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1. Introduction

A hypergraph, denoted by H , is an ordered pair (V(H), E(H)), where V(H), called the set of
vertices, is a finite set and E(H), called the set of edges, is a collection of subsets of V . We call the
number of elements in V(H) and E(H) the order and size of H , respectively. For convenience, let n
and m denote the order and size of a hypergraph, respectively. A hypergraph is said to be k-uniform if
|e| = k for all e ∈ E(H). In particular, we call a 2-uniform hypergraph a graph. For a hypergraph H ,
the degree of a vertex v in V(H), denoted by dv, is the number of edges in E(H) are incident with v.
All hypergraphs we consider in this paper are finite and without isolated vertices. For the terminologies
and concepts not defined here, we refer the readers to [3, 4].

In 2021, Gutman [7] defined the following new topological index of a graph G, called the Sombor
index:

S O(G) =
∑

uv∈E(G)

√
d2

u + d2
v . (1)
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It has generated much research due to its wide range of applications, see the papers [1, 2, 6, 10,
11, 13]. Sombor index is a vertex degree based topological index defined for graphs and therefore,
provides information about the size, shape, and branching of molecular structures. It is utilized in
QSAR (quantitative structure-activity relationship) studies.

Hypergraphs find application in chemistry when modeling molecules or chemical reactions involv-
ing multiple atoms bonding simultaneously. Unlike graphs, hypergraphs can represent interactions
involving more than two atoms, which is particularly relevant for reactions with complex bonding pat-
terns and for capturing molecular properties that arise from multiple atom groupings. Hypergraphs
offer a more accurate depiction of certain chemical scenarios, such as transition states in reactions,
which involve multiple atoms simultaneously changing their bonding configurations. The lack of a
convenient representation for molecules with delocalized polycentric bonds is the main drawback of
the structure theory. Therefore, these problems can be resolved by hypergraph representation of the
molecules, which is known as molecular hyppergraphs. For more results on topological indices related
to hypergraphs, we refer the readers to references [5, 8, 12, 14].

In [9], Liu et al. collected the existing bounds and extremal results related to the Sombor index and
its variants. Recently, Shetty and Bhat [12] extended this index to hypergraphs as follows:

S O′(H) =
∑

e∈E(H)

∑
v∈e

d2
v


1
2

.

Contrasting with the Sombor index of ordinary graphs, the Sombor index of hypergraphs is in its
infancy. In this paper, we further research the above Sombor index for hypergraphs. We define the
Sombor index of a hypergraphH by

S O(H) =
∑

e∈E(H)

∑
v∈e

d|e|v


1
|e|

.

In particular, ifH is a k-uniform hypergraph, then

S O(H) =
∑

{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

) 1
k
. (2)

Clearly, if H is a 2-uniform hypergraph, then the Sombor index of H given by Eq (2) will degen-
erate to the Sombor index of the graph given by Eq (1). Therefore, the Sombor index we define can be
viewed as a generalization of the Sombor index defined by Gutman [7].

This paper focuses on the Sombor index for k-uniform hypergraphs. In Section 2, we first obtain an
upper bound for the Sombor index of a k-uniform hypergraph of size m. An upper bound of the Sombor
index of a k-uniform linear hypergraph of order n is given. We also obtain a Nordhaus-Gaddum type
result for the Sombor index of k-uniform hypergraphs. In Section 3, we focus on k-uniform linear
hypertrees. We obtain upper and lower bounds of the Sombor index of k-uniform hypertrees, and
demonstrate the tightness of the bounds
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2. k-uniform hypergraphs

In this section, we study the Sombor index of k-uniform hypergraphs. We first give an upper bound
of the Sombor index of k-uniform hypergraphs.

Theorem 1. LetH be a k-uniform hypergraph of size m. Then

S O(H) ≤ m
(
(k − 1)mk + 1

) 1
k
.

Moreover, the equality holds if and only if n ≥ m + k − 1 and every edge of H contains (k − 1) fixed
elements in V(H).

