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Abstract: Tuberculosis (TB) remains one of deadly infectious diseases worldwide. Smoking habits
are a significant factor that can increase TB transmission rates, as smokers are more susceptible
to contracting TB than nonsmokers. Therefore, a control strategy that focused on minimizing TB
transmission among smokers was essential. The control of TB transmission was evaluated based
on the case detection rate. Undetected TB cases often resulted from economic challenges, low
awareness, negative stigma toward TB patients, and health system delay (HSD). In this study, we
developed a mathematical model that captured the dynamics of TB transmission specifically among
smokers, incorporating the effects of case detection. Our innovative approach lied in the integration
of smoking behavior as a key factor in TB transmission dynamics, which has been underexplored in
previous models. We analyzed the existence and stability of the TB model equilibrium based on the
basic reproduction number. Additionally, parameter sensitivity analysis was conducted to identify
the most influential factors in the spread of the disease. Furthermore, this study investigated the
effectiveness of various control strategies, including social distancing for smokers, TB screening in
high-risk populations, and TB treatment in low-income communities. By employing the Pontryagin
maximum principle, we solved optimal control problems to determine the most effective combination
of interventions. Simulation results demonstrated that a targeted combination of control measures can
effectively reduce the number of TB-infected individuals.
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1. Introduction

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, spreads through the air
and primarily affects the lungs, although it can also affect other parts of the body [1]. Most commonly,
TB damages the lungs, leading to symptoms such as chronic cough, chest pain, and coughing up blood,
which result in breathing difficulties [2]. Transmission occurs when individuals with active TB release
bacteria into the air through actions such as coughing, sneezing, or talking [3]. These airborne bacteria
can be inhaled by others, leading to new infections. TB infection can result in either latent TB, where
the bacteria remain inactive and the individual is not contagious, or active TB, where the bacteria are
active and the individual can spread the disease to others [1].

Individuals with latent TB do not exhibit symptoms and cannot transmit the infection, but they
carry a risk of developing active TB, particularly if their immune system becomes weakened [4]. In
contrast, those with active TB typically exhibit symptoms that may include prolonged cough, fever,
night sweats, and weight loss. Effective treatment requires a prolonged course of antibiotics, and the
management of TB is further complicated by the emergence of drug-resistant strains of the
bacterium [5]. Prevention strategies include vaccination with the Bacillus Calmette-Guérin (BCG)
vaccine, early detection through screening programs, and ensuring adherence to treatment protocols
to reduce transmission and prevent the development of drug resistance [6].

TB is the second most deadly infectious disease in the world. The highest number of TB cases are
reported in countries such as India, China, Indonesia, Philippines, Pakistan, Nigeria, Bangladesh, and
South Africa [1]. The impact of TB in such countries is multifaceted. Economically, TB can lead to
significant healthcare costs and loss of productivity due to illness and death. Patients often face
prolonged treatment regimens that can strain personal and public health resources. Socially, TB
patients frequently encounter stigma and social exclusion [1], which can deter individuals from
seeking timely medical intervention and support. One of the significant factors contributing to the
high transmission of TB in these communities is smoking habits. Smokers have a risk of dying from
and transmitting TB that is two times higher than that of nonsmokers [7, 8]. Mathematical modeling
predicts that smoking will result in 18 million TB events and 40 million deaths from TB worldwide
between 2010 and 2050 [9].

Efforts to control TB in these high-burden countries involve comprehensive strategies that address
both medical and social challenges. This includes widespread TB screening and vaccination
programs [10], public health campaigns to reduce smoking, and educational initiatives to reduce
stigma associated with the disease [6]. Additionally, strengthening healthcare infrastructure and
ensuring access to effective treatments are crucial to managing and reducing TB transmission. The
fight against TB is further complicated by the rise of multidrug-resistant TB (MDR-TB), which
requires more complex and expensive treatment protocols, emphasizing the need for sustained global
health efforts and funding [11].

Mathematical models have significantly contributed to understanding TB transmission dynamics
and developing control strategies. Various models have been established to better comprehend the
disease’s dynamics and the effectiveness of interventions (see, for example, [12–14] and references
therein). Liu and Zhang [15] developed a model that considers both vaccinated and treated
populations, providing insights into how vaccination and treatment strategies can influence TB
dynamics. Ullah et al. [16] discussed a model that accounts for individuals recovering after treatment,
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highlighting the importance of post-treatment recovery phases in controlling the spread of TB. Khan
et al. [17] explored TB transmission dynamics in a specific region, Khyber Pakhtunkhwa, Pakistan,
illustrating the regional variations in TB spread and the necessity for localized intervention strategies.
Furthermore, the mathematical model of the spread of TB among smokers demonstrates that the level
of smoking recruitment significantly affects the expected number of secondary infections,
emphasizing the impact of smoking on TB transmission dynamics [7]. Researchers have also
proposed optimal control strategies to assess intervention effectiveness, incorporating factors such as
vaccination, treatment, and prevention efforts [18–20].

