kind of Chebyshev series expansion.
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4.1.1. Single-well situation

The recursive formula for the fractional problem (4.30) in this case is given by:
y0(x) = 1 + Iα

[
1
2 cos(0.79x)

]
,

yn(x) = Iα
[
0.1y′n−1(x)

]
− Iα

[
An−1(x)

]
− Iα

[
1
2yn−1(x)

]
− Iα

[
1
2 Bn−1(x)

]
, n ≥ 1.

(4.36)

• Modification method via Taylor’s series
The source term g(x) = 1

2 cos(0.79x) will be expanded for l = 6 in the following manner:

gTaylor(x) =
1
2
− 0.156025000x2 + 0.00811460020x4 + O

(
x6

)
. (4.37)

This yields the subsequent iterative components.

y0(x) = 1 + Iα
[1
2
− 0.156025000x2 + 0.00811460020x4

]
,

y1(x) = Iα
[
0.1y′0(x)

]
− Iα

[
A0(x)

]
− Iα

[1
2

y0(x)
]
− Iα

[1
2

B0(x)
]
,

...

(4.38)

such that upon summing the above components yields the following series solution:

yTaylor = 1 +
xα

2Γ(α + 1)
−

0.312050000x2+α

Γ(α + 3)
+

0.1947504048x4+α

Γ(α + 5)
+ . . . (4.39)

• Modification method via Chebyshev’s polynomials of the first kind
We Proceed by expanding the source term g(x) in the following manner:

gT (x) = 0.500000002 − 5.3 × 10−8x − 0.156023884x2 − 7.0081 × 10−6x3

+ 0.00813387558x4 − 0.000025329921x5 − 0.000154945607x6.
(4.40)

Therefore, the solution components are as follows:

y0(x) = 1 + Iα
[
gT (x)

]
,

y1(x) = Iα
[
0.1y′0(x)

]
− Iα

[
A0(x)

]
− Iα

[1
2

y0(x)
]
− Iα

[1
2

B0(x)
]
,

...

(4.41)

which results in the subsequent series solution:

yT (x) = 1 +
0.500000002xα

Γ(α + 1)
−

5.3 × 10−8xα+1

Γ(α + 2)
−

0.312047768x2+α

Γ(3 + α)
+ . . . (4.42)

• Modification method via Chebyshev’s polynomials of the second kind
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We begins by expressing the source term g(x) in the following manner:

gU(x) = 0.500000004 − 1.30 × 10−7x − 0.156023427x2 − 8.0266 × 10−6x3

+ 0.00813475220x4 − 0.000025461710x5 − 0.000155053667x6.
(4.43)

This gives the following iterative solutions:

y0(x) = 1 + Iα
[
gU(x)

]
,

y1(x) = Iα
[
0.1y′0(x)

]
− Iα

[
A0(x)

]
− Iα

[1
2

y0(x)
]
− Iα

[1
2

B0(x)
]
,

...

(4.44)

that sums to the following:

yU(x) = 1 +
0.500000004xα

Γ(α + 1)
−

1.3 × 10−7xα+1

Γ(α + 2)
−

0.312046854x2+α

Γ(3 + α)
+ . . . (4.45)

• Modification method via Legendre’s polynomials
Now, the expansion of the source term g(x) using Legendre polynomials gives:

gP(x) = 0.500000004 − 1.43 × 10−7x − 0.156023485x2 − 7.7201 × 10−6x3

+ 0.00813440004x4 − 0.000025402532x5 − 0.000155003233x6.
(4.46)

This gives the following iterative solutions:

y0(x) = 1 + Iα
[
gP(x)

]
,

y1(x) = Iα
[
0.1y′0(x)

]
− Iα

[
A0(x)

]
− Iα

[1
2

y0(x)
]
− Iα

[1
2

B0(x)
]
,

...

(4.47)

that sums to the following:

yP(x) = 1 +
0.500000004xα

Γ(α + 1)
−

1.43 × 10−7xα

Γ(α + 1)
−

0.31204696x2+α

Γ(3 + α)
+ . . . (4.48)

4.1.2. Double-well situation

The recursive formula for the fractional problem (4.30) in this case is given by:
y0(x) = 1 + Iα

[
1
2 cos(0.79x)

]
,

yn(x) = Iα
[
0.1y′n−1(x)

]
− Iα

[
An−1(x)

]
+ Iα

[
1
2yn−1(x)

]
− Iα

[
1
2 Bn−1(x)

]
, n ≥ 1.

(4.49)

Therefore, without further details, we provide the corresponding solution by applying the proposed
modification methods for l = 6, following the same procedure as in the single-well situation, as outlined
below.

yTaylor = 1+
xα

2Γ(α + 1)
−

0.312050000x2+α

Γ(α + 3)
+

0.1947504048x4+α

Γ(α + 5)
−

2.60389834 × 10−14x6+α

Γ(7 + α)
+. . . (4.50)
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yT (x) = 1 +
0.500000002xα

Γ(α + 1)
−

5.3 × 10−8xα+1

Γ(α + 2)
−

0.312047768x2+α

Γ(3 + α)
−

4.803621032 × 10−10x4+α

Γ(5 + α)
. . .