Proof. It is sufficient to consider a k-uniform hypergraphH of size m without isolated vertices. So we
may assume that dv ≥ 1 for any v ∈ V(H). Since |e1 ∩ e2| ≤ k − 1 for any two edges e1 and e2 inH , we
have

dv1 + dv2 + · · · + dvk ≤ (k − 1)m + 1,

for any edge {v1, v2, . . . , vk} ∈ E(H). To obtain the maximum value of S O(H), we may assume that for
any edge {v1, v2, . . . , vk} ∈ E(H),

dv1 + dv2 + · · · + dvk = (k − 1)m + 1.

Without loss of generality, assume that dv1 ≥ dv2 ≥ . . . ≥ dvk . Note that 1 ≤ dvt ≤ m for 1 ≤ t ≤ k.
We now prove a claim. Let x1, . . . , xk be positive integers with 1 ≤ xi ≤ m, x1 ≥ . . . ≥ xk and

x1 + · · · + xk = (k − 1)m + 1.
Claim 1. xk

1 + · · ·+ xk
k ≤ (k − 1)mk + 1, and the equality holds if and only if x1 = · · · = xk−1 = m and

xk = 1.
Proof of Claim 1. Suppose xk−1 ≤ m − 1 , and xk ≥ 2. Let yk−1 = xk−1 + 1, yk = xk − 1 and

yi = xi for 1 ≤ i ≤ k − 2. Let f (x) = (x + 1)k − xk. Then f ′(x) = k(x + 1)k−1 − kxk−1 > 0. Thus,
f (xk−1) − f (xk − 1) > 0. So

yk
k−1 + yk

k − (xk
k−1 + xk

k) = (xk−1 + 1)k + (xk − 1)k − (xk
k−1 + xk

k) > 0.

Therefore

yk
1 + · · · + yk

k − (xk
1 + · · · + xk

k) = yk
k−1 + yk

k − (xk
k−1 + xk

k) > 0,

a contradiction. □
By Claim 1, we have dk

v1
+ dk

v2
+ · · · + dk

vk
≤ (k − 1)mk + 1 for any edge {v1, v2, . . . , vk} ∈ E(H). So

S O(H) =
∑

{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

) 1
k

≤
∑

{v1,v2,...,vk}∈E(H)

(
(k − 1)mk + 1

) 1
k

= m
(
(k − 1)mk + 1

) 1
k
.

Moreover, we note that the equality holds if and only if n ≥ m + k − 1, and every edge of H contains
(k − 1) fixed elements in V(H). □
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A hypergraph H is linear if each pair of edges of H has at most one common vertex. A Steiner
system S (2, k, n) is a k-uniform hypergraph on [n], in which every pair of vertices is contained in
exactly one edge.

In particular, we have the following bound of the Sombor index for a k-uniform linear hypergraph.

Theorem 2. LetH be a k-uniform linear hypergraph of order n. Then

S O(H) ≤
n(n − 1)2

k
k−1

k (k − 1)2
.

Moreover, the equality holds if and only if every pair of vertices ofH is contained in exactly one edge,
which is a Steiner system S (2, k, n).

Proof. SinceH is linear, any pair of vertices is contained in at most one edge. Therefore, considering
the number of pairs of vertices, we have

m
(
k
2

)
≤

(
n
2

)
,

and then m ≤ n(n−1)
k(k−1) . Note that the equality holds if and only if every pair of vertices ofH is contained

in exactly one edge. SinceH is linear, we have dv ≤
n−1
k−1 for any v ∈ V(H). Thus

S O(H) =
∑

{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

) 1
k

≤m
(n − 1

k − 1

)k

+ · · · +

(
n − 1
k − 1

)k 1
k

≤k
1
k
n(n − 1)2

k(k − 1)2

=
n(n − 1)2

k
k−1

k (k − 1)2
.

Thus the equality holds if and only if every pair of vertices ofH is contained in exactly one edge, that
is a Steiner system S (2, k, n). □

A hypergraph is r-regular if every vertex has degree r. A k-uniform hypergraph H is complete if
E(H) is the collection of all subsets of k elements in V(H). A k-uniform hypergraph H is empty if
E(H) is the empty set. For a k-uniform hypergraphH , the complement ofH , denoted byH , is defined
to be the k-uniform hypergraph whose vertex set is V(H) and whose edges are all subsets of k elements
in V(H) do not belong to E(H).

