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modifications were referred to as the generalized (r + G′

G )-expansion method and the simple (G′
G )-

expansion approach. The proposed methods spilled over the aimed Kairat-X equation into a nonlinear
ordinary differential equation by means of a variable transformation. Immediately following that, it was
presumed that the resultant nonlinear ordinary differential equation had a closed form solution, which
turned it into a system of algebraic equations. The resultant set of algebraic equations was solved
to find new families of soliton solutions which took the forms of hyperbolic, rational and periodic
functions. An assortment of contour, 2D and 3D graphs were used to visually show the dynamics of
certain generated soliton solutions. This indicated that these soliton solutions likely took the structures
of kink solitons prominently. Moreover, our proposed methods demonstrated their use by constructing
a multiplicity of soliton solutions, offering significant understanding into the evolution of the focused
model, and suggesting possible applications in dealing with related nonlinear phenomena.
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1. Introduction

Nonlinear partial differential equations (NPDEs) are a vital arsenal in numerous scientific
disciplines because they provide a stable basis for modeling complex phenomena that defy linear
approximations [1–3]. They are commonly employed in physics to explain turbulent motion, dynamics
of fluids, and propagation of waves. They also provide insight on a wide range of problems, involving
as irregularities in the weather and particle behavior. Such structures are used by engineers for
evaluating electrical thermal transfer, circuits, and mechanics of structures in order to develop efficient
mechanisms. In the biological sciences, NPDEs can be employed to model a variety of processes,
including infection dissemination, demographic change, and neural network function. They are used
by scientists studying the environment to comprehend ecological changes in many contexts, like
the climate projections and functioning of ecosystems. Consequently, in many scientific domains,
NPDEs are essential tools for tackling complicated real-world issues and are vital to modern scientific
research [4–6].

Researchers often move toward analytical solutions when tackling NPDEs to overcome the inherent
shortcomings of numerical approaches, such as the demand for complex computer specifications,
mistakes, and large amounts of processing power. Analytical solutions are succinct mathematical
claims that, with little computational effort, offer profound understanding of the underlying behavior
of the system. Recently, explicit solutions–especially those that resemble soliton–have garnered a
lot of attention as nonlinear science has elevated them to a separate field of study [7–9]. Because
of these unique features, soliton theory has gained more prominence. After interaction and stability,
the soliton maintains its shape and velocity. Rogue, cuspon, cnoidal, peregrine, anti-kink dromion,
dark, lump, bright, dark-bright, loop, periodic, grey, hump, kink, compacton and black soliton are
only a few of the various varieties of soliton. For a considerable while now, physicists and applied
mathematics have been fascinated by soliton applications in NPDEs. Several analytical methods
have been put forth to assess and characterize the soliton behavior in NPDEs, which include the
Kudryashov approach [10], (G′

G )-expansion approach [11], Sardar sub-equation technique [12], exp-
function method [13], sub-equation technique [14], tan-cot function approach [15], extended direct
algebraic methods [16], Khater method [17] and many others [18–20]. However, this research drives
the employee (G′

G )-expansion method which was first introduced by Wang et al. [21] and is a special
sub-case of modified extended tanh expansion method [22].

The primary goals of this work are to produce and assess the dynamics of kink soliton in the
Kairat-X equation (K-XE). The recommended generalized (r + G′

G )-expansion method and simple (G′
G )-

expansion method to convert K-XE to nonlinear ordinary differential equations (NODE) both employ
a wave transformation. Under the assumption of a series form solution, NODE is further turned into an
algebraic system of equations. By solving this set of equations, many new soliton solutions for K-XE
in the form of hyperbolic, rational and periodic functions are obtained, indicating the efficacy of the
proposed methods. This integrable model explains the differential geometry of curves and equivalence
aspects. K-XE is described as [23, 24]:

stt − 3 (stsx)x + sxxxt = 0, (1)

whereby s = s(x, t). This model has numerous applications in applied sciences such as geophysics,
optical fiber, mathematical physics, laser optics, nonlinear dynamics, nonlinear optics, engineering and
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communication systems.
There is a dearth of research in the literature on Kairat equations with respect to fractional and

integer form. For instance, Roy et al. [25] contains solutions to the K-XE for lump-kink waves, multi-
shocks, and kink-breather. Ghazanfar et al. [26] has identified soliton, rational, and elliptic solutions
to the Kairat-II equation using the Hirota bilinear form. Awadalla et al. used soliton solutions, the
advanced Kudryashov method, and the modified simple equation approach in [24] to solve two Kairat
equations, namely the K-XE and Kairat-II equations, in the context of M-fractional derivatives. The
optical soliton solutions for the Kairat-II problem were developed by Tipu et al. using extended direct
algebraic method (EDAM) [27]. Iqbal et al. eventually employed an enhanced variation of the simple
equation approach to investigate many exact soliton solutions such as kink wave solitons, bright-dark
solutions, dark and peakon bright solitons, bright solitons, anti-kink wave solutions, solitary wave
structure and dark solitons for fractional K-XE with a different ansatz. They have retrieved soliton
solutions to the nonlinear fractional K-XE efficiently [28]. These solutions offer a stimulating physical
framework for dark solitons, traveling waves, kink solitons, peakon solitons, mixed solitons, anti-kink
solitons, bright solitons and solitary waves. Nevertheless, the goal of this work is to show how well the
two suggested variations of the (G′

G )-expansion method work to assess the dynamics of kink solitons in
K-XE, as stated in Eq (1).

