
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(11): 30122–30152.
DOI: 10.3934/math.20241455
Received: 25 July 2024
Revised: 04 October 2024
Accepted: 10 October 2024
Published: 23 October 2024

Research article

Linguistics complex intuitionistic fuzzy aggregation operators and their
applications to plastic waste management approach selection

Sumaira Yasmin1, Muhammad Qiyas1, Lazim Abdullah2,* and Muhammad Naeem3

1 Department of Mathematics, Riphah International University Faisalabad Campus, Pakistan
2 Programme of Mathematics, Faculty of Ocean Engineering Technology and Informatics, Universiti

Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
3 Department of Mathematics Deanship of Applied Sciences Umm Al-Qura University, Makkah,

Saudi Arabia

* Correspondence: Email: lazim m@umt.edu.my.

Abstract: Linguistic complex intuitionistic fuzzy aggregation operators are a novel idea for the
description of intuitionistic fuzzy information, where linguistic complex concepts are used to
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some findings on linguistic complex intuitionistic fuzzy aggregation operators have been attained.
Nonetheless, several linguistic complex intuitionistic fuzzy aggregation operators in the literature are
founded on conventional operational principles, which have certain limitations when used to multi-
attribute group decision-making (MAGDM). In this study, we presented some improved operating
rules based on linguistic complex intuitionistic fuzzy variables (LCIFVs) and changed their features to
address these issues. Next, we created a few aggregation operators, such as the enhanced linguistic
complex intuitionistic fuzzy weighted average (LCIFWA) and the linguistic complex intuitionistic
fuzzy ordered weighted averaging (LCIFOWA) operator, to fuse the decision information represented
by LCIFVs. We also demonstrated that they had a few favorable qualities. We introduced many novel
approaches to address the MAGDM issues in the context of the linguistic complex intuitionistic fuzzy
environment, based on the LCIFOWA and linguistic complex intuitionistic fuzzy ordered weighted
geometric (LCIFOWG) operators. In short, we employed few real-world scenarios to demonstrate the
viability and soundness of the suggested techniques through comparison with other approaches. This
unique technique has been applied to plastic waste management selection, and the results are more
accurate than the previously used materials and methods.
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1. Introduction

In everyday life, complications in systems are growing; therefore, the executives and decision
makers are facing difficulties for achieving the best option from a set of possibilities. Many
organizations found difficulties in setting motivational goals and removing opinion complications. It
is difficult to obtain single objectives to summarize but not impossible. Different organizations have
numerous objectives and are facing many uncertainties, ambiguities, and vagueness in the data
regarding the solution of practical problems, which restricts the decision makers to get the reliable
and applicable technique to find the finest option.

The crisp and classical methods could not always be effective for solving the problems of decision
making with regard to ambiguous and uncertain data; thus, fuzzy set, as characterized by Zadeh [1]
in 1965, are used to deal with these situations. Fuzzy sets part of degree having a place to [0, 1].
Fuzzy sets have been generally utilized in choice investigation, financial matters, hazard evaluation,
and expectation, particularly in the design and administration areas. Allehiany et al. [2] developed a
Bio-inspired numerical analysis of COVID-19 with fuzzy parameters. Talpur et al. [3] wrote
comprehensive review of deep neuro-fuzzy system architectures and their optimization methods.
Moreover the fuzzy sets theory and logic are powerful tools to represent reasoning with uncertain
information; however, but traditional fuzzy sets are restricted to express membership degrees in terms
of real numbers between 0 and 1. Deabes and Amin [4] suggested an image reconstruction algorithm
based on a PSO-tuned fuzzy inference system for electrical capacitance tomography. Zadeh [5] also
presented an idea about linguistics fuzzy sets in 1975 and valuable contribution in linguistic variables
by allowing fuzzy sets in natural language terms like “high”, “medium”, and “low”. This makes fuzzy
sets more interpretable and intuitive, particularly in areas where humans naturally express uncertainty
using language. In 1986, Atanassov [6] presented IFSs (intuitionistic fuzzy sets) by adding
non-membership degrees with the membership degrees, with a more nuanced uncertainty
representation. The work of Huimin [7] on applications of linguistic intuitionistic fuzzy sets in
multi-attribute group decision-making (MAGDM) appeared in 2014; before that, Ramı́k et al. [8]
introduced complex fuzzy sets in 2000 to expand upon traditional fuzzy sets by integrating complex
numbers as relationship degrees. This permits the inclusion of data regarding phase and magnitude,
which can be valued to represent oscillatory or periodic phenomena. Wan et al. [9] proposed an
innovative use of intuitionistic fuzzy reference evaluations to expand the best-worst technique.
Dai [10] provided a remarkable extension in the work of Ramı́k et al. [8] linguistic complex fuzzy
sets. Bio et al. [11] marvelous work in the domain aggregation operators of the linguistic
interval-valued intuitionistic fuzzy sets based on Hamacher’s extended t-norm and s-norm along with
their applications. These two concepts formed a unique section of fuzzy set, titled as “LIFSs”
(linguistic intuitionistic fuzzy sets), which offered an influential context for dealing with complex and
uncertain information in various fields of life. Zenga et al. [12] introduced a new operator with an
application in intuitionistic fuzzy sets for the decision making process.