We have the following Nordhaus-Gaddum type result for the Sombor index of k-uniform hyper-
graphs.

Theorem 3. LetH be a k-uniform hypergraph of order n. Then

1
2

k
1
k

(
n − 1
k − 1

)(
n
k

)
≤ S O(H) + S O(H) ≤ k

1
k

(
n − 1
k − 1

)(
n
k

)
.

Moreover, the first equality holds if and only if
(

n−1
k−1

)
is even, and both H and H are 1

2

(
n−1
k−1

)
-regular

k-uniform hypergraphs. The second equality holds if and only ifH is complete or empty.
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Proof. Let |E(H)| = m1 and |E(H)| = m2. Clearly, m1 + m2 =
(

n
k

)
. We first consider the upper bound.

By the definition, we have

S O(H) =
∑

{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

) 1
k

≤
∑

{v1,v2,...,vk}∈E(H)

(n − 1
k − 1

)k

+

(
n − 1
k − 1

)k

+ · · · +

(
n − 1
k − 1

)k 1
k

= k
1
k

(
n − 1
k − 1

)
m1.

Therefore

S O(H) + S O(H) ≤ k
1
k

(
n − 1
k − 1

)
(m1 + m2)

= k
1
k

(
n − 1
k − 1

)(
n
k

)
.

Clearly, the equality holds if and only ifH is complete or empty.
We now consider the lower bound. By the definition of the Sombor index and Jensen’s inequality,

we have

S O(H) =
∑

{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

) 1
k

≥
∑

{v1,v2,...,vk}∈E(H)

k (
dv1 + dv2 + · · · + dvk

k

)k 1
k

= k
1
k−1

∑
{v1,v2,...,vk}∈E(H)

(
dv1 + dv2 + · · · + dvk

)
= k

1
k−1

 n∑
i=1

d2
vi


≥ k

1
k−1n

(∑n
i=1 dvi

n

)2

= k
1
k+1 1

n
m2

1,

where the first equality holds if and only if for any {v1, v2, . . . , vk} ∈ E(H), dv1 = dv2 = · · · = dvk , and
the second equality holds if and only if dv1 = dv2 = · · · = dvn .

Therefore

S O(H) + S O(H) ≥ k
1
k+1 1

n
(m2

1 + m2
2).

By Jensen’s inequality again, we have

m2
1 + m2

2 ≥ 2
(m1 + m2

2

)2
=

1
2

(
n
k

)2

,
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where the equality holds if and only if m1 = m2.
Thus

S O(H) + S O(H) ≥
1
2

k
1
k

k
n

(
n
k

)2

=
1
2

k
1
k

(
n − 1
k − 1

)(
n
k

)
.

Clearly, the equality holds if and only if
(

n−1
k−1

)
is even andH andH both are 1

2

(
n−1
k−1

)
-regular k-uniform

hypergraphs. □

3. k-uniform linear hypertrees

In this section, we focus on the Sombor index of k-uniform linear hypertrees.
In a hypergraphH , an alternating sequence

(v1, e1, v2, e2, . . . , vq, eq, vq+1)

of vertices and edges satisfying the following three conditions:

(i) v1, . . . , vq+1 are all distinct vertices ofH ;

(ii) e1, . . . , eq are all distinct edges ofH ;

(iii) vr, vr+1 ∈ er for r = 1, . . . , q,

is called a path connecting v1 to vq+1, and we call q the length of this path. The distance of two
vertices u and v in a hypergraph H , denoted by dH (u, v), is defined as the length of a shortest path
connecting them.

A hypergraph is called a hypertree if every pair of vertices is connected by a unique path. An
edge of a k-uniform hypergraph is called a pendent if it contains at least k − 1 vertices of degree 1.
Furthermore, a vertex of degree 1 is called pendent vertex if it is contained in a pendent edge.

We first obtain an upper bound of the Sombor index of k-uniform linear hypertrees.

Theorem 4. Let T be a k-uniform linear hypertree of size m. Then

S O(T ) ≤ m
(
mk + k − 1

) 1
k
.

Moreover, the equality holds if and only if all edges ofH meet a vertex in V(H).