The remaining parts of the study are arranged in the following order: In Section 2, we go over
how the recommended approaches function. We utilize these methods to build soliton solutions for the
K-XE in Section 3. In Section 4, we present the visual illustrations of several kink soliton solutions.
Meanwhile, Section 5 concludes our study.

2. The operational mechanism of (G′
G )-expansion methods

In this section of our investigation, the procedures of the (G′
G )-expansion methods are described,

concentrating on solving the following type of general NPDE [11]:

R(s, st, sv1 , sv2 , ssv1 , . . .) = 0, (2)

where s = s(t, v1, v2, v3, . . . , v j).
Equation (2) is resolved employing the subsequent technique:
1) After transforming the framework s(t, v1, v2, v3, . . . , v j) = S (ϑ), where ϑ is the wave variable such

that ϑ = ϑ(t, v1, v2, v3, . . . , v j), when this transformation is applied to Eq (2), we get the subsequent
NODE:

J(S , S ′S , S ′, . . . ) = 0, (3)

where S ′ = dS
dϑ . Rarely, the integration of Eq (3) may make the NODE susceptible to the homogeneous

balancing principle.
2) Next, using the modified (G′

G )-expansion approach, we presume any of the subsequent series form
solutions for Eq (3):

a) Using the simple (G′
G )-expansion method, we choose the following series form solution [11]:

S (ϑ) =

M∑
j=−M

τ j(
G′(ϑ)
G(ϑ)

) j, (4)
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b) Using the (r + G′
G )-expansion approach, we choose the ensuing series form solution [11]:

S (ϑ) =

M∑
j=−M

τ j(r +
G′(ϑ)
G(ϑ)

) j; r ∈ R, (5)

where τ j(−M ≤ j ≤ M) are coefficients with restriction and τ2
M + τ2

−M , 0, must be calculated later.
Equations (4) and (5) yield the balance number M, a positive integer, which may be found using the
homogeneous balance from the nonlinear components and the derivative that corresponds with the
highest order terms in Eq (3). Use the following mathematical formulas to get the balance number M
more precisely [29]:

D(
dηS
dϑη

) = M + η, and D(S ζ(
dηS
dϑη

)n) = Mζ + n(η + M), (6)

where D expresses degree of S (ϑ) and η, ζ, and n are positive integers.
Moreover, Eqs (4) and (5)’s function G(ϑ) solves the following second-order linear ODE:

G′′(ϑ) + νG′(ϑ) + ωG(ϑ) = 0, (7)

where ν, ω are real constants.
Furthermore, using the generic solution of Eq (7), we obtain:

(G′(ϑ)
G(ϑ)

)
=


1
2

√
Z(ε1 sinh( 1

2

√
Zϑ)+ε2 cosh( 1

2

√
Zϑ))

ε1 cosh( 1
2

√
Zϑ)+ε2 sinh( 1

2

√
Zϑ) − 1

2 ν, Z > 0,

1
2

√
−Z(−ε1 sin( 1

2

√
−Zϑ)+ε2 cos( 1

2

√
−Zϑ))

ε1 cos( 1
2

√
−Zϑ)+ε2 sin( 1

2

√
−Zϑ) − 1

2 ν, Z < 0,
ε2

ε1+ε2ϑ
− 1

2 ν, Z = 0,

(8)

where Z = ν2 − 4ω and ε1 and ε2 in Eq (8) are arbitrary constants.
3) Next, we insert Eqs (4) and (5) into Eq (3) and collect all terms that have the same power of

(G′(ϑ)
G(ϑ) ).

4) With all of the coefficients of the generated polynomial (G′(ϑ)
G(ϑ) ) j corresponding to zero, a set of

nonlinear algebraic equations in τ j( j = −M...,M), ν, ω, and other required parameters are obtained.
5) The system that emerges is solved with the Maple tool to determine the unknown parameters.
6) The values expected from step 5 are then substituted into Eqs (4) and (5) to build families of

soliton solutions for Eq (2).

3. The implementation of (G′
G )-expansion methods to K-XE

In this part, we expand our (G′
G )-expansion methods to establish fresh soliton solutions for Eq (1).

We start with the wave transformation given below:

s(x, t) = S (ϑ) with ϑ = kx + φt + γ. (9)

The given transformation converts Eq (1) into the subsequent integer order NODE:

φS ′′(ϑ) − 3k2((S ′(ϑ))2)′ + k3S (iv)(ϑ) = 0. (10)
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Using Eq (10) and one-time integration with respect to ϑ produces:

φS ′(ϑ) − 3k2(S ′(ϑ))2 + k3S
′′′

(ϑ) + κ = 0, (11)

where κ symbolizes the integration constant. In Eq (11) by using the homogeneous balance [29]
between the terms −3k2(S ′(ϑ))2 and k3S

′′′

(ϑ), suggests that 2M + 2 = 3 + M and yields M = 1.