Wan et al. [13] worked on Group decision-making via intuitionistic fuzzy preference relations:
Theory and methodology. Rahman et al. [14] launched a specific process for multi group
decisions-making by introducing geometric operators of aggregation with applications on the basis of
Pythagorean fuzzy Einstein operators. Yang et al. [15] wrote a remark on using Pythagorean fuzzy
sets to extend the “technique for order of peference by similarity to ideal solution” for multiple
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criteria decision-making. Yager et al. [16], presented procedures for decision making by relating
complex numbers with Pythagorean membership degrees. Phong et al. [17] worked on picture
linguistic numbers for multiple decision making criteria. Wei [18], worked on decision-making
process by focusing on picture fuzzy sets based on Hamacher’s operators for aggregation with
applications. Garg [19] pointed out Einstein operations in decision-making regarding Pythagorean
fuzzy information. Ashraf et al. [20] formulated different approaches in decision-making issues using
the environment of picture fuzzy sets. Wang et al. [21] first focused on geometric operators for
aggregation in picture fuzzy environment in the domain of decision making process; second, Wang
et al. [22] also gave attention to the decision-making process, especially for incomplete specific
information regarding weights, and their concepts were based on Atanassov’s intuitionistic fuzzy sets.
Gautam et al. [23] used technique for order of peference by similarity to ideal solution in intuitionistic
fuzzy sets. Deschrijver [24], in the domain of the decision-making procedure, represented t-norms
and t-conorms of intuitionistic fuzzy sets. Zeng [25] made relationships between Intuitionistic fuzzy
sets and distance operator of ordered weight, and Ye [26] researched the connection of intuitionistic
fuzzy set’s applications with cosine similarity measures [27]. Selecting a location for a solar power
plant was done using a combined methodology for difficult homogeneous multi-attribute collaborative
decision-making. In the proposed research study, novel decisions-making approaches based on
linguistics complex intuitionistic fuzzy aggregation operators and their applications will be a valuable
outcome of the applications of fuzzy sets, knowledge, logic, and theory. Garg et al. [28], used set pair
analysis in the group decision-making process with special reference to operators for aggregation and
applications in the intuitionistic fuzzy set. Tang et al. [29] worked on Hamacher’s aggregation
operators in the linguistic intuitionistic fuzzy environment. At first, Liu et al. [30] worked for a
decision-making process by focusing on applications of the linguistic intuitionistic fuzzy sets; second,
Liu et al. [31] introduced some improved aggregation operators in the same domain along with
applications for decision-making to multiple attributes. Xu [32] introduced linguistic aggregation
operators with preference to linguistic relations. Xu’s [33] work was also decision-making process
related to the approaches to ungroup linguistic environment based on aggregation operators of the
linguistic intuitionistic fuzzy sets. Abrar Hussain et al. [34] developed the Sugano-Weber triangular
norm-based q-rung orthopair fuzzy information approach to solar panel selection decision-making.
Wan et al. [35] presented a brand-new intuitionistic fuzzy best-worst technique that uses intuitionistic
fuzzy preference relations for group decision-making. Dong et al. [36] provided an additively
consistent interval-valued intuitionistic fuzzy best-worst technique. Wan et al. [37] outlined a
comprehensive approach for complex heterogeneous multi-attribute group decision-making and its
use in the site selection of solar power plants. Wan et al. [38] developed a heterogeneous
multi-criterion group decision-making process based on trapezoidal clouds for the selection of multi
modal transport paths for containers. Wang et al. [39] contributed to the use of complex intuitionistic
fuzzy Dombi prioritized aggregation operators for robust green supplier selection. Hussain et al. [40]
contributed to the creation of an intelligent decision support system for real-world applications and
Spherical fuzzy Sugino-Weber aggregation operators. Wang et al. [41] illustrated the use of fuzzy
Dombi prioritization and complex intuitionistic aggregation operations for robust green supplier
selection. Asif et al. [42] specified Hamacher aggregation operators for Pythagorean fuzzy sets and
their use in problems involving several attributes for decision-making. Kannan et al. [43] undertook
work on the linear Diophantine fuzzy CODAS method for the Logistic specialist selection, an
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advanced kind of fuzzy-based decision-making. Imran et al. [44] described an Aczel-Alsina
Bonferroni means and interval-valued intuitionistic fuzzy information-based multi-criteria group
decision-making.

For this study, linguistic complex intuitionistic fuzzy sets (LCIFSs) are on the extension of linguistic
intuitionistic fuzzy sets into the complex domain to enable a more nuanced illustration of ambiguity
and uncertainty in linguistic terms. LCIFSs are an association of linguistic variables with complex-
valued relationship degrees to provide a powerful structure for reasoning and representing the complex,
oscillatory, and ambiguous data in various real-world applications.