This research introduces a novel approach by integrating smoking behavior and case detection into
a mathematical model of TB transmission, specifically focusing on high-smoking populations. Unlike
previous models that treated smoking as a secondary factor, our model centers on smoking habits as a
core element of TB transmission dynamics. The innovation lies in introducing control strategies that
target smoking behavior, such as social distancing among smokers, specialized TB screening, and
treatment in high-risk communities. We employ optimal control theory to identify the most effective
interventions, emphasizing specific strategies to reduce TB transmission rates among smokers.
Enhancing case detection rates (CDR) is critical, as the WHO reported that 39.43% of TB cases were
undetected globally in 2021, causing a significant risk for further spread. Improving CDR through
thorough examinations and financial support for treatment, particularly in low-income communities,
can encourage TB sufferers to seek and complete medical care. Our model builds on existing TB
transmission frameworks [21] by incorporating these control variables to minimize latent TB cases
and both detected and undetected active TB cases.

This paper is structured as follows: Section 2 presents the formulation of the TB model in the
smoker population. Section 3 covers basic properties, stability analysis, and parameter sensitivity
analysis of the model. Sections 4 and 5 discuss optimal control formulation and numerical simulations,
respectively. Finally, Section 6 summarizes the research conclusions.

2. Formulation of a TB model in smoker population

In this section, a mathematical model of the spread of TB among smokers with case detection is
formulated. The assumptions used for the model construction are as follows:

(1) Infection with Mycobacterium TB in the human body occurs slowly.
(2) The BCG vaccine does not provide complete protection against Mycobacterium TB infection.
(3) TB patients cannot recover without medical TB treatment.
(4) Medical TB treatment is not always successful.

The human population is divided into seven compartments, which are the nonsmoker population
(S ), the smoker population (M), the vaccinated population (V), the latent TB population (E),
undetected active TB population (I1), detected active TB population (I2), and the population who have
recovered from TB (T ). Based on the assumptions, we can set up the transmission diagram that is
shown in Figure 1.
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Figure 1. Transmission diagram. Mathematical model of the spread of TB disease among
smokers with case detection.

The defining parameters can be seen in Table 1, which are assumed constant and nonnegative.

Table 1. Parameters. Description of parameters in the model of the spread of TB disease
among smokers with case detection.

Par Description
Λ Smoking recruitment rate
ε Proportion of individuals who refuse or ignore smoking recruitment
α TB disease transmission rate
h The probability that the nonsmoker population can be infected by Mycobacterium tuberculosis
γ The probability of TB transmission by a detected active TB population
µ Natural death rate
κ BCG vaccination rates
ψ BCG vaccine effectiveness
ω The proportion of the latent TB population that develops active TB that is detected
d1 Death rate in an undetected active TB population
β The rate of development of a population of latent TB to active TB
d2 Death rate in a detected active TB population
r Medical treatment rate in the detected active TB population
δ TB reinfection rate in the population that has recovered from TB
τ Treatment rates in the medically latent TB population

From the diagram in Figure 1, transmission models can be formulated as follows:

dS
dt
= εΛ − αhS (I1 + γI2) − (µ + κ) S , (2.1)

dM
dt
= Λ − εΛ − αM (I1 + γI2) − (µ + κ) M, (2.2)

dV
dt
= κ (S + M) − α (1 − ψ) V (I1 + γI2) − µV, (2.3)

dE
dt
= α (I1 + γI2) (hS + M + (1 − ψ) V + δT ) − (τ + β + µ) E, (2.4)
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dI1

dt
= (1 − ω) βE − (µ + d1) I1, (2.5)

dI2

dt
= ωβE − (µ + d2 + r) I2, (2.6)

dT
dt
= rI2 + τE − δαT (I1 + γI2) − µT. (2.7)

The non-endemic equilibrium point for the mathematical model of the spread of TB disease among
smokers with case detection occurs if there are no active TB sufferers in a population, either detected
or undetected. Suppose the non-endemic equilibrium point for the mathematical model of the spread
of TB disease with case detection is expressed as L0. Substituting

I1 = I2 = 0

into (2.1)–(2.7) will get

L0 = (S ,M,V, E, I1, I2,T ) =
(
εΛ

µ + κ
,
Λ − εΛ

µ + κ
,

κΛ

µ (µ + κ)
, 0, 0, 0, 0

)
.

Next, we will determine the basic reproduction number (R0) which has the important role in the
disease modeling [22, 23]. The basic reproduction number (R0) can be computed using the next
generation matrix on the TB models (2.1)–(2.7). Consider the infected compartments are L, I, and T.
Using the approach in [24], the matrices F and V at disease free equilibrium are given as follows:

F =


0 αΛ(hϵµ+µ−µϵ+κ−κψ)

µ(µ+κ)
αγΛ(hϵµ+µ−µϵ+κ−κψ)

µ(µ+κ)

0 0 0
0 0 0


and

V =


τ + β + µ 0 0
− (1 − ω) β µ + d1 0
−ωβ 0 µ + d2 + r

 .
The basic reproduction number (R0) of the model is obtained through the spectral radius of the

matrix
R0 = ρ

(
FV−1

)
,

which is given by

R0 =
αΛβ (hϵµ + µ(1 − ε) + κ(1 − ψ)) ((µ + d2 + r)(1 − ω) + γω(µ + d1))

µ (µ + κ) (τ + β + µ) (µ + d1) (µ + d2 + r)
.