3.1. The execution of (G′
G )-expansion method

To start, we want to solve K-XE using the simple (G′
G )-expansion method. Substituting M = 1 in

Eq (4) yields the following closed series form solution for Eq (11):

S (ϑ) =

1∑
j=−1

τ j

(
G′(ϑ)
G(ϑ)

) j

. (12)

By putting Eq (12) in Eq (11) and combining all terms with the same exponents of G(ϑ), an equation
in G(ϑ) is obtained. By setting the coefficients to zero, the resultant statement can be simplified to the
underlying nonlinear system of nine algebraic equations:

− k2τ−1
2ω2 + 2 k3τ−1ω

3 = 0,

2 k3τ−1νω
2 − k2τ−1

2νω = 0,

6 k2τ−1ω
2τ1 + 8 k3τ−1ω

2 + φ τ−1ω + 7 k3τ−1ν
2ω − 3 k2τ−1

2ν2 − 6 k2τ−1
2ω = 0,

12 k2τ−1ν τ1ω + φ τ−1ν + k3τ−1ν
3 − 6 k2τ−1

2ν + 8 k3τ−1νω = 0,

− 3 k2τ1
2ω2 − k3τ1ν

2ω + 6 k2τ−1ν
2τ1 − φ τ1ω + 2 k3τ−1ω

+ κ + k3τ−1ν
2 − 2 k3τ1ω

2 + φ τ−1 + 12 k2τ−1ωτ1 − 3 k2τ−1
2 = 0,

−k3τ1ν
3 − φ τ1ν + 12 k2τ−1ν τ1 − 8 k3τ1νω − 6 k2τ1

2νω = 0,

−8 k3τ1ω − 7 k3τ1ν
2 + 6 k2τ−1τ1 − 3 k2τ1

2ν2 − φ τ1 − 6 k2τ1
2ω = 0,

2 k3τ1ν + k2τ1
2ν = 0,

2 k3τ1 + k2τ1
2 = 0.

When Maple handles the created system, the following sets of solutions appear:

Case 1.1.

τ1 = 0, τ0 = τ0, τ−1 = 2 kω, k = k, κ = 0, φ = −k3Z. (13)

Case 1.2.

τ1 = −2 k, τ0 = τ0, τ−1 = 0, k = k, κ = 0, φ = −k3Z. (14)

Taking into consideration Case 1.1, and using Eqs (9) and (12) with the associated general solution in
Eq (8), we form the given families of soliton solutions for K-XE stated in Eq (1):
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Family 1.1.1. In the course of Z > 0,
(i) In the course of ε1 , 0, ε2 , 0,

s1,1,1(x, t)

=2 kω

1
2

√
Z

(
ε1 sinh

(
1
2

√
Z(kx − k3Zt + γ)

)
+ ε2 cosh

(
1
2

√
Z(kx − k3Zt + γ)

))
ε1 cosh

(
1
2

√
Z(kx − k3Zt + γ)

)
+ ε2 sinh

(
1
2

√
Z(kx − k3Zt + γ)

) −
1
2
ν


−1

+ τ0. (15)

(ii) In the course of ε1 = 0, ε2 , 0,

s1,1,2(x, t) = 2
kω

1
2

√
Z coth

(
1
2

√
Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (16)

(iii) In the course of ε1 , 0, ε2 = 0,

s1,1,3(x, t) = 2
kω

1
2

√
Z tanh

(
1
2

√
Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (17)

Family 1.1.2. In the course of Z < 0,
(i) In the course of ε1 , 0, ε2 , 0,

s1,1,4(x, t)

=2 kω

1
2

√
−Z

(
−ε1 sin

(
1
2

√
−Z(kx − k3Zt + γ)

)
+ ε2 cos

(
1
2

√
−Z(kx − k3Zt + γ)

))
ε1 cos

(
1
2

√
−Z(kx − k3Zt + γ)

)
+ ε2 sin

(
1
2

√
−Z(kx − k3Zt + γ)

) −
1
2
ν


−1

+ τ0.

(18)

(ii) In the course of ε1 = 0, ε2 , 0,

s1,1,5(x, t) = 2
kω

1
2

√
−Z cot

(
1
2

√
−Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (19)

(iii) In the course of ε1 , 0, ε2 = 0,

s1,1,6(x, t) = 2
kω

−1
2

√
−Z tan

(
1
2

√
−Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (20)

Family 1.1.3. In the course of Z = 0,
(i) In the course of ε1 , 0, ε2 , 0,

s1,1,7(x, t) = 2
kω

(
ε1 + ε2(kx − k3Zt + γ)

)
ε2

+ τ0. (21)

(ii) In the course of ε1 = 0, ε2 , 0,

s1,1,8(x, t) = 2
kω

(kx − k3Zt + γ)−1
− 1

2 ν
+ τ0. (22)
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Assuming Case 1.2, and using Eqs (9) and (12) with the associated general solution in Eq (8), we
form the given below families of soliton solutions for K-XE stated in Eq (1):

Family 1.2.1. In the course of Z > 0,
(i) In the course of ε1 , 0, ε2 , 0,

s1,2,1(x, t) = τ0 − 2 k

1
2

√
Z

(
ε1 sinh

(
1
2

√
Z(kx − k3Zt + γ)

)
+ ε2 cosh

(
1
2

√
Z(kx − k3Zt + γ)

))
ε1 cosh

(
1
2

√
Z(kx − k3Zt + γ)

)
+ ε2 sinh

(
1
2

√
Z(kx − k3Zt + γ)

) −
1
2
ν

 .
(23)

(ii) In the course of ε1 = 0, ε2 , 0,

s1,2,2(x, t) = τ0 − 2 k
(
1
2

√
Z coth

(
1
2

√
Z(kx − k3Zt + γ)