The major objectives are listed in the following points:
(1) To define the basic concept of LCIFSs and to explore basic operation laws of LCIFSs.
(2) To develop the basic results of LCIFSs and explore associated properties.
(3) To propose aggregation operators based on linguistic complex intuitionistic fuzzy operation

laws.
(4) To develop a new multi-attribute group decision-making approach to solve a decision making

problem.
(5) To generalize the existing notions to some advanced ideas and make them applicable in real life

problems.
(6) To develop new results and notions, discuss their applications, and compare the results obtained

with the existing theory.
This research article is organized as follows: In Section 2, we present preliminaries consist of

some basic definitions, such as fuzzy sets, linguistic terms, complex fuzzy sets, linguistic intuitionistic
fuzzy sets, linguistic intuitionistic fuzzy variables (LIFVs), and score functions. In Section 3, a new
concept of LCIFSs, is introduced, which contains definitions as well as linguistic complex
intuitionistic fuzzy aggregation operators and applications for LCIFSs, where method of normal
distribution are used to determine the weights of linguistic complex intuitionistic fuzzy ordered
weighted averaging (LCIFOWA) and linguistic complex intuitionistic fuzzy ordered weighted
geometric (LCIFOWG). In Section 4, the operators and applications are used to solve problems of
MAGDM. In Section 5, numerical analysis of decision-making problems has been illustrated. Finally,
we conclude the study in Section 6.

2. Preliminaries

Definition 2.1. [1] Assume that A is a set that is not empty. Then, the fuzzy set X in A is defined as:

X = {a, sa(x)|a ∈ A}. (2.1)

The membership function of A is denoted by sa(x) in this case. i.e., sa(x): A → [0, 1] represents the
degree of membership function of A.

Definition 2.2. [11] Let
A = {a0, a1, . . . , at}

be a finite linguistic term where at has the following properties:
i) The ordered set: a j ≥ ak iff j ≥ k;

ii) N
(
a j

)
= at− j;
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iii) Max
(
a j, ak

)
= amax( j,k);

iv) Min
(
a j, ak

)
= amin( j,k).

The Linguistic fuzzy set approach depends on fuzzy logic and fuzzy sets theory. Here, variables
represent the linguistic terms. Every linguistic term is differentiated by a unique meaning and label.

The meaning and label stands for the fuzzy subset and the sentence of a language, respectively.

Definition 2.3. [5] Assume that A is a set that is not empty. Then, IFS X in A is defined as:

X = {⟨a, sa, ra⟩ |a ∈ A}, (2.2)

such that; sa: A → [0, 1] and ra: A → [0, 1] indicate the level of membership and non-membership of
“a” in X, respectively, for all any a ∈ A,

0 ≤ sa + ra ≤ 1.

Definition 2.4. [8] Let A be a universal set then complex fuzzy set X is defined as:

X = {a, sx(a)eiwx(a) |a ∈ A}, (2.3)

where S x(a) ∈ [0, 1]; and wx(a) ∈ [0, 2π].

Definition 2.5. [7] Let A be universal set which is finite and

S ◦ = {sβ|s0 < sβ < st; β ∈ [0; t]}

be an ongoing collection of linguistic value set. A LIFS X in A is defined as,

X = {(a, sl(a), sm(a))|a ∈ A}, (2.4)

where sl(a); sm(a) ∈ S ◦ define the term’s linguistic membership and non-membership degrees a to X,
respectively. For any a ∈ A, the condition

0 ≤ l + m ≤ t

is every time satisfied. ψ(a) stands for degree of linguistic indeterminacy a to

X : ψ(a) = st−l−m.

Obviously, if
l + m = t,

then (LIFS ) X contains the lowest degree of linguistic indeterminacy, so

ψ(a) = s0,

which shows that the degree of membership (a to X) can be expressed a unique linguistic value, and
X(LIFS ) has been reduced into a linguistic variable. Inversely, if

l = m = 0,
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then (LIFS ) X has the largest degree of linguistic indeterminacy,

ψ(a) = st.

As with IFS, the (LIFS ) X(a) can be converted into an interval of linguistic variable [sl(a), st−m(a)].
This indicates that the terms’ maximum and minimum linguistic membership degrees a to X are st−m

and sl, respectively. Linguistic intuitionistic fuzzy values “LIFVs” are the unique element that both
“LIFS ” X and Y are supposed to have for notational simplicity, meaning the pairs

X = (sl; sm)

and
Y = (sp; sq).

For comparability of any two LIFVs, the score and the accuracy functions could be defined as under:

Definition 2.6. [7] Let
X = (sl, sm)

and
Y = (sp, sq)

be two LIFVs, with
sl, sm, sp, sq ∈ S ◦ = {sβ|s0 < sβ < st; β ∈ [0; t]}.