Furthermore, the endemic equilibrium point for the mathematical model of the spread of TB disease
among smokers with case detection is obtained when there are active TB sufferers in a population.
Suppose the endemic equilibrium point for the mathematical model of the spread of TB disease with
case detection is expressed as L1. Substituting I1 , 0 and I2 , 0 into Eqs (2.1)–(2.7) will get

L1 =
(
S ∗, M∗,V∗, E∗, I∗1, I

∗
2,T

∗) ,
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where

S ∗ =
εΛ(µ + d1)(µ + d2 + r)

αhβE∗ ((1 − ω) (µ + d2 + r) + γω (µ + d1)) + (µ + κ) (µ + d1)(µ + d2 + r)
,

M∗ =
Λ(1 − ε) (µ + d1) (µ + d2 + r)

αβE∗ ((1 − ω) (µ + d2 + r) + γω (µ + d1)) + (µ + κ) (µ + d1) (µ + d2 + r)
,

V∗ =
κ (S ∗ + M∗)

α (1 − ψ)
(
I∗1 + γI∗2

)
+ µ

,

I∗1 =
(1 − ω) βE∗

(µ + d1)
,

I∗2 =
ωβE∗

µ + d2 + r
,

T ∗ =
(µ + d1) (rωβ + τ (µ + d2 + r))

δαβE∗ ((1 − ω) (µ + d2 + r) + γω (µ + d1)) + µ (µ + d1) (µ + d2 + r)
,

and E∗ > 0 if R0 > 1.
Local stability analysis of the equilibrium point is crucial for understanding the system’s behavior

as it approaches equilibrium. In our study, we modeled the spread of TB among smokers, incorporating
case detection, and using a system of nonlinear differential equations. To analyze the stability of the
equilibrium points, we linearized the system around these points using the Jacobian matrix. The local
stability of an equilibrium point is determined by calculating the eigenvalues of the Jacobian matrix.

We specifically examined the stability of the non-endemic equilibrium point by substituting L0 into
the Jacobian matrix. The non-endemic equilibrium point is asymptotically stable if all the eigenvalues
of the Jacobian matrix have negative real parts. This condition ensures that any small perturbations
around the equilibrium point will decay over time, causing the system to return to equilibrium. The
condition is met if

R0 =
βαΛ (hεµ + µ (1 − ε) + (1 + ψ) κ) ((1 − ω) (µ + d2 + r) + ωγ (µ + d1))

(τ + β + µ) (µ + d1) (µ + d2 + r) µ (µ + κ)
< 1,

R1 =
βαΛ (hεµ + µ (1 − ε) + (1 + ψ) κ) ((1 − ω) + ωγ)

µ (µ + κ) ((µ + d1) (µ + d2 + r) + (τ + β + µ) (µ + d2 + r) + (τ + β + µ) (µ + d1))
< 1,

R2 =
βαΛ (hεµ + µ (1 − ε) + (1 + ψ) κ)

((µ + d2 + r) + (µ + d1) + (τ + β + µ) + (µ + d1 + τ + β + µ)(τ + β + µ) (µ + d1))

×
(ωγ (µ + d2 + r + τ + β + µ) + (1 − ω) (µ + d1 + τ + β + µ))

((µ + d1) (µ + d2 + r) + (τ + β + µ) (µ + d2 + r)) µ (µ + κ)
< 1.

Because R1 < R0 and R2 < R0, it can be concluded that the non-endemic equilibrium point (L0) is
asymptotically stable if R0 < 1.

The stability of the endemic equilibrium point of the mathematical model for the spread of TB
disease among smokers, incorporating case detection, was analyzed by substituting the endemic
equilibrium point L1 into the Jacobian matrix. We faced challenges due to our model yielding a
seventh-degree polynomial, which makes a detailed analytical analysis of the endemic equilibrium
extremely difficult. However, we can explore the possibility of analyzing the endemic equilibrium by
referring to Abboubakar’s work [25], which may provide insights for future work in another case.
Due to the complexity of analytically determining the eigenvalues of the Jacobian matrix for this
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nonlinear system, we employed numerical simulations to assess the stability of the endemic
equilibrium points. These simulations involved the use of phase planes to visualize the system’s
trajectories and observe their behavior around the equilibrium point. By setting specific parameter
values and initial conditions, we were able to simulate the dynamics of the TB spread model.

The parameter values and initial conditions used in these simulations are detailed in Tables 2 and 3.
We selected parameter values based on established references rather than estimating them from real
data to ensure the accuracy and reliability of our model. By using values that have been validated
and widely accepted in the literature, we can confidently build a model that accurately reflects the
dynamics of TB spread among smokers. Through this approach, we gained a deeper understanding of
the stability characteristics of the endemic equilibrium in the context of TB spread among smokers.

Table 2. Parameter value in a mathematical model of the spread of TB disease among
smokers with case detection.