(4.51)

yU(x) = 1 +
0.500000004xα

Γ(α + 1)
−

1.3 × 10−7xα+1

Γ(α + 2)
−

0.312046854x2+α

Γ(3 + α)
+

4.806971329 × 10−10x4+α

Γ(3 + α)
+ . . .

(4.52)

yP(x) = 1+
0.500000004xα

Γ(α + 1)
−

1.43 × 10−7xα

Γ(α + 1)
−

0.31204696x2+α

Γ(3 + α)
+

4.805407763 × 10−10x4+α

Γ(5 + α)
+. . . (4.53)

4.1.3. Double-hump situation

The recursive formula for the fractional problem (4.30) in this case is given by:
y0(x) = 1 + Iα

[
1
2 cos(0.79x)

]
,

yn(x) = Iα
[
0.1y′n−1(x)

]
− Iα

[
An−1(x)

]
− Iα

[
1
2yn−1(x)

]
+ Iα

[
1
2 Bn−1(x)

]
, n ≥ 1.

(4.54)

Furthermore, without loss of generality, using the same approach as in the above situations, we present
the corresponding solutions by applying the proposed modification methods for l = 6.

yTaylor = 1 +
xα

2Γ(α + 1)
−

0.312050000x2+α

Γ(α + 3)
−

8.249652602 × 10−6x3+α

Γ(4 + α)

+
0.1947504048x4+α

Γ(α + 5)
−

2.60389834 × 10−14x6+α

Γ(7 + α)
+ . . .

(4.55)

yT (x) = 1 +
0.500000002xα

Γ(α + 1)
−

5.3 × 10−8xα+1

Γ(α + 2)
−

0.312047768x1+α

Γ(2 + α)
−

0.001388888891x2+α

Γ(3 + α)

+
0.0008680555500x2+α

Γ(3 + α)
−

4.803621032 × 10−10x4+α

Γ(5 + α)
+ . . .

(4.56)

yU(x) = 1 +
0.500000004xα

Γ(α + 1)
−

1.3 × 10−8xα+1

Γ(α + 2)
−

0.312047768x1+α

Γ(2 + α)
−

0.001388888891x2+α

Γ(3 + α)

+
0.0008680555792x2+α

Γ(3 + α)
−

4.8036971329 × 10−10x4+α

Γ(5 + α)
+ . . .

(4.57)

yP(x) = 1 +
0.500000004xα

Γ(α + 1)
−

1.43 × 10−7xα

Γ(α + 1)
−

0.31204696x2+α

Γ(3 + α)
−

0.001388888913x1+α

Γ(α + 2)
+

+
0.0008680555792x2+α

Γ(3 + α)
+

4.805407763 × 10−10x4+α

Γ(5 + α)
+ . . .

(4.58)

The results obtained using the modification method of the ADM with l = 6 for three different
scenarios (single-well, double-well, and double-hump) are presented in Tables 4, 6, and 8, respectively.
In this analysis, we set the fractional order of the problem to α = 2. The numerical results
are compared with those from the variational iteration method (VIM) [41], the ultraspherical
wavelets method (UWM) [42], the fourth-order Runge-Kutta (RK) method, and Bernoulli wavelet
method (BWM) [43], see Tables 3, 5, and 7, respectively. In addition, CPU times of the presented
method are listed in Tables 4, 6, and 8. Figure 3 shows the obtained numerical solutions by the
presented modification method of the ADM.

AIMS Mathematics Volume 9, Issue 11, 30548–30571.



30565

Table 3. Single-well situation: Comparison of numerical solutions for α = 2.

x VIM UWM RK-4 BWM
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 0.99750286 0.99750276 0.99750272 0.99750285
0.2 0.99004534 0.99004513 0.99004504 0.99004516
0.3 0.97772778 0.97772579 0.97772567 0.97772579
0.4 0.96071284 0.96070262 0.96070236 0.96070247
0.5 0.93922114 0.93918360 0.93918299 0.93918309
0.6 0.91352389 0.91341578 0.91341497 0.913415063
0.7 0.88393496 0.88367502 0.88367344 0.88367350
0.8 0.85080112 0.85052195 0.85024907 0.85024912
0.9 0.81449135 0.81343957 0.81343631 0.81343635
CPU time – – – 0.047

Table 4. Single-well situation: Comparison of the modification method for α = 2.