Then, score function of X could be defined as,

E(X) = s(t+l−m)/2 (2.5)

and accuracy function of X could be defined as,

F(X) = sl+m. (2.6)

If
0 ≤ (t + l − m)/2 ≤ t

and
0 ≤ l + m ≤ t,

which implies
s(t+l−m)/2, sl+m ∈ S ◦.

2.1. LCIFS

The following is a presentation of the LCIFS.

Definition 2.7. Let A be a finite universal set,

Š = {sb|s0 < sb < st; b ∈ [0, t]},

where Š a continuous linguist value set. Then,

X = {a, sx(a)eiwx(a) , sy(a)eiwy(a) |a ∈ A}, (2.7)
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where sx(a), sy(a) ∈ [0, 1] and wx(a),wy(a) ∈ [0, 2π] called linguistic complex intuitionistic set, i.e., fuzzy.

Definition 2.8. Let A be a finite universal set and

Š = {sαeiwa |s0eiw0 < sαeiwα < steiwt ;α ∈ [0; t]}

a continuous complex linguistic term set X. Then, LCIFS X in A is given as,

X = {(a, sl(a)eiwl(a) , sm(a)eiwm(a) |a ∈ A)}, (2.8)

where sl(a)eiwl(a) , sm(a)eiwm(a) ∈ S stands for the degrees of linguistic complex membership and
nonmembership of X to A, respectively. For any a ∈ A, the condition

0 ≤ l + m ≤ t

is usually satisfied. Ω (a) is defined as the degree of linguistic complex indeterminacy of A in X, such
that

Ω (a) = st−l−met−l−m,

of course, if
l + m = t,

then (LCIFS) X possesses the smallest degree of linguistic complex indeterminacy, Ω (a) = 0, which
shows that the membership degree of A to X with precision can be presented with a unique linguistic
complex value and (LCIFS) X is decreased to a linguistic complex variable. Conversely, if

l = m = 0,

then (LCIFS) X possesses the largest degree of linguistic complex indeterminacy,

Ω (a) = steiwt .

Similar to ICFS, the (LCIFS) X (a) can be transformed into a linguistic complex variable interval
[sl (a) eiwl(a), st−m (a) eiwt−m(a)]. This suggests that the items at X have both maximum and minimum
linguistic complex membership degrees st−meiwt−m and sleiwl respectively.

For conceptual simplicity, we assume both (LCIFS) A and B, which consist only unique element,
and stand for linguistic complex intuitionistic fuzzy values (LCIFVs), that is, if

A = (sleiwl , smeiwm)

and
B = (speiwp , sqeiwq).

For comparability, for any two LCIFVs, the functions for accuracy and score could be described as
follows:

Definition 2.9. Let
X = (sleiwl , smeiwm)

and
Y = (speiwp , sqeiwq)
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be two LCIFVs, with

sleiwl , smeiwm , speiwp , sqeiwq ∈ S ◦ = sαeiwα |s0eiw0 < sαeiwα ≤ steiwt , α ∈ [0, t] .

Then, the score function of X is determined as,

E (X) = s(t+l−m)/2eiw(t+l−m)/2 . (2.9)

Then, the accuracy function is as follows:

F (X) = sl+meiwl+m (2.10)

Thus, the ranking procedure can be applied to X and Y, as follows:

(1) If E (X) > E (Y) , then X > Y;

(2) If E (X) = E (Y) and
(a) F (X) = F (Y) , then X = Y;
(b) F (X) > F (Y) , then X > Y;
(c) F (X) < F (Y) , then X < Y.

It is obvious that,
0 ≤ (t + l − m)/2 ≤ t and 0 ≤ l + m ≤ t. (2.11)

This implies
s(t+l−m)/2eiw(t+l−m)/2 , sl+meiwl+m ∈ S . (2.12)

3. Aggregation operators for LCIFSs

Definition 3.1. If
A =

{(
a, sleiwl , smeiwm

)}
and

B =
{(

b, speiwp , sqeiwq
)}

be two LCIFSs where a, b ∈ X, sl, sm,sp,sq ∈ [0, 1] and wl,wm,wp,wq ∈ [0, 2π] , then A = B iff

a = b, sleiwl = speiwp

and
smeiwm = sqeiwq .

(1) A ∩ B = {min
(
sleiwl , speiwp

)
,max

(
smeiwm , sqeiwq

)
}.

(2) A ∪ B =
{
max

(
sleiwl , speiwp

)
,min

(
smeiwm , sqeiwq

)}
.

(3) Ac =
(
smeiwm , sleiwl

)
, where Ac is complement of A.