Parameter Unit Value Source
Λ people/time 50 Assumed
ε - 0, 45 Assumed
α 1/time 0, 7 [26]
h - 0, 9 Assumed
γ - 0, 5 [21]
µ 1/time 0, 85 [21]
κ 1/time 0, 65 [26]
ψ - 0, 50 [26]
ω - 0, 11 [21]
d1 1/time 0, 365 [21]
d2 1/time 0, 22 [21]
r 1/time 1, 5 [21]
δ 1/time 1, 5 [21]
τ 1/time 0, 06 [7]
β 1/time 0, 17 [7]

Table 3. Initial values of the mathematical model of the spread of TB among smokers with
case detection for endemic conditions

Variable
Initial value

1 2 3
S (0) 16 35 63
M(0) 20 50 70
V(0) 30 45 55
E(0) 35 40 60
I1(0) 11 34 48
I2(0) 10 20 35
T (0) 9 15 25

The simulation was carried out over a time span from t = 0 to t = 1000. Three distinct initial
values were used in the simulation to assess the convergence of solutions from each starting point.
This approach aimed to determine whether the system consistently converges to the endemic
equilibrium point regardless of initial conditions, thereby providing a robust validation of the model’s
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stability. Each set of initial values represents different starting conditions for the compartments in the
TB spread model, allowing us to observe how the system evolves over time from various initial states.
The behavior of the trajectories from these initial values helps to illustrate the stability and potential
attractor properties of the endemic equilibrium point.

Based on Figure 2, it is seen that at the moment when the initial value is given, the population graph
tends to converge to a single point

(M; I1) = (5.56; 4.74)

which is the point of the endemic equilibrium point

L1 = (4.82; 5.7; 2.62; 39.22; 4.88; 0.28; 0.45).

In addition, based on the parameter values in Table 2, the value R0 = 3, 70 > 1.
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Figure 2. The phase field of smokers and undetected active TB population.

3. Parameter sensitivity analysis

The sensitivity analysis of parameters aims to identify which parameters significantly influence the
stability conditions of both the non-endemic and endemic equilibrium points. The magnitude of the
parameter’s influence is determined based on the sensitivity index (em). The sensitivity index (em) for
parameter m, according to Chitnis et al. [27], is formulated as follows:

em =

(
∂R0

∂m

)
m
R0
. (3.1)

The stability of the non-endemic and endemic equilibrium points in the mathematical model of TB
spread among smokers with case detection is determined by the value of R0. There are 14 parameters
that affect the value of R0, namely α,Λ, β, h, ϵ, µ, κ, ψ, ω, γ, d2, r, d1, and τ. The sensitivity indices of
these parameters and the relationship between changes in these parameters and the resulting changes
in R0 are presented in the Table 4.
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Table 4. Index of parameter sensitivity.

Parameter (p) Sensitivity index
R0 = 3, 7031

p− 10% p− 5% p+ 5% p+ 10%
α 1 3.3328 3.5180 3.8883 4.0734
Λ 1 3.3328 3.5180 3.8883 4.0734
β 0,8426 3.3861 3.5459 3.8579 4.0103
h 0,3028 3.5910 3.6471 3.7592 3.8153
ε -0,0336 3.7156 3.7094 3.6969 3.6907
µ -2,3287 4.7219 4.1707 3.3038 2.9605
d1 -0,2919 3.8146 3.7580 3.6499 3.5982
κ -0,1474 3.7602 3.7310 3.6764 3.6508
ψ -0,2859 3.8090 3.7561 3.6502 3.5972
ω -0,0917 3.7371 3.7201 3.6861 3.6692
γ 0,0284 3.6926 3.6979 3.7084 3.7136
d2 -0,0024 3.7040 3.7036 3.7027 3.7022
r -0,0166 3.7096 3.7063 3.7001 3.6973
τ -0,0556 3.7238 3.7134 3.6929 3.6827

A sensitivity index that has a positive value indicates that an increase in the parameter’s value leads
to an increase in R0. Conversely, a sensitivity index with a negative value implies that an increase in
the parameter’s value results in a decrease in R0. Understanding these relationships is crucial for
identifying which parameters most significantly impact the basic reproduction number and,
consequently, the potential for disease spread. For example, α = 1 means that if the value of α
decreases (or increases) by 10%, R0 will decrease (or increase) by 10% as well. Similarly, β = 0.8426
suggests that a 10% decrease (or increase) in β leads to an 8.4% decrease (or increase) in R0. On the
other hand, a negative sensitivity index means that an increase in the parameter value causes R0 to
decrease. For instance, ψ = −0.2859 indicates that if ψ decreases (or increases) by 10%, R0 will
increase (or decrease) by 2.8%. This analysis applies to parameters α,Λ, β, h, ϵ, µ, κ, ψ, ω, γ, d2, r, d1,

and τ.
Understanding the sensitivity index of these parameters is crucial for predicting how changes in

various factors influence the spread of TB. Parameters like α and β are directly linked to smoking
behavior, where an increase in α (indicating a higher rate of progression from latent to active TB)
and β (indicating higher transmission rates) directly increases R0, the basic reproduction number. This
increase signifies a greater potential for TB spread within the population, making it important to control
smoking to reduce these parameters.

On the other hand, parameter such as ψ, which represents vaccine effectiveness, has a negative
sensitivity index. This suggests that improving these interventions (increasing ψ) reduces R0, thereby
curbing the spread of TB. The detailed sensitivity analysis of these parameters not only highlights
the impact of smoking behavior on TB dynamics but also underscores the importance of targeted
interventions to manage and control the disease effectively. By strategically adjusting these parameters,
control strategies can be optimized to achieve a significant reduction in TB transmission, particularly
in populations with high smoking rates.