Proof. By the definition, we have

S O(T ) =
∑

{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

) 1
k
· 1

≤

 ∑
{v1,v2,...,vk}∈E(H)

(
dk

v1
+ dk

v2
+ · · · + dk

vk

)
1
k

· m1− 1
k
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=

 n∑
i=1

dk+1
vi


1
k

· m1− 1
k

≤
(
mk+1 + (k − 1)m

) 1
k
· m1− 1

k

= m
(
mk + k − 1

) 1
k

where the first inequality is obtained by Hölder’s inequality. Moreover, we note that the equality holds
if and only if all edges ofH meet a vertex in V(H). □

To obtain a lower bound of the Sombor index of k-uniform linear hypertrees, the following prepara-
tory work is necessary.

Lemma 1. For a ≥ b ≥ l ≥ 1 and k > 1, (a + l)k + (b − l)k > ak + bk .

Proof. Let f (x) = (x + l)k − xk for x ≥ 0. Then f ′(x) = k(x + l)k−1 − kxk−1 > 0 for x ≥ 0, where f ′(x)
denotes the derivative of f (x). Therefore, f (a) > f (b − l), that is, (a + l)k + (b − l)k > ak + bk. □

We now define an operation of moving edges for a linear uniform hypertree containing vertices of
degree at least 3. Let T be a linear k-uniform hypertree containing vertices of degree at least 3. Taking
a pendent vertex u of T , let v be the vertex with dv ≥ 3 such that dT (u, v) ≤ dT (u,w) for any vertex w
with dw ≥ 3. Let e = {v, v1, v2, . . . , vk−1} be an edge such that the path from u to v contains no e. Let T ′

be the hypertree obtained from T by replacing e with {u, v1, v2, . . . , vk−1}. We say that T ′ is obtained
from T by moving e from v to u.

Clearly, for a linear uniform hypertree containing vertices of degree at least 3, we can obtain a
linear uniform hypertree containing no vertices of degree at least 3 by a finite number of operations of
moving edges.

For convenience, we fix the following notations. For any edge e of a hypertree T and v ∈ e, define
S T (e) = (

∑
v∈e dk

v)
1
k and sT (e − v) =

∑
u∈e\v dk

u. For any vertex v of a hypertree T , denote by Γ(v) the set
of edges incident with v in T .

Lemma 2. Let T be a linear k-uniform hypertree of order n with the minimum Sombor index among
all linear k-uniform hypertrees of order n. Then dv ≤ 2 for all v ∈ V(T ).

Proof. Assume that T is a linear k-uniform hypertree of order n containing at least a vertex of degree
at least 3. Taking a pendent vertex u of T , let v be the vertex with dv ≥ 3 such that dT (u, v) ≤ dT (u,w)
for any vertex w with dw ≥ 3. Let e1 = {u, u1, u2, . . . , uk−1} be the pendent edge containing u. Since
dv ≥ 3, there exists an edge e2 = {v, v1, v2, . . . , vk−1} in T not contained in the path from u to v. Let T ′

be the hypertree obtained from T by moving e2 from v to u. Let e′2 = {u, v1, v2, . . . , vk−1} be the edge in
T ′ corresponding to e2. Clearly sT (e2 − v) = sT ′(e′2 − u). We now divide the proof into two cases.

Case 1. dT (u, v) = 1.
Clearly, in this case, {u, v} ⊆ e1. By definition,

S O(T ) − S O(T ′)

=
∑

e∈Γ(v)

S T (e) −

 ∑
e∈Γ(v)

S T ′(e) + S T ′(e′2)
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=S T (e1) − S T ′(e1) + S T (e2) − S T ′(e′2) +
∑

e∈Γ(v)\{e1,e2}

(S T (e) − S T ′(e))

=
(
dk

v + k − 1
) 1

k
−

(
(dv − 1)k + 2k + k − 2

) 1
k

+
(
dk

v + sT (e2 − v)
) 1

k
−

(
2k + sT ′(e′2 − u)

) 1
k

+
∑

e∈Γ(v)\{e1,e2}

((
dk

v + sT (e − v)
) 1

k
−

(
(dv − 1)k + sT (e − v)

) 1
k
)
.