We ascertain the following parameters of operation for linguistic complex terms, which are induced
by the t-co-norm and the t-norm.
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Definition 3.2. Assume any two terms of the linguistic complex. Assume any two terms of the
linguistic complex, that is sαeiwα , sβeiwβ ∈ S ◦, where

S ◦ =
{
sr|s0 < sr < sr∀r ∈ [0, 1] and wα,wβ ∈ [0, 2π]

}
,

the additive and multiplicative operation can be defined as,

sαeiwα ⊗ sβeiwβ = sβeiwβ ⊗ sαeiwα = stΥ(α/t,β/t)eiwtΥ(α/t,β/t) , (3.1)
sαeiwα ⊕ sβeiwβ = sβeiwβ ⊕ sαeiwα = st(α/t,β/t)eiwt(α/t,β/t) . (3.2)

The t-norm and t-conorm can be represented by Υ(α/t, β/t) and (α/t, β/t), respectively. Since
(α/t, β/t), Υ (α/t, β/t) ∈ [0, 1] , we have t (α/t, β/t) , tΥ (α/t, β/t) ∈ [0, t] .

This implies that the, results of operation are identical to the linguistic complex values set S ◦ in the
original sense; that is, st(α/t,β/t), stΥ(α/t,β/t) ∈ S ◦. Additionally, we can clearly state that based on the
monotonicity of the t-norm and t-conorm, the terms of function t (α/t, β/t) and tΥ (α/t, β/t)
monotonically increase with the increase of the values of α and β, which shows the obtained
operational results.

Then, S ζ(α/t,β/t) and Tζ(α/t,β/t) into (3.1) and (3.2) respectively, so we obtain

sαeiwα ⊗ sβeiwβ = sβeiwβ ⊗ sαeiwα (3.3)

= st(αβ/t2)e
iw

t(αβ/t2) = sαβ/teiwαβ/t

and

sαeiwα ⊕ sβeiwβ = sβeiwβ ⊕ sαeiwα (3.4)

= st(α/t∔β/t−αβ/t2)e
iw

t(α/t∔β/t−αβ/t2) = sα∔β−αβ/teiwα∔β−αβ/t .

Example 3.1. Let
S ◦ =

{
sβeiwβ |soeiwβ ≺ sβeiwβ ≺ s8eiw8 , β ∈ [0, 8]

}
applying (3.3) and (3.4) we obtain

s4eiw4 ⊗ s6eiw6 = s 24
8

e
iw 24

3 = s3eiw3

and
s

4eiw4⊕s6eiw6 = s4∔6− 24
8

e
iw4∔6− 24

8 = s7eiw7 ,

thus
s4eiw8

⊗s6eiw6 ≺ s5eiw5
⊗ s7eiw7

and
s4eiw4 ⊕ s6eiw6 ≺ s5eiw5 ⊕ s7eiw7 .

Alternatively, if we take the operational laws of the previous definition, then we have

s4eiw4⊗ s6eiw6 = s24eiw24 < S ◦ and s4eiw4 ⊕ s6eiw6 = s10eiw10 < S ◦.
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The cardinality of subscripts s10 and s24 is larger than the cardinality of linguistic complex value
set. Furthermore, if we accept the discrete term set S to continuous

S ◦
/

=
{
sβ|β ∈ [0, r]

}
,

where r (r > t) is sufficiently large positive integer, there is a question (unavoidable) for how to define
the semantics for s24eiw24 and s10eiw10 “clearly” s24eiw24 and s10eiw10 have distinct meanings in various
linguistic complex term set S ◦ that have various cardinalities. If we use the most common method

sαeiwα ⊗ sβeiwβ = min
{
sαβeiwαβ , steiwt

}
,

sαeiwα ⊕ sβeiwβ = min{sα∔βeiwα∔β , steiwt}.

For
sαeiwα , sβeiwβ ∈ S ◦ =

{
sreiwr |sreiwr ≺ soeiw0 ≺ steiwt , r ∈ [0, t]

}
,

then,

s4eiw4 ⊗ s6eiw6 = s5eiw5 ⊗ s7eiw7 = s8eiw8 ,

s4eiw4 ⊕ s6eiw6 = s5eiw5 ⊕ s7eiw7 = s8eiw8 ,

these observations contradict the facts that may be hard to apply. We can conquer the limitation that
the subscripts of the linguistic complex variables are of larger cardinality than the linguistic complex
term set S ◦. We can achieve outcomes that agree with our intuition.

Definition 3.3. Let
A = (sleιwl , smeιwm)

and
B =

(
speιwp , sqeιwq

)
be two linguistic complex intuitionistic fuzzy values, where

sl, sm, sp, sq ∈ [0, 1]

and
wl,wm,wp,wq ∈ [0, 2π]

with λ ≻ 0. Now,

λA =
(
st(1−(1−l/t)λ)e

ιw
t(1−(1−m/t)λ) , st(m/t)λe

ιwt(m/t)λ
)
, (3.5)

Aλ =
(
st(l/t)λe

ιwt(l/t)λ , st(1−(1−m/t)λ)e
ιw

t(1−(1−m/t)λ)
)
. (3.6)

Some examples of λA and Aλ are obtained as given below:

A =
(
s0eιw0 , steiwt

)
,

λA = (st(1−(1−0/t)λ)e
iw

t(1−(1−0/t)λ) , st(t/t)λe
iwt(t/t)) = (s0eiw0 , steiwt),

Aλ =

(
st(0/t)λeiwt(0/t) ,st(1−(1−t/t))e

iw
t(1−(1−t/t)λ)

)
=

(
s0eiwo , steiwt

)
,
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λA = Aλ.