The numerical simulation results for the sensitivity of parameters α and ψ to R0 (presented in
Figure 3) align with the observed effects of smoking behavior on the spread of TB, as illustrated in the
earlier figures. Specifically, the parameter α represents the rate at which latent TB progresses to active
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TB, and as shown, increasing α raises R0, underscoring the critical role of smoking in facilitating the
transition from latent to active TB. This is consistent with the earlier findings, where higher smoking
intensity led to an increased latent TB population, which in turn can elevate the risk of these cases
becoming active, thereby driving up the basic reproduction number R0 and accelerating TB spread.
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Figure 3. Parameters sensitivity analysis for α and ψ.

Focusing on the parameters α and β, both are crucial in demonstrating how smoking behavior
influences the spread of TB. Understanding the interplay between these parameters and smoking
behavior is essential for developing strategies that can reduce R0, control TB spread, and ultimately
lead to the eradication of the disease, particularly in smoker populations. The parameter α,
representing the rate at which latent TB progresses to active TB, is directly affected by smoking
habits. As seen in the numerical simulations Figure 3a, an increase in α leads to a higher R0,
indicating that smoking accelerates the progression of latent TB to active TB, thereby increasing the
potential for TB transmission within a population.

The Figure 4 presented the influence of smoking behavior on the spread of TB, focusing on different
populations within the disease dynamics.
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Figure 4. The effect of smoking habits on (a) exposed and (b) undetected active TB
population. All parameter values are in Table 2.
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In the Figure 4a, the impact of varying levels of smoking intensity (represented by α values) on
the latent TB population (denoted as E) over a two-year period is illustrated. As smoking intensity
increases from α = 0.55 to α = 0.85, there is a noticeable rise in the peak of the latent TB population,
followed by a gradual decline. This suggests that higher smoking intensity leads to a larger latent
TB population, potentially due to the immunosuppressive effects of smoking, which could increase
susceptibility to TB infection and prolong the latent phase. This larger reservoir of latent TB cases
poses a significant risk, as more individuals are likely to progress to the infectious stage, causing the
spread of TB.

In the Figure 4b, the effect of different smoking-related transmission rates (β values) on the
undetected active TB population (I1) over the same two-year period is shown. Higher β values,
indicating increased transmission due to smoking, result in a larger undetected active TB population.
The graph shows that as β increases from 0.15 to 0.20, the peak of the undetected active TB
population also increases and occurs later, with a more prolonged decline. This indicates that smoking
not only accelerates TB transmission but also contributes to a larger pool of undetected active TB
cases, potentially making the spread of the disease in the community. This larger undetected
population indicates that smoking not only increases the likelihood of transmission but also
complicates the detection and control of active TB cases. The combination of higher α and β due to
smoking creates a scenario where TB spreads more rapidly and becomes harder to control,
highlighting the need for targeted interventions to address smoking as a significant risk factor in TB
transmission.

4. Application of optimal control

The spread of TB disease among smokers can be effectively controlled through various
interventions. In this study, we employed three control measures aimed at curbing TB incidence
within smoking populations. These controls include implementing social distancing measures (u1) to
reduce close contact and transmission, conducting targeted TB examinations (u2) among populations
at high risk of contracting TB, and providing essential TB treatment assistance (u3) to disadvantaged
communities with limited access to healthcare resources.

The mathematical model used to simulate the spread of TB disease among smokers with case
detection incorporates these control variables. By integrating these measures into the model, we can
assess their effectiveness in mitigating TB transmission and reducing the overall burden of the disease
within the smoking population. The inclusion of control variables allows us to explore the impact of
targeted interventions on disease dynamics and evaluate their potential for practical implementation in
real-world settings.

The mathematical representation of the spread of TB disease among smokers with case detection,
accompanied by the control variables, is as follows:

dS
dt
= εΛ − αhS (I1 + γI2) − (µ + κ)S , (4.1)

dM
dt
= Λ − εΛ − αM (I1 + γI2) (1 − u1) − (µ + κ) M, (4.2)

dV
dt
= κ (S + M) − α (1 − ψ) V (I1 + γI2) − µV, (4.3)
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dE
dt
= α (I1 + γI2) (hS + M (1 − u1) + (1 − ψ) V + δT ) − (τ + β + µ) E, (4.4)

dI1

dt
= (1 − ω) βE − (µ + d1) I1 − u2I1, (4.5)

dI2

dt
= ωβE − (µ + d2 + r) I2 + u2I1 − u3I2, (4.6)

dT
dt
= τE + rI2 − δαT (I1 + γI2) − µT + u3I2. (4.7)

Through numerical simulations and sensitivity analyses, we can evaluate the effectiveness of each
control measure in achieving our goal of minimizing TB incidence and improving public health
outcomes among smoking populations. This comprehensive approach shows how the importance of
different interventions in combating TB and demonstrates the significance of tailored strategies for
vulnerable populations. The performance index of the mathematical model of the spread of TB
disease among smokers with case detection accompanied by control variables is defined as follows:

MinJ (u1, u2, u3) =
∫ t f

0

(
A1E + A2I1 + A3I2 +

c1

2
(u1)2 +

c2

2
(u2)2 +

c3

2
(u3)2

)
dt,

where 0 ≤ u1, u2, u3 ≤ 1 and A1, A2, A3, c1, c2, c3 > 0. The coefficients c1, c2, c3 and A1, A2, A3

respectively are the weighting constants corresponding to each control and the weighting constants
corresponding to the minimized population E, I1 and I2. Optimal control time out is at an interval

t0 ≤ t ≤ t f

that expresses the time of observation made, which is the time when the control is given to the end time
of the control. The quadratic function of the control cost is adopted, as stated in [28–30]. The term

c1

2
(u1)2 +

c2

2
(u2)2 +

c3

2
(u2)2

represents the costs associated with the TB prevention, TB treatment, and successful TB treatment
controls, respectively.