By Lemma 1, we have dk
v + 1 > (dv − 1)k + 2k. Then(

dk
v + k − 1

) 1
k
−

(
(dv − 1)k + 2k + k − 2

) 1
k
> 0.

Clearly, for dv ≥ 3, (
dk

v + sT (e2 − v)
) 1

k
−

(
2k + sT ′(e′2 − u)

) 1
k
> 0,

and for e ∈ Γ(v) and e , e1, e2,(
dk

v + sT (e − v)
) 1

k
−

(
(dv − 1)k + sT (e − v)

) 1
k
> 0.

Therefore, we have
S O(T ) − S O(T ′) > 0.

Case 2. dT (u, v) ≥ 2.
By definition, we have

S O(T ) − S O(T ′)

=
∑

e∈Γ(v)

S T (e) + S T (e1) −

 ∑
e∈Γ(v)

S T ′(e) + S T ′(e′2) + S T ′(e1)


=S T (e1) − S T ′(e1) + S T (e2) − S T ′(e′2) +

∑
e∈Γ(v)\{e2}

(S T (e) − S T ′(e))

=
(
2k + k − 1

) 1
k
−

(
2k+1 + k − 2

) 1
k

+
(
dk

v + sT (e2 − v)
) 1

k
−

(
2k + sT ′(e′2 − u)

) 1
k

+
∑

e∈Γ(v)\{e2}

((
dk

v + sT (e − v)
) 1

k
−

(
(dv − 1)k + sT (e − v)

) 1
k
)
.

Clearly, for e ∈ Γ(v) \ {e2}, (
dk

v + sT (e − v)
) 1

k
−

(
(dv − 1)k + sT (e − v)

) 1
k
> 0.

Then

S O(T ) − S O(T ′)
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>
(
2k + k − 1

) 1
k
−

(
2k+1 + k − 2

) 1
k

+
(
dk

v + sT (e2 − v)
) 1

k
−

(
2k + sT ′(e′2 − u)

) 1
k
.

Therefore, to show that S O(T ) − S O(T ′) > 0, it is sufficient to prove

(ak + b)
1
k − (2k + b)

1
k > (2k+1 + k − 2)

1
k − (2k + k − 1)

1
k ,

where a = dv ≥ 3 and b = sT (e2 − v) = sT ′(e′2 − u). Since

ak − 2k+1 ≥ 3k − 2k+1 = 2k

(3
2

)k

− 2
 ≥ 22

(3
2

)2

− 2
 ≥ 1,

that is, ak > 2k+1 + 1, we have

(ak + b)
1
k − (2k + b)

1
k > (2k+1 + b − 1)

1
k − (2k + b)

1
k .

Let f (x) = (x + 2k − 1)
1
k − x

1
k on x ≥ 0. Clearly f ′(x) > 0 when x ≥ 0. Therefore we have

(2k+1 + b − 1)
1
k − (2k + b)

1
k ≥ (2k+1 + k − 2)

1
k − (2k + k − 1)

1
k

for b ≥ k − 1. This completes the proof. □

We now present a tight lower bound of the Sombor index of k-uniform linear hypertrees.

Theorem 5. Let T be a k-uniform linear hypertree of size m. Let q and r be two integers satisfying
(k − 2)m + 2 = (k − 1)q + r and 0 ≤ r < k − 1. Then

S O(T ) ≥ 2(m − q − 1)k
1
k + q(2k + k − 1)

1
k + ((k − r)2k + r)

1
k .

Moreover, the equality holds if and only if T has the maximum number of pendent edges among all
k-uniform linear hypertrees of size m, where the degree of every vertex is at most 2.

Proof. We assume that T has the minimum Sombor index among all k-uniform linear hypertrees of
size m. By Lemma 2, we have dv ≤ 2 for all v ∈ V(T ). Let E1 denote the set of edges with degree
sequence (2, 1, 1, . . . , 1) and E2 denote the set of edges with degree sequence (2, 2, . . . , 2).