)
−

1
2
ν

)
. (24)

(iii) In the course of ε1 , 0, ε2 = 0,

s1,2,3(x, t) = τ0 − 2 k
(
1
2

√
Z tanh

(
1
2

√
Z(kx − k3Zt + γ)

)
−

1
2
ν

)
. (25)

Family 1.2.2. In the course of Z < 0,
(i) In the course of ε1 , 0, ε2 , 0,

s1,2,4(x, t)

=τ0 − 2 k

1
2

√
−Z

(
−ε1 sin

(
1
2

√
−Z(kx − k3Zt + γ)

)
+ ε2 cos

(
1
2

√
−Z(kx − k3Zt + γ)

))
ε1 cos

(
1
2

√
−Z(kx − k3Zt + γ)

)
+ ε2 sin

(
1
2

√
−Z(kx − k3Zt + γ)

) −
1
2
ν

 . (26)

(ii) In the course of ε1 = 0, ε2 , 0,

s1,2,5(x, t) = τ0 − 2 k
(
1
2

√
−Z cot

(
1
2

√
−Z(kx − k3Zt + γ)

)
−

1
2
ν

)
. (27)

(iii) In the course of ε1 , 0, ε2 = 0,

s1,2,6(x, t) = τ0 − 2 k
(
−

1
2

√
−Z tan

(
1
2

√
−Z(kx − k3Zt + γ)

)
−

1
2
ν

)
. (28)

Family 1.2.3. In the course of Z = 0,
(i) In the course of ε1 , 0, ε2 , 0,

s1,2,7(x, t) = τ0 − 2
kε2

ε1 + ε2(kx − k3Zt + γ)
. (29)

(ii) In the course of ε1 = 0, ε2 , 0,

s1,2,8(x, t) = τ0 − 2 k
(
(kx − k3Zt + γ)−1

−
1
2
ν

)
. (30)
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3.2. The execution of (r + G′
G )-expansion method

For K-XE, we now wish to apply the generalized (r + G′
G )-expansion method. The following is the

closed series form solution for Eq (15) where M = 1 is used instead of Eq (5),

S (ϑ) =

1∑
j=−1

τ j

(
r +

G′(ϑ)
G(ϑ)

) j

. (31)

An equation in G(ϑ) is generated by placing Eq (31) into Eq (11) and gathering all terms with the
same powers of G(ϑ). The resulting expression may be reduced to the proper system of nine nonlinear
algebraic equations by setting the coefficients to zero:

− 2 k3τ−1ω
2r2 − 6 k2ω2τ−1τ1r2 − k3τ−1ν

2ω r2 − κ r4 + φω τ1r4 + 3 k2ω2τ1
2r4

− 6 k3τ−1ω
3 + k3τ1ν

2ω r4 + 6 k3τ−1ω
2ν r − φω τ−1r2 + 2 k3τ1ω

2r4 + 3 k2ω2τ−1
2 = 0,

4 φω τ1r3 − 4 κ r3 + 12 k2ω2τ1
2r3 + 10 k3τ−1ν

2ω r − 12 k3τ−1ω
2ν + 4 k3τ1ν

2ω r3 + 6 k2νω τ1
2r4

− k3τ−1ν
3r2 + k3τ1ν

3r4 − 12 k2νω τ−1τ1r2 − 2 φω τ−1r + 6 k2νω τ−1
2 − 12 k2ω2τ−1τ1r

+ 8 k3τ1νω r4 + 8 k3τ−1ω
2r + φ ν τ1r4 + 8 k3τ1ω

2r3 − 8 k3τ−1νω r2 − φ ν τ−1r2 = 0,

− 6 κ r2 − 24 k2νω τ−1τ1r − φω τ−1 − φ τ−1r2 + 6 k2ωτ−1
2 + 3 k2ν2τ−1

2 − 8 k3τ−1ω
2

+ φ τ1r4 − 12 k2ωτ−1τ1r2 + 20 k3τ−1νω r + 32 k3τ1νω r3 + 6 k3τ1ν
2ω r2 + 24 k2νω τ1

2r3

− 6 k2ν2τ−1τ1r2 − 6 k2ω2τ−1τ1 − 7 k3τ−1ν
2ω + 4 φ ν τ1r3 − 2 φ ν τ−1r + 18 k2ω2τ1

2r2

+ 6 k2ωτ1
2r4 + 3 k2ν2τ1

2r4 + 4 k3τ−1ν
3r − 7 k3τ−1ν

2r2 − 8 k3τ−1ω r2

+ 4 k3τ1ν
3r3 + 12 k3τ1ω

2r2 + 7 k3τ1ν
2r4 + 8 k3τ1ω r4 + 6 φω τ1r2 = 0,

− 4 κ r − 8 k3τ−1νω + 12 k2ν2τ1
2r3 + 12 k2ω2τ1

2r + 24 k2ωτ1
2r3 + 6 φ ν τ1r2 + 4 φω τ1r

+ 6 k2ν τ1
2r4 + 10 k3τ−1ν

2r + 8 k3τ−1ω r − 12 k3τ−1ν r2 + 6 k3τ1ν
3r2 + 8 k3τ1ω

2r + 28 k3τ1ν
2r3

+ 32 k3τ1ω r3 + 12 k3τ1ν r4 − 12 k2νω τ−1τ1 − 12 k2ν2τ−1τ1r + 36 k2νω τ1
2r2 − 24 k2ωτ−1τ1r