Optimal control of the mathematical model of the spread of TB disease among smokers with case
detection is completed using the Pontryagin maximum principle method. The Hamiltonian is obtained

H = A1E + A2I1 + A3I2 +
c1

2
u2

1 +
c2

2
u2

2 +
c3

2
u2

3

+ λ1 (εΛ − αhS (I1 + γI2) − (µ + κ) S )

+ λ2 (Λ − εΛ − αM (I1 + γI2) (1 − u1) − (µ + κ) M)

+ λ3 (κ (S + M) − α (1 − ψ) V (I1 + γI2) − µV)

+ λ4 (α (I1 + γI2) (hS + M (1 − u1) + (1 − ψ) V + δT ) − (τ + β + µ) E)

+ λ5 ((1 − ω) βE − (µ + d1) I1 − u2I1)

+ λ6 (ωβE − (µ + d2 + r) I2 + u2I1 − u3I2)

+ λ7 (τE + rI2 − δαT (I1 + γI2) − µT + u3I2) .
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Optimal conditions are obtained when the Hamiltonian function satisfies the following stationary
conditions

∂H
∂u1
= 0,

∂H
∂u2
= 0,

∂H
∂u3
= 0.

So that the optimal controllers u1, u2 and u3 are obtained

u∗1 = min
(
1,max

(
0,
λ4M (I1 + γI2) − λ2αM (I1 + γI2)

C1

) )
,

u∗2 = min
(
1,max

(
0,
λ5I1−λ6I1

C2

) )
,

u∗3 = min
(
1,max

(
1,
λ7I2 − λ6I2

C3

) )
.

The state variables in u∗1, u∗2 and u∗3 are obtained by solving the state equation

ẋ =
∂H
∂ f

,

while the Lagrange multiplier for the controls u∗1, u∗2 and u∗3 is obtained by solving the Lagrange
equation

ẋ = −
∂H
∂x

.

Then, the state variable and the Lagrange multiplier are substituted into u∗. The optimal solution from
the mathematical model is determined by substituting the control u∗ into the state equation.

The controller forms of u∗1, u
∗
2 and u∗3 depend on state and costate variables. The state equations are

as follows:

dS
dt
=
∂H
∂ f1
= εΛ − αhS (I1 + γI2) − (µ + κ) S ,

dM
dt
=
∂H
∂ f2
= Λ − εΛ − αM (I1 + γI2) (1 − u1) − (µ + κ) M,

dV
dt
=
∂H
∂ f3
= κ (S + M) − α (1 − ψ) V (I1 + γI2) − µV,

dE
dt
=
∂H
∂ f4
= α (I1 + γI2) (hS + M (1 − u1) + (1 − ψ) V + δT ) − (τ + β + µ) E,

dI1

dt
=
∂H
∂ f5
= (1 − ω) βE − (µ + d1) I1 − u2I1,

dI2

dt
=
∂H
∂ f6
= ωβE − (µ + d2 + r) I2 + u2I1 − u3I2,

dT
dt
=
∂H
∂ f7
= τE + rI2 − δαT (I1 + γI2) − µT + u3I2.

(4.8)

Meanwhile, the costate equations are as follows:

λ̇1 = −
∂H
∂S
= λ2α ((I1 + γI2) (1 − u1) + µ + κ) − λ3κ − λ4α (I1 + γI2) (1 − u1) ,
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λ̇2 = −
∂H
∂M
= λ2α ((I1 + γI2) (1 − u1) + µ + κ) − λ3κ − λ4α (I1 + γI2) (1 − u1) ,

λ̇3 = −
∂H
∂V
= λ3 (α (1 − ψ) (I1 + γI2) + µ) − λ4α (I1 + γI2) (1 − ψ) ,

λ̇4 = −
∂H
∂E
= −A1 + λ4 (τ + β + µ) − λ5 (1 − ω) β − λ6ωβ − λ7τ,

λ̇5 = −
∂H
∂I1
= −A2 + λ1αhS + λ2αM (1 − u1) + λ3α (1 − ψ) V (4.9)

− λ4α (hS + M (1 − u1) + (1 − ψ) V + δT ) + λ5 (µ + d1 + u2) − λ6u2,

λ̇6 = −
∂H
∂I2
= λ1αhS γ + λ2αMγ (1 − u1) + λ3α (1 − ψ) Vγ + λ6 (µ + d2 + r + u3)

− λ4αγ (hS + M (1 − u1) + (1 − ψ) V + δT ) − λ7 (r + u3) + λ7δαTγ,

λ̇7 = −
∂H
∂T
= −λ4α (I1 + γI2) δ + λ7δα (I1 + γI2) + λ7µ.

Based on the description above, to get the values of S , M, V, E, I1, I2, and T from the optimal form
u∗1, u

∗
2, and u∗3, it is necessary to solve the nonlinear state and costate equations. The nonlinear equation

system is hard to be solved analytically, so the solutions to the equation of state are analyzed using
numerical simulations.