If (
sleiwl , smeiwm

)
=

(
s0eiw0 , s0eiw0

)
,

then,

λA =
(
s

0
(
1−(1− 0

t )
λ
)eiλw(

1−(1− 0
t )λ

)
, s0( 0

t )
λe

iw( 0
t )λ

)
=

(
s0(1−1)λe

iλw0 , s0(0)λe
iλw0

)
=

(
s0eiλw0 , s0eiλw0

)
,

Aλ =

(
s0( 0

t )
λe

iw( 0
t )λ , s

0
(
1−(1− 0

t )
λ
)eiλw(

1−(1− 0
t )λ

))
=

(
s0eiλw0 , s0eiλw0

)
.

Therefore
λA = Aλ.

If

λA =
(
s

0
(
1−(1− 0

t )
λ
)eiλw(

1−(1− 0
t )λ

)
, s0( 0

t )
λe

iw( 0
t )λ

)
=

(
steiwt , s0eiw0

)
,

Aλ =

(
s0( 0

t )
λe

iw( 0
t )λ , s

0
(
1−(1− 0

t )
λ
)eiλw(

1−(1− 0
t )λ

))
=

(
s0eiw0 , steiwt

)
.

If λ→ ∞ then,

λA =
(
st(1−(1−0/t)λ)e

iw
t(1−(1−0/t)λ) , st(t/t)λe

iwt(t/t)

)
= steiwt , s0eiw0 ,

Aλ =
(
st(o/t)λeiwt(0/t) ,st(1−(1−t/t))eiw

)
=

(
s0eiw0 , steiwt

)
.

Theorem 3.1. Let
A = (sleιwl , smeιwm)

and
B =

(
speιwp , sqeιwq

)
be two linguistic complex intuitionistic fuzzy values, where

sl, sm, sp, sq ∈ S ◦ =
{
sαeiwα |s0eiw0 ≺ sαeiwα ≺ steiwt∀α ∈ [0, t]

}
with λ, λ1, λ2 ≻ 0. Now,
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(1) λ (A ⊕ B) = λA ⊕ λB;

(2) λ1A ⊕ λ2B = (λ1 + λ2)A;

(3) Aλ ⊗ Bλ = (A ⊗ B)λ;

(4) Aλ1 ⊗ Aλ2 = Aλ1+λ2 .

Proof. (1) We have
A ⊕ B =

(
s(l+p−lp/t)eιw(l+p−lp/t) , smq/te

ιwmq/t
)
,

we obtain

λ (A ⊕ B) =
(
st(1−(1−(l+p−lp/t)/t)λe

ιwt(1−(1−(l+p−lp/t)/t)λ , s
t((mq/t)/t)λ

eιwt((mq/t)/t)λ/t
)

=
(
st(1−(1−l/t)λ(1−p/t)λ)e

ιw
t(1−(1−l/t)λ(1−p/t)λ) , s

t(m/t)λ(q/t)λ
eιwt(m/t)λ(q/t)λ

)
.

Similarly

λA =
(
st(1−(1−l/t)λ)e

ιw
t(1−(1−l/t)λ) , st(m/t)λe

ιwt(m/t)λ
)
,

λB =
(
st(1−(1−p/t)λ)e

ιw
t(1−(1−p/t)λ) , st(q/t)λe

ιwt(q/t)λ
)
,

λA ⊕ λB =


st(1−(1−l/t)λ+t(1−(1−p/t)λ−t(1−(1−l/t)λ)(1−(1−p/t)λ)

e
ιw(1−(1−l/t)λ+t(1−(1−p/t)λ−t(1−(1−l/t)λ)(1−(1−p/t)λ)

s
t(m/t)λt(q/t)λ/t

eιwt(m/t)λ(q/t)λ


=

(
st(1−(1−l/t)λ(1−p/t)λ)e

ιw
t(1−(1−l/t)λ(1−p/t)λ) , s

t(m/t)λ(q/t)λ
eιwt(m/t)λ(q/t)λ

)
.

So we have,

λ (A ⊕ B) = λA ⊕ λB,

λ1A =
(
st(1−(1−l/t)λ1)e

ιw
t(1−(1−l/t)λ1) , s

t(m/t)λ1
eιwt(m/t)λ1

)
,

λ2A =
(
st(1−(1−l/t)λ2)e

ιwt(1−(1−l/t)λ2) , s
t(m/t)λ2

eιwt(m/t)λ2
)
,

λ1A ⊕ λ2B =
st(1−(1−l/t)λ1+t(1−(1−l/t)λ2−t(1−(1−l/t)λ1 )(1−(1−p/t)λ2)

e
ιw

t(1−(1−l/t)λ1+t(1−(1−l/t)λ2−t(1−(1−l/t)λ1 )(1−(1−p/t)λ2)

st(m/t)λ1 (q/t)λ2 eιwt(m/t)λ1 (q/t)λ2

=
(
st(1−l/t)λ1 (1−l/t)λ2 eιwt(1−l/t)λ1 (1−l/t)λ2 , s

t(m/t)λ1+λ2
eιwt(m/t)λ1+λ2

)
,

λ1A ⊕ λ2B = (λ1 + λ2)A.