+ 4 k3τ1ν
2ω r − 12 k2ν τ−1τ1r2 + 48 k3τ1νω r2 − k3τ−1ν

3 + 4 φ τ1r3 + 6 k2ν τ−1
2 − φ ν τ−1 − 2 φ τ−1r = 0,

3 k2τ−1
2 − φ τ−1 − κ − 6 k3τ−1r2 + φω τ1 + 3 k2τ1

2r4 + 2 k3τ1ω
2 + 3 k2ω2τ1

2

+ 6 k3τ1r4 − k3τ−1ν
2 − 2 k3τ−1ω + 6 φ τ1r2 + 24 k2νω τ1

2r − 24 k2ν τ−1τ1r + 32 k3τ1νω r

− 12 k2ωτ−1τ1 + 36 k2ωτ1
2r2 − 6 k2τ−1τ1r2 − 6 k2ν2τ−1τ1 + 18 k2ν2τ1

2r2 + 6 k3τ−1ν r

+ 4 k3τ1ν
3r + k3τ1ν

2ω + 42 k3τ1ν
2r2 + 48 k3τ1ω r2 + 48 k3τ1ν r3 + 4 φ ν τ1r + 24 k2ν τ1

2r3 = 0,

12 k2ν2τ1
2r + 8 k3τ1νω + 4 φ τ1r − 12 k2τ−1τ1r + k3τ1ν

3 + 28 k3τ1ν
2r + 32 k3τ1ω r + 12 k2τ1

2r3

− 12 k2ν τ−1τ1 + 72 k3τ1ν r2 + 36 k2ν τ1
2r2 + 6 k2νω τ1

2 + 24 k3τ1r3 + φ ν τ1 + 24 k2ωτ1
2r = 0,

7 k3τ1ν
2 + 24 k2ν τ1

2r + φ τ1 + 3 k2ν2τ1
2 − 6 k2τ−1τ1 + 6 k2ωτ1

2

+ 36 k3τ1r2 + 48 k3τ1ν r + 8 k3τ1ω + 18 k2τ1
2r2 = 0,

12 k2τ1
2r + 6 k2ν τ1

2 + 12 k3τ1ν + 24 k3τ1r = 0,

3 k2τ1
2 + 6 k3τ1 = 0.

When Maple handles the created system, the following sets of solutions appear:
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Case 2.1.

τ1 = 0, τ0 = τ0, τ−1 = 2 kr2 − 2 kν r + 2 kω, k = k, κ = 0, φ = −k3Z, r = r. (32)

Case 2.2.

τ1 = τ1, τ0 = τ0, τ−1 = 0, k = −
1
2
τ1, κ = 0, φ =

1
8

Zτ1
3, r = r. (33)

Case 2.3.

τ1 = τ1, τ0 = τ0, τ−1 =
1
4

Zν2τ1, k = −
1
2
τ1, κ = 0, φ =

1
2

Zτ1
3, r =

1
2
ν. (34)

Considering Case 2.1, and using Eqs (9) and (31) with the associated general solution in Eq (8), we
form the given families of soliton solutions for K-XE stated in Eq (1):

Family 2.1.1. In the course of Z > 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,1,1(x, t) =

(
2 kr2 − 2 kν r + 2 kω

)(
r + 1

2

√
Z(ε1 sinh( 1

2

√
Z(kx−k3Zt+γ))+ε2 cosh( 1

2

√
Z(kx−k3Zt+γ)))

ε1 cosh( 1
2

√
Z(kx−k3Zt+γ))+ε2 sinh( 1

2

√
Z(kx−k3Zt+γ)) − 1

2 ν
) + τ0. (35)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,1,2(x, t) =
2 kr2 − 2 kν r + 2 kω

r + 1
2

√
Z coth

(
1
2

√
Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (36)

(iii) In the course of ε1 , 0, ε2 = 0,

s2,1,3(x, t) =
2 kr2 − 2 kν r + 2 kω

r + 1
2

√
Z tanh

(
1
2

√
Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (37)

Family 2.1.2. In the course of Z < 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,1,4(x, t) =

(
2 kr2 − 2 kν r + 2 kω

)(
r + 1

2

√
−Z(−ε1 sin( 1

2

√
−Z(kx−k3Zt+γ))+ε2 cos( 1

2

√
−Z(kx−k3Zt+γ)))

ε1 cos( 1
2

√
−Z(kx−k3Zt+γ))+ε2 sin( 1

2

√
−Z(kx−k3Zt+γ)) − 1

2 ν
) + τ0. (38)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,1,5(x, t) =
2 kr2 − 2 kν r + 2 kω

r + 1
2

√
−Z cot

(
1
2

√
−Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (39)

(iii) In the course of ε1 , 0, ε2 = 0,

s2,1,6(x, t) =
2 kr2 − 2 kν r + 2 kω

r − 1
2

√
−Z tan

(
1
2

√
−Z(kx − k3Zt + γ)

)
− 1

2 ν
+ τ0. (40)
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Family 2.1.3. In the course of Z = 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,1,7(x, t) =
(
2 kr2 − 2 kν r + 2 kω

) (
r +

ε2

ε1 + ε2(kx − k3Zt + γ)

)−1

+ τ0. (41)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,1,8(x, t) =
2 kr2 − 2 kν r + 2 kω

r + (kx − k3Zt + γ)−1
− 1

2 ν
+ τ0. (42)