5. Numerical results

The state equation in the numerical simulation program for the mathematical model of the spread
of TB disease among smokers with case detection is defined as

S = y (1) , M = y (2) , V = y (3) , E = y (4) , I1 = y (5) , I2 = y (6) and T = y (7) .

The performance index is defined as a new state equation that is J = y (8) and controls u1, u2 and u3

are defined as u (1) , u (2) dan u (3) . The simulation is carried out using initial values, namely

S (t0) = 16, M (t0) = 20, V (t0) = 30, E (t0) = 35, I1 (t0) = 11, I2 (t0) = 10 and T (t0) = 9

with the start and end times, respectively, as t0 = 0 and t f = 2 in years. Defined weighting constants to
minimize the population (A) and the costs needed to apply each control (c), respectively, are

A1 = 1, A2 = 1, A3 = 1, c1 = 1, c2 = 1 and c3 = 1.

They have been standardized to 1 for the purpose of simplifying the calculations. This normalization
allows for a more straightforward analysis by eliminating the variability introduced by differing cost
magnitudes, thus focusing the analysis on the structural or relative relationships within the model.

This research distinguishes itself by directly integrating smoking behavior into the mathematical
modeling of TB transmission. By centering smoking habits in the transmission dynamics, our model
provides a more accurate representation of high-risk populations where smoking is common. This
approach enables the identification of targeted control strategies, such as social distancing among
smokers and tailored TB screening and treatment, guided by optimal control theory to find the most
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effective interventions. The improved outcomes come from directly addressing the significant role of
smoking in TB spread, offering a comprehensive framework for disease control in smoking-heavy
populations.

The optimal control simulations of TB spread among smokers with case detection highlight the
effectiveness of intervention strategies compared to scenarios without controls. Figure 5a illustrates
that control strategies u1 and u2 exhibit the most significant impact on reducing the number of latent TB
cases compared to other control strategies. This finding underscores the effectiveness of interventions
focused on social distancing (u1) and targeted TB examinations (u2) in curbing TB transmission and
preventing the progression of latent TB to active disease within the smoking population. While control
strategies involving u1 and u3 as well as u1, u2 and u3 also demonstrate notable effectiveness in reducing
the number of latent TB cases, their impact is not as pronounced as that of u1 and u2 strategies alone.
This suggests that while providing TB treatment assistance (u3) is beneficial, its effect on reducing
latent TB cases may be less noticeable by the more targeted interventions of social distancing and TB
examinations.
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Figure 5. Comparison between the number population (a) exposed, (b) undetected active
TB, and (c) detected active TB population without and with control. All parameter values
are in Table 2.

Figure 5b demonstrates that control strategies u1, u2 and u3 have the most significant impact on
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reducing the number of undetected active TB cases. This finding underscores the crucial role of
interventions such as social distancing, targeted TB examinations, and TB treatment assistance in
effectively identifying and managing active TB cases within the smoking population. The reduction in
the number of undetected active TB cases is particularly significant as it leads to an increase in the TB
CDR. A higher CDR facilitates earlier detection and treatment of TB cases, thereby preventing further
transmission of the disease within the community. By effectively identifying and treating active TB
cases, public health authorities can mitigate the spread of TB and reduce the overall burden of the
disease on the population. While control strategies involving u1 and u2 also demonstrate substantial
effectiveness in reducing the number of undetected active TB patients, their impact is not as
pronounced as that of the combined strategies including u1, u2 and u3. This suggests that while social
distancing and targeted examinations play crucial roles in TB control, the addition of TB treatment
assistance further enhances the effectiveness of control efforts, particularly in reducing undetected
active TB cases.

Figure 5c shows that the implementation of control strategies u1 and u3 together results in a
significant reduction in the number of detected active TB cases. By simultaneously reducing TB
transmission through social distancing and ensuring prompt treatment for active cases, this combined
approach proves highly effective in limiting the number of individuals suffering from active TB.

The optimal control strategies applied to the TB model demonstrate a significant reduction in the
latent, undetected active, and detected active TB populations over time. However, none of these
populations reach zero by the end of the simulation period. This outcome can be attributed to several
biological and epidemiological factors.

Complete eradication may not occur due to limited reach or adherence to control measures. Some
individuals may not fully comply with treatment programs or preventive strategies, allowing latent
or undetected infections to persist. In particular, latent TB infections (as shown in Figure 5a) are
challenging to eliminate entirely, as individuals with latent TB remain asymptomatic for long periods.
These individuals can also re-enter the infectious population if their immune system weakens over
time.

Figure 5b highlights the persistence of undetected active TB despite the application of control
interventions, indicating gaps in detection efforts. Some individuals may remain undiagnosed due to
barriers such as limited access to healthcare services or social stigma, which hinder comprehensive
control. Additionally, epidemiological control strategies often encounter diminishing returns; as the
infected population decreases to low levels, the effort required to reduce it further becomes
increasingly demanding, leading to a plateau in progress before eradication can be achieved.

The persistence of low-level TB populations, even under optimal control strategies, aligns with
findings from previous studies. Research suggests that TB elimination is inherently difficult due to the
disease’s biological complexity, the nature of latent infections, and social challenges in implementing
control measures effectively [31]. Moreover, mathematical models in infectious disease dynamics
emphasize that complete eradication requires not only robust control strategies but also broader societal
efforts, such as improved living conditions and strengthened public health infrastructure [32].