Claim 1. T has at most one edge e such that e < E1 ∪ E2.
Proof of Claim 1. Assume, for a contradiction, that e1 = {u1, . . . , uk} with du1 = · · · = dus = 2 and

dus+1 = · · · = duk = 1, and e2 = {v1, . . . , vk} with dv1 = · · · = dvt = 2 and dvt+1 = · · · = dvk = 1. Without
loss of generality, we may assume that 2 ≤ t ≤ s ≤ k − 1. Since e2 contains at least two vertices
of degree 2, there exists an edge e3 such that e3 ∩ e2 , ∅. Assume, without loss of generality, that
e3 ∩ e2 = {vt}. Let T ′ be the hypertree obtained from T by moving e3 from vt to us+1. Then

S O(T ) − S O(T ′)
=S T (e1) + S T (e2) − (S T ′(e1) + S T ′(e2))

=
(
s2k + k − s

) 1
k
+

(
t2k + k − t

) 1
k
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−

((
(s + 1)2k + k − s − 1

) 1
k
+

(
(t − 1)2k + k − t + 1

) 1
k
)
.

Set a = s2k + k − s, b = t2k + k − t, c = (s + 1)2k + k − s − 1 and d = (t − 1)2k + k − t + 1. Note that
a+ b = c+ d and c > a ≥ b > d. Let f (x) = x

1
k + (l− x)

1
k . Then f (x) is monotonically increasing in the

interval (0, l
2 ) and monotonically decreasing in the interval ( l

2 , l). Therefore, a
1
k + b

1
k > c

1
k + d

1
k , which

implies that S O(T ) − S O(T ′) > 0. Then a contradiction is clear. Thus, the claim holds. □
Since T has m edges and dv ≤ 2 for all v ∈ V(T ), it follows that T has m − 1 vertices of degree 2.

Since km =
∑

v∈V(T ) dv, T has km−2(m−1) vertices of degree 1. Recall that (k−2)m+2 = (k−1)q+ r,
where 0 ≤ r < k − 1. We now consider the following two cases.

Case 1. r ≥ 1.
In this case, by Claim 1, there exists a unique edge e of T such that e < E1 ∪ E2. Then

S O(T ) = 2(m − q − 1)k
1
k + q(2k + k − 1)

1
k + ((k − r)2k + r)

1
k .

Case 2. r = 0.
In this case, by Claim 1, for any edge e of T , either e ∈ E1 or e ∈ E2. Clearly, q = (k−2)m+2

k−1 . Then

S O(T ) = 2(m − q)k
1
k + q(2k + k − 1)

1
k .

Note that the expression of S O(T ) in Case 2 when r = 0 is consistent with that of Case 1. Therefore,
we obtain the lower bound. Moreover, note that T has the maximum number of pendent edges in all
k-uniform linear hypertrees of size m where the degree of every vertex is at most 2. □

Further, Theorem 5 is also a tight lower bound of the Sombor index of connected k-uniform linear
hypergraphs.

4. Conclusions

Different from the definition of the Sombor index given by Shetty and Bhat [12], we define the
Sombor index for hypergraphs from another perspective. Clearly, it is more suitable for the structures
of hypergraphs and can be viewed as a generalization of the Sombor index defined by Gutman [7]. We
obtain several upper and lower bounds of the Sombor index of uniform hypergraphs. In particular, a
comparison of S O′(H) and S O(H) has been listed as Table 1.

Table 1. A comparison of S O′(H) and S O(H).

Sombor index S O′(H) S O(H)
H : k-uniform hypergraph on n vertices S O′(H) ≤

√
k
(

n
k

)(
n−1
k−1

)
S O(H) ≤ k√k

(
n
k

)(
n−1
k−1

)
T : k-uniform linear hypertree of size m S O′(T ) ≤ m

√
m2 + k − 1 S O(T ) ≤ m

k√
mk + k − 1

F : Fano plane S O′(F ) = 7
√

27 S O(F ) = 7 3√81

Fano plane is the unique hypergraph with 7 edges on 7 vertices in which every pair of vertices
is contained in a unique edge. It is easy to see that the results in the table above are the same for a
2-uniform hypergraph. A natural problem is:

Problem 6. What are the bounds of the Sombor index of general hypergraphs?
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10. I. Milovanović, E. Milovanović, M. Matejić, On some mathematical properties of Sombor indices,
Bull. Int. Math. Virtual Inst., 11 (2021), 241–353.
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