x yTaylor yT (x) yU(x) yP(x)
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 0.997511148 0.997511148 0.997511148 0.997511148
0.2 0.990111067 0.990111067 0.990111067 0.990111067
0.3 0.977945843 0.977945843 0.977945842 0.977945843
0.4 0.961217057 0.961217047 0.961217046 0.961217047
0.5 0.940171867 0.940171858 0.940171846 0.940171859
0.6 0.915091741 0.915091701 0.915091690 0.915091693
0.7 0.886280168 0.886280013 0.886279999 0.886280002
0.8 0.854049540 0.854049049 0.854049037 0.854049041
0.9 0.818704518 0.818703259 0.818703244 0.818703257
CPU time 0.0489 0.0696 0.06844 0.0781

Table 5. Double-well situation: Comparison of numerical solutions for α = 2.

x VIM UWM RK-4 BWM
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 1.00249660 1.00249669 1.00249670 1.00249660
0.2 1.00994530 1.00994542 1.00994545 1.00994536
0.3 1.0222113 1.02222174 1.02222179 1.02222170
0.4 1.03911114 1.03911446 1.03911459 1.03911450
0.5 1.06030866 1.06032214 1.06032231 1.06032223
0.6 1.08540584 1.08544887 1.08544906 1.08544898
0.7 1.11388470 1.11400072 1.11400108 1.11400100
0.8 1.14510669 1.14538393 1.14538468 1.14538460
0.9 1.17830101 1.17890570 1.17890664 1.17890656
CPU time – – – 0.062
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Table 6. Double-well situation: Comparison of the modification method for α = 2.

x YTaylor yT (x) yU(x) yP(x)
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 1.00248830 1.00248830 1.00248830 1.00248830
0.2 1.00987939 1.00987939 1.00987939 1.00987939
0.3 1.02200111 1.02200111 1.02200111 1.02200111
0.4 1.03859815 1.03859814 1.03859814 1.03859814
0.5 1.05932967 1.05932966 1.05932965 1.05932966
0.6 1.08376731 1.08376727 1.08376726 1.08376726
0.7 1.11139358 1.11139342 1.11139341 1.11139341
0.8 1.14160208 1.14160159 1.14160158 1.14160158
0.9 1.17369994 1.17369868 1.17369867 1.17369868
CPU time 0.0489 0.0696 0.06844 0.0781

Table 7. Double-hump situation: Comparison of numerical solutions for α = 2.

x VIM UWM RK-4 BWM
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 1.00250077 1.00250086 1.00250078 1.00250077
0.2 1.01001232 1.01001258 1.01001240 1.01001236
0.3 1.02256255 1.02256352 1.02256311 1.02256305
0.4 1.04019982 1.04020320 1.04020266 1.04020259
0.5 1.06299669 1.06300878 1.06300754 1.06300746
0.6 1.09105590 1.09109104 1.09108901 1.09108890
0.7 1.12451829 1.12460856 1.12460496 1.12460473
0.8 1.16357278 1.16377964 1.16377494 1.16377462
0.9 1.20846809 1.20890608 1.20890103 1.20890063
CPU time – – – 0.171

Table 8. Double-hump situation: Comparison of the modification method for α = 2.

x YTaylor yT (x) yU(x) yP(x)
0.0 1.00000000 1.00000000 1.00000000 1.00000000
0.1 1.00249245 1.00249245 1.00249245 1.00249245
0.2 1.00994585 1.00994585 1.00994585 1.00994585
0.3 1.02233836 1.02233836 1.02233836 1.02233836
0.4 1.03966877 1.03966876 1.03966876 1.03966876
0.5 1.06196079 1.06196078 1.06196077 1.06196078
0.6 1.08927009 1.08927005 1.08927004 1.08927004
0.7 1.12169449 1.12169433 1.12169432 1.12169432
0.8 1.15938728 1.15938678 1.15938677 1.15938677
0.9 1.20257483 1.20257354 1.20257353 1.20257354
CPU time 0.0489 0.0696 0.06844 0.0781
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(a) Single-well situation: Comparison of numerical solutions
for α = 2.

(b) Double-well situation: Comparison of numerical
solutions for α = 2.

(c) Double-hump situation: Comparison of numerical
solutions for α = 2.

Figure 3. Comparison of numerical solutions for the fractional IVP (4.30).
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5. Conclusions

This study investigates the application of the Taylor series, Legendre polynomials, and both the
first and second kinds of Chebyshev polynomials within the Adomian decomposition method (ADM)
for solving initial-value problems (IVPs) of fractional differential equations. The findings demonstrate
the efficiency and accuracy of these approaches. Additionally, the study presents several modification
methods for the ADM, highlighting the critical role of orthogonal polynomials in numerical analysis.
Among the nonlinear inhomogeneous IVPs tested, the Legendre polynomial methods exhibited the
lowest error rates. Given their computational benefits, these methods are recommended for fractional-
order IVP models in scientific and engineering applications. Furthermore, the results obtained can
be extended or generalized to various types of fractional differential equations and their associated
operators.
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