To further illustrate the comparative effectiveness of each control strategy, Table 5 presents a
comparison of the number of patients with latent TB and active TB at the end of the observation
period for each strategy. This analysis provides valuable insights into the relative impact of different
interventions on TB transmission dynamics and disease burden within the smoking population.
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Table 5. Comparison of the number of TB sufferers at the end of the observation E, I1, I2

with and without control.

Condition
Total population (end of observation)

Total TB patients Cost value
E I1 I2

No control 51.5098 7.9431 0.4710 59.9239 -
Control u1 and u2 34.4523 3.6763 1.0884 39.2170 122.1529
Control u1 and u3 35.4740 6.1091 0.3281 41.9112 124.8652
Control u2 and u3 50.7343 4.8474 1.2525 56.8342 155.0391
Control u1, u2 and u3 34.4694 3.6578 0.8980 39.0252 121.6200

The implementation of control strategies u1 and u2 yields a substantial reduction in the number of
TB sufferers by 34.55%. Further analysis reveals that employing control strategies u1 and u3, as well as
u2 and u3 respectively, can minimize the number of TB patients by 30.06% and 5.16%. Remarkably, the
combined implementation of control strategies u1, u2 and u3 achieves the highest reduction, minimizing
TB sufferers by 37.87%. These findings indicate that the comprehensive approach of implementing all
three control strategies simultaneously is the most effective strategy in minimizing the number of TB
sufferers.

Furthermore, beyond their effectiveness, it is essential to consider the cost implications of each
control strategy. The associated costs for implementing these strategies are detailed in Table 5. The
simultaneous application of the three controls u1, u2, and u3 has the most significant impact in reducing
the number of TB patients compared to other control strategies. This strategy also results in the most
favorable cost values. To achieve optimal outcomes with minimal cost, the recommended strategy
involves implementing control u1 at 100% effort for two years, control u2 at 100% effort for 18 months,
and control u3 at 100% effort for two months.

The effort percentage for controls u2 and u3 gradually decreases starting from the 19th month and
the third month, respectively, until the end of the observation period at month 24. The required cost for
implementing this strategy is illustrated in Figure 6. By carefully adjusting the level of control effort
during each specific period, optimal results can be achieved, both in terms of reducing the infected
population and minimizing cost.
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Figure 6. Graph u1, u2 and u3 control profiles.
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Considering both effectiveness and cost, the strategy of implementing controls u1, u2 and u3

emerges as the optimal approach, striking a favorable balance between minimizing the number of TB
cases and maximizing the efficient use of resources. This highlights the critical importance of
adopting comprehensive, cost-effective control measures to effectively address TB, particularly within
vulnerable groups such as smokers. By combining multiple interventions, policy makers and public
health officials can optimize TB control efforts, leading to improved health outcomes and reduced TB
burden within vulnerable populations like smokers.

6. Conclusions

In this paper, we have analyzed a model of TB spread within a population of smokers, considering
the case detection rate. Our model identifies two types of equilibrium: non-endemic and endemic. The
non-endemic equilibrium is locally asymptotically stable when the basic reproduction number (R0) is
less than one. To further understand the dynamics of TB spread, we conducted a parameter sensitivity
analysis to identify which parameters most significantly influence disease transmission. Notably, we
found that the rate of progression from latent TB to active TB and the TB transmission rate are critical
parameters that significantly impact the value of R0. These parameters play a crucial role in determining
the potential for an outbreak and the overall stability of the disease within the population.

This paper’s key innovation lies in integrating smoking behavior as a pivotal factor in TB
transmission dynamics. This approach provides a more comprehensive understanding of TB spread
among smokers and highlights the unique challenges faced by this vulnerable group. Additionally, we
explored optimal control strategies, including implementing social distancing among smokers,
conducting TB examinations for high-risk populations, and providing TB treatment to low-income
communities. Our findings suggest that these interventions are both effective and efficient in reducing
the number of TB cases, especially when considering associated costs. By focusing on the most
influential parameters and applying targeted interventions, we can better manage and reduce TB
transmission.

However, this study has some limitations. Our model assumes constant parameter values and does
not account for possible time-dependent variations or delays in TB progression and detection.
Additionally, while we incorporated smoking behavior, other factors such as coinfection with other
diseases, varying socioeconomic conditions, and environmental influences were not included. These
factors could further refine the model and enhance its predictive power.

As a next step, we propose modifying the current model into a fractional-order model [12, 16, 33].
Fractional models have been shown to provide a more accurate representation of real-world dynamics
due to their ability to capture memory effects and anomalous diffusion processes, which are prevalent
in biological systems. This approach can offer a more nuanced understanding of TB spread,
especially in populations with complex behavior patterns like smokers. By incorporating fractional
derivatives, the model can account for the long-term impact of past behaviors on current infection
dynamics, potentially leading to more precise predictions and more effective control strategies.

Future work will also involve expanding the model to include additional risk factors, refining
parameter estimations with real-world data, and exploring the combined impact of multiple
intervention strategies in a more holistic framework. These improvements aim to enhance the
applicability of our model in public health planning and policy-making, ensuring that resources are
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utilized in the most impactful manner to curb TB spread among vulnerable populations.
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