So we get

Aλ =
(
st(l/t)λe

ιwt(l/t)λ , st(1−(1−m/t)λ)e
ιw

t(1−(1−m/t)λ)
)
,

Bλ =
(
st(p/t)λe

ιwt(p/t)λ , st(1−(1−q/t)λ)e
ιw

t(1−(1−q/t)λ)
)
,

thus we have

Aλ ⊗ Bλ =
s

t(l/t)λ(p/t)λ
e
ιw

t(l/t)λ(p/t)λ , st(1−(1−m/t)λ+t(1−(1−qlt)λ−t(1−(1−m/t)λ)(1−(1−q/t)λ)
e
ιw

t(1−(1−lmt)λ+t(1−(1−q/t)−t(1−(1−mlt)λ)(1−(1−q/t)λ)
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=
(
s

t(l/t)λ(p/t)λ
e
ιw

t(l/t)λ(p/t)λ , st(1−−(1−m/t)λ(1−(1−qlt)λ)−e
ιwt(1−−(1−m/t)λ(1−(1−qlt)λ)−

)
,

(A ⊗ B) =
(
slp/teιwlp/t , sm+q−mq/te

ιwm+q−mq/t
)
,

(A ⊗ B)λ =
(
st(lp/t/t)λe

iwt(lp/t/t)λ , st(1−(1−(m+q−mq/t)/t)e
iwt(1−(1−(m+q−mq/t)/t)

)
=

(
st(l/t)λ(p/t)λe

iwt(l/t)λ(p/t)λ , st(1−(1−(m/t+q/t−mq/t2)e
iwt(1−(1−(m/t+q/t−mq/t2)

)
=

(
st(l/t)λ(p/t)λe

iwt(l/t)λ(p/t)λ , st(1−(1−m/t)λ(1−q/t)λe
iwt(1−(1−m/t)λ(1−q/t)λ

)
,

Aλ ⊗ Bλ = (A ⊗ B)λ.

If
Aλ1 =

(
st(l/t)λ1 eiw

t(l/t)λ1 , st(1−(1−m/t)λ1)e
ιw

t(1−(1−m/t)λ1)
)

and

Aλ2 =
(
st(l/t)λ2 eiw

t(l/t)λ2 , st(1−(1−m/t)λ2)e
ιw

t(1−(1−m/t)λ2)
)
,

Aλ1 ⊗ Aλ2 =

 st(l/t)λ1 (l/t)λ2 eiw
t(l/t)λ1 (l/t)λ2 ,

st(1−(1−m/t)λ1+(1−l/t)λ2−t(1−(1−m/t)λ1 (1−l/t)λ2

eιwt(1−(1−m/t)λ1+(1−l/t)λ2−t(1−(1−m/t)λ1 (1−l/t)λ2

 ,
Aλ1+λ2 =

(
st(l/t)λ1+λ2 eiw

t(l/t)λ1+λ2 , st(1−(1−m/t)λ1+λ2)e
ιw

t(1−(1−m/t)λ1+λ2)
)

= Aλ1+λ2 ,

which finalizes the theorem’s proof generated by complex intuitionistic fuzzy aggregation operators.
□

Next, we define some aggregation operators for LCIFVs.

Definition 3.4.
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

is a finite set of LCIFVs. Than, the linguistic complex intuitionistic fuzzy weighted averaging
(LCIFWA) operator is defined as

LCIFWA (A1, A2, ..., An) =

 st(1−Πn
ι=1(1−lι/t)ϖι)e

iw
t(1−Πn

ι=1(1−lι/t)ϖι) ,

st(Πn
ι=1(mι/t)ϖι)e

iw
t(Πn

ι=1(mι/t)ϖι)

 , (3.7)

where
ϖ = (ϖ1, ϖ2, ..., ϖn)T

is the weight vector of Aι(ι = 1, 2, 3, ..., n), with, ϖι ∈ [0, 1] and

n∑
i=1

ϖι = 1

in spatial, and if
ϖ = (1/n, 1/n, ..., 1/n)T ,
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then the (LCIFWA) operator is simplified to a linguistic complex intuitionistic averaging (LCIFA)
operator, so that

LCIFWA (A1, A2, ..., An) =

 st(1−Πn
ι=1(1−lι/t)ϖι)e

iw
t(1−Πn

ι=1(1−lι/t)ϖι) ,

st(Πn
ι=1(mι/t)ϖι)e

iw
t(Πn

ι=1(mι/t)ϖι)

 . (3.8)

Now, we get some properties of the (LCIFWA) operator.