Considering Case 2.2, and using Eqs (9) and (31) with the associated general solution in Eq (8), we
acquire the given families of soliton solutions for K-XE stated in Eq (1):

Family 2.2.1. In the course of Z > 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,2,1(x, t) = τ0 + τ1

r +
1
2

√
Z

(
ε1 sinh

(
1
2

√
Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
)

+ ε2 cosh
(

1
2

√
Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
))

ε1 cosh
(

1
2

√
Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
)

+ ε2 sinh
(

1
2

√
Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
) −

1
2
ν

 .
(43)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,2,2(x, t) = τ0 + τ1

(
r +

1
2

√
Z coth

(
1
2

√
Z(−

1
2
τ1x +

1
8

Zτ1
3t + γ)

)
−

1
2
ν

)
. (44)

(iii) In the course of ε1 , 0, ε2 = 0,

s2,2,3(x, t) = τ0 + τ1

(
r +

1
2

√
Z tanh

(
1
2

√
Z(−

1
2
τ1x +

1
8

Zτ1
3t + γ)

)
−

1
2
ν

)
. (45)

Family 2.2.2. In the course of Z < 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,2,4(x, t) = τ0 + τ1

r +
1
2

√
−Z

(
−ε1 sin

(
1
2

√
−Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
)

+ ε2 cos
(

1
2

√
−Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
))

ε1 cos
(

1
2

√
−Z(−1

2 τ1x + 1
8 Zτ1

3t + γ)
)

+ ε2 sin
(

1
2

√
−Z(− 1

2 τ1x + 1
8 Zτ1

3t + γ)
) −

1
2
ν

 .
(46)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,2,5(x, t) = τ0 + τ1

(
r +

1
2

√
−Z cot

(
1
2

√
−Z(−

1
2
τ1x +

1
8

Zτ1
3t + γ)

)
−

1
2
ν

)
. (47)

(iii) In the course of ε1 , 0, ε2 = 0,

s2,2,6(x, t) = τ0 + τ1

(
r −

1
2

√
−Z tan

(
1
2

√
−Z(−

1
2
τ1x +

1
8

Zτ1
3t + γ)

)
−

1
2
ν

)
. (48)

Family 2.2.3. In the course of Z = 0,
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(i) In the course of ε1 , 0, ε2 , 0,

s2,2,7(x, t) = τ0 + τ1

r +
ε2

ε1 + ε2(−1
2 τ1x + 1

8 Zτ1
3t + γ)

 . (49)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,2,8(x, t) = τ0 + τ1

(
r + (−

1
2
τ1x +

1
8

Zτ1
3t + γ)

−1

−
1
2
ν

)
. (50)

Considering Case 2.3, and using Eqs (9) and (31) with the associated general solution in Eq (8), we
acquire the given families of soliton solutions for K-XE stated in Eq (1):

Family 2.3.1. In the course of Z > 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,3,1(x, t)

=
1
2

√
Zτ1

(
ε1 cosh

(
1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 sinh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
))

ε1 sinh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 cosh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+τ0 +
1
2

√
Zτ1

(
ε1 sinh

(
1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 cosh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
))

ε1 cosh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 sinh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
) .

(51)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,3,2(x, t) =
1
2

√
Zτ1

coth
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ τ0 +
1
2
τ1

√
Z coth

(
1
2

√
Z(−

1
2
τ1x +

1
2

Zτ1
3t + γ)

)
.

(52)

(iii) In the course of ε1 , 0, ε2 = 0,

s2,3,3(x, t) =
1
2

√
Zτ1

tanh
(

1
2

√
Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ τ0 +
1
2
τ1

√
Z tanh

(
1
2

√
Z(−

1
2
τ1x +

1
2

Zτ1
3t + γ)

)
.

(53)

Family 2.3.2. In the course of Z < 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,3,4(x, t) =
1
2

Zτ1

(
ε1 cos

(
1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 sin
(

1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
))

√
−Z

(
−ε1 sin

(
1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 cos
(

1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
))

+ τ0 +
1
2

τ1
√
−Z

(
−ε1 sin

(
1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 cos
(

1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
))

ε1 cos
(

1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ ε2 sin
(

1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
) .

(54)
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(ii) In the course of ε1 = 0, ε2 , 0,

s2,3,5(x, t) =
1
2

Zτ1
√
−Z cot

(
1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ τ0 +
1
2
τ1

√
−Z cot

(
1
2

√
−Z(−

1
2
τ1x +

1
2

Zτ1
3t + γ)

)
.

(55)

(iii) In the course of ε1 , 0, ε2 = 0,

s2,3,6(x, t) = −
1
2

Zτ1
√
−Z tan

(
1
2

√
−Z(−1

2 τ1x + 1
2 Zτ1

3t + γ)
)

+ τ0 −
1
2
τ1

√
−Z tan

(
1
2

√
−Z(−

1
2
τ1x +

1
2

Zτ1
3t + γ)

)
.

(56)

Family 2.3.3. In the course of Z = 0,
(i) In the course of ε1 , 0, ε2 , 0,

s2,3,7(x, t) =
1
4

Zτ1

1
2
ν +

ε2

ε1 + ε2(−1
2 τ1x + 1

2 Zτ1
3t + γ)

−1

+ τ0 + τ1

1
2
ν +

ε2

ε1 + ε2(−1
2 τ1x + 1

2 Zτ1
3t + γ)

 . (57)

(ii) In the course of ε1 = 0, ε2 , 0,

s2,3,8(x, t) =
1
4

Zτ1(−
1
2
τ1x +

1
2

Zτ1
3t + γ) + τ0 +

τ1

(−1
2 τ1x + 1

2 Zτ1
3t + γ)

. (58)

4. Graphical discussion

In this research paper, we display the frameworks of the several wave types contained in the model.
Two refined versions of the (G′

G )-expansion approach were used to extract and clearly demonstrate
wave patterns for solitons in 2D, contour and 3D forms. Gaining a knowledge of these notions is
necessary to comprehend the behavior of linked physical events. It is anticipated that the found soliton
solutions would greatly advance our understanding about the model’s underlying behavior. Moreover,
it is illustrated visually that the solitons display kink-type behaviors such as solitary kink, anti-kink,
dark-bright kink, periodic kink, multiple kink and dark kink in the K-XE scenario. In the realm of
K-XE, a soliton is an autonomous wave that moves through the medium without altering its form or
speed. The stability and self-organizing ability of these waves is widely known, even after they collide
and interact with other comparable solitons. A kink type soliton is a localized wave that exhibits
discontinuity or phase change. It is distinguished by abrupt changes in phase or state, resembling a
step or kink-like patterns in the profile.

The K-XE is related to curve differential geometry and is essential to comprehending solitons’
behavior in nonlinear systems. The given equation captures the geometric characteristics and
equivalency classifications of curves in a range of physical models, resulting in a variety of kink
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solitons in the K-XE scenario, including solitary, dark, dark-bright, anti-, multiple, and periodic
kinks. Every kind of soliton embodies a distinct geometrical and physical characteristic that provides
information about nonlinear wave processes in a variety of scientific domains. With its foundations
in differential geometry, the K-XE offers a flexible framework for comprehending these solitonic
tendencies. A solitary kink soliton is an example of a confined, smoothed waveform that alternates
between two different asymptotic phases. It features an individual transitioning point and an established
framework. A kink soliton of this kind results from the interaction of dispersion and nonlinear
processes. This model’s curve shape makes it possible to allow such a shift to happen seamlessly.
The term ”solitary kink” in differential geometry refers to a shift in a surface’s or curve’s curvature
when the soliton travels across the geometry with no dissipating. In studying the phenomenon of
transitions in phase, which are the shifts between two distinct states of a system devoid of oscillatory
activity, this soliton is important. It frequently simulates fluid interfaces or magnetic domain barriers.
A dark kink soliton is defined by a zone of dropped wave magnitude (a trough) which splits two steady
surroundings states. The variation of the system’s curvature in the K-XE causes dark kinks, and the
soliton is a confined decrease in wave amplitude. Geometrically stated, the dark kink is the result
of a wave dipping into a low-energy state, smoothing or reducing the shape of the curve. In optical
structures, Bose-Einstein condensates, and fluid mechanics, dark kinks are important because they
symbolize phase shifts or transition in areas with little density. A combined soliton with bright patches
around a dark zone (the depletion in wave intensity) (the elevation in waveform amplitude) is called a
dark-bright kink. This soliton frequently entails the interplay of two distinct wave modes. The K-XE’s
shape permits both dark and light constituents to coexist inside of an individual soliton framework,
balancing the differential curvature of several interacting curves. These solitons play a crucial role in
multi-component systems where diverse modes interplay to form confined nanostructures with distinct
potential states, such are linked optic fibers or plasma dynamics. Dark-bright kinks, for example,
simulate the connection between varying light concentrations in optical networks, where a particular
mode is in a low-energy phase (dark) while the other one is in a high-energy phase (bright). The
reverse of a solitary kink is called an anti-kink soliton. It denotes a change in direction when the wave,
following an initial disturbance, returns to its starting condition. The solution when the underlying
geometric curve’s curvature flips or flips orientation is known as the anti-kink. It demonstrates the
structure’s symmetry and balances the solitary kink. The anti-kink in curve geometry is an inversion
in a curve’s pitch or flexing, resulting in a reverse transition. Multiple kinks that occur sequentially,
signifying various state transitions, are represented by multiple kink soliton structures. The ability of
the K-XE framework to characterize the interactions between various curvature transitions implies the
presence of many kink solutions. A sequence of abrupt changes in a curve’s or surface’s curvature
when the system switches between distinct geometric configurations is represented by many kinks
in differential geometry. Such solitons represent numerous intersections or transitioning between
various areas, and are used to describe complicated, multistate entities such as multilayer mediums or
multi-domain magnetized systems. Finally, a periodic kink soliton is characterized by an oscillating,
repeating pattern in which the kink recurs throughout either space or time. Because of the K-XE’s
intrinsic symmetry and boundary requirements, which let kink flips to reoccur, the kink soliton exhibits
periodicity. From a geometric perspective, this denotes a recurring periodic modulation in a surface’s or
curve’s curvature. Systems have periodic potentials, such as crystals or waveguides that have periodic
kinks because of the geometry of the lattice or exogenous periodic forces that cause solitons to travel
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in a predictable, repeating manner.

Remark 1. Figure 1 is presented for s1,1,3(x, t) in Eq (17) which shows kink soliton profile.

Figure 1. These 3-D, contour and 2-D (when t = 0) plots of the kink soliton solution s1,1,3,
expressed in Eq (17), are depicted for ν = 10;ω = 16, γ = 0.0001, k = 0.001, τ0 = 0.00075.

Remark 2. Figure 2 is presented for s1,1,5(x, t) in Eq (19) which shows the dark-bright kink soliton
profile.

Figure 2. These 3-D, contour and 2-D (when t = 1) plots of the kink soliton solution s1,1,5,
expressed in Eq (19), are depicted for ν = 2, ω = 3, γ = 0.005, k = 0.0002, τ0 = 0.0001.

Remark 3. Figure 3 is presented for s1,2,3(x, t) in Eq (25) which shows the kink soliton profile.
Remark 4. Figure 4 is presented for s1,2,6(x, t) in Eq (28) which shows the multiple periodic-kink
soliton profile.
Remark 5. Figure 5 is presented for s2,1,2(x, t) in Eq (36) which shows the dark-bright kink
soliton profile.
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Figure 3. These 3-D, contour and 2-D (when t = 1) plots of the kink soliton solution s1,2,3,
expressed in Eq (25), are depicted for ν =

√
(5), ω = 1, γ = 2, k = 1, τ0 = 20.

Figure 4. These 3-D, contour and 2-D (when t = 10) plots of the kink soliton solution s1,2,6,
expressed in Eq (28), are depicted for ν = 2, ω = 5, γ = 0.002, k = 0.003E, τ0 = 0.005.

Figure 5. These 3-D, contour and 2-D (when t = 0) plots of the kink soliton solution s2,1,2,
expressed in Eq (36), are depicted for ν = 5, ω = 4, k = 0.001, γ = 0.00001, r = 0.045, τ0 =

0.0010.
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Remark 6. Figure 6 is presented for s2,1,3(x, t) in Eq (37) which shows the anti-kink soliton profile.

Remark 7. Figure 7 is presented for s2,2,1(x, t) in Eq (43) which shows the kink soliton profile.

Remark 8. Figure 8 is presented for s2,2,4(x, t) in Eq (46) which shows the kink soliton profile.

Remark 9. Figure 9 is presented for s2,3,3(x, t) in Eq (53) which shows the kink soliton profile.

Remark 10. Figure 10 is presented for s2,3,5(x, t) in Eq (55) which shows the dark-kink soliton profile.

Figure 6. These 3-D, contour and 2-D (when x = 10) plots of the kink soliton solution s2,1,3,
expressed in Eq (37), are depicted for ν = 10, ω = 16, k = 3, γ = 5, r = 10, τ0 = 15.

Figure 7. These 3-D, contour and 2-D (when t = 0.1) plots of the kink soliton solution s2,2,1,
expressed in Eq (43), are depicted for ν = 5, ω = 1, γ = 0.0004, r = 1, τ1 = 0.0075, τ0 =

0.001, ε1 = 0.005, ε2 = 0.0010.
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Figure 8. These 3-D, contour and 2-D (when t = 0) plots of the kink soliton solution s2,2,4,
expressed in Eq (46), are depicted for ν = 1, ω = 3, γ = 0.0005, r = 1, τ1 = 0.01, τ0 =

0.005, ε1 = 3, ε2 = 4.

Figure 9. These 3-D, contour and 2-D (when t = 0) plots of the kink soliton solution s2,3,3,
expressed in Eq (53), are depicted for ν = 13, ω = 36, γ = 1, r = 2, τ1 = 3, τ0 = 5, ε1 =

10, ε2 = 20.

Figure 10. These 3-D, contour and 2-D (when t = 0.5) plots of the kink soliton solution
s2,3,5, expressed in Eq (55), are depicted for ν = 0, ω = 4, γ = 0, τ1 = 0.00010, τ0 = 0.00005.

AIMS Mathematics Volume 9, Issue 11, 30153–30173.



30170

5. Conclusions

In order to address the crucial integrable model that explains the differential geometry of curves
and equivalence aspects dubbed K-XE, two updated variations of the (G′

G )-expansion approach were
employed in this work namely the simple (G′

G )-expansion method and the generalized (r+ G′
G )-expansion

method. Using the recommended methods, the single NODEs that the model produced are solved in
sequence. Next, we transformed this solution into a system of nonlinear algebraic equations, leading
to new families of soliton solutions that are essential to understanding the model from a physical
perspective. Several 3-D, 2-D, and contour graphs demonstrated that the acquired solitons likely take
the structures of kink solitons prominently. The work highlights the potential consequences for several
practical applications in the associated domains and demonstrates how the proposed methodologies
may be utilized to generate families of soliton solutions for nonlinear models. Additionally, compared
to the simple (G′

G )-expansion method, the generalized (r + G′
G )-expansion method can be considered

more efficient because it yields a large number of fresh plethora of soliton solutions that contribute
to our comprehension and help to make sense of the complex dynamics of the model. Although the
(G′

G )-expansion method has greatly advanced our knowledge of soliton dynamics and how they relate to
the models we study, it is crucial to recognize the method’s shortcomings, especially now the proposed
method fails in cases where the highest derivative term and nonlinear term cannot be balanced. Despite
this drawback, the current study shows that the approach used in this work is very robust, portable, and
effective for nonlinear issues across a range of natural science fields. Moreover, the future goal of this
investigation is to delve into the stability analysis of solitons and the incorporation and impact of the
fractional derivatives on solitons in the realm of the aimed model.
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