Theorem 3.2. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFV, where
ϖ = (ϖ1, ϖ2, ..., ϖn)T

is the weight vector of Aι(ι = 1, 2, 3, ..., n), with, ϖι ∈ [0, 1] and

n∑
i=1

ϖι = 1.

Then, we have

Idempotency. Let Aι(ι = 1, 2, 3, ..., n), where all Aι are equal then,

Aι =
(
slιe

ιwlι , smι
eιwmι

)
= (sleιwl , smeιwm) . (3.9)

Monotonicity. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFV if
sl◦ι e

ιwl◦ι ⪰ slιe
ιwlι

and
sm◦ι e

ιwm◦ι ⪯ smι
eιwmι

for any ι. Then, LCIFWA (A1, A2, ..., An) for any ϖ.

LCIFOWA
(
A◦1, A

◦
2, ..., A

◦
n
)
≥ LCIFOWA (A1, A2, ..., An) . (3.10)

Boundary. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Then,(
min
ι

(slιe
ιwlι),max

ι
(smι

eιwmι )
)
≤ LCIFWA (A1, A2, ..., An)

≤

(
max
ι

(slιe
ιwlι),min

ι
(smι

eιwmι )
)
. (3.11)
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Proof. (1) Since, (
sl◦ι e

ιwl◦ι , sm◦ι e
ιwm◦ι

)
= (sleιwl , smeιwm)

for any ι then
LCIFWA =

(
st(1−(1−l/t))eιwt(1−(1−m/t)) , st(m/t)e

ιwt(m/t)
)
= (sleιwl , smeιwm) .

(2) If
sl◦ι e

ιwl◦ι ⪰ slι
eιwlι ,

then for any l◦ι ⪰ lι for any ι. We have

l◦ι ⪰ lι = 1 − l◦ι /t ⪯ 1 − lι/t ⪯ 1
= (1 − l◦ι /t)

ϖι ⪯ (1 − lι/t)ϖι

= Πn
ι=1(1 − l◦ι /t)

ϖι ⪯ Πn
ι=1(1 − lι/t)ϖι

= 1 − Πn
ι=1(1 − l◦ι /t)

ϖι ⪰ 1 − Πn
ι=1(1 − lι/t)ϖι

= t(1 − Πn
ι=1(1 − l◦ι /t)

ϖι) ⪰ t(1 − Πn
ι=1(1 − lι/t)ϖι).

Similarly, when
sm◦ι e

ιwm◦ι ⪯ smι
eιwmι

∀ι, we have
tΠn

ι=1
(
m◦ι /t

)1/n
⪯ tΠn

ι=1 (mι/t) .

According to (3), we obtain

st(1−Πn
ι=1(1−l◦ι /t)1/n)e

iw
t(1−Πn

ι=1(1−l◦ι /t)1/n) , st(Πn
ι=1(m◦ι /t)1/n)e

iw
tΠn
ι=1(m◦ι /t)1/n

≥

(
st(1−Πn

ι=1(1−lι/t)1/n)e
iw

t(1−Πn
ι=1(1−lι/t)1/n) , st(Πn

ι=1(mι/t)1/n)e
iw

t(Πn
ι=1(mι/t)1/n)

)
,

that is
LCIFWA

(
A◦1, A

◦
2, ..., A

◦
n
)
⪰ LCIFWA (A1, A2, ..., An) .

(3) Since
min
ι

(slιe
ιwlι) ⪯ slιe

ιwlι ⪯ max
ι

(slιe
ιwlι )

and
min
ι

(smι
eιwmι) ⪰ smι

eιwmι ⪰ max
ι

(smι
eιwmι )

∀ any ι, then, by the monotonocity of we can get(
min
ι

(slιe
ιwlι),max

ι
(smι

eιwmι )
)
⪯ LCIFWA (A1, A2, ..., An)

⪯

(
max
ι

(slιe
ιwlι),min

ι
(smι

eιwmι )
)
.

□
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Definition 3.5. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

is a finite set of LCIFV. Then, the LCIFOWA operator is defined as where

A(ι) = (sl(ι)e
ιwl(ι) , sm(ι)e

ιwmι )

is the ith largest of A1, A2, ..., An and

ϖ = (ϖ1, ϖ2, ..., ϖn)T

is the associated weight vector of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and

n∑
ι=1

ϖι = 1.

We get some properties of the LCIFOWA operator.

Theorem 3.3. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Then,
ϖ = (ϖ1, ϖ2, ..., ϖn)T

is the associated weight vector of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and

n∑
ι=1

ϖι = 1.

Then, one can be expressed as

Idempotency. If Aι(ι = 1, 2, 3, ..., n) where Aι are equal

Aι =
(
slιe

ιwlι , smι
eιwmι

)
= (sleιwl , smeιwm)∀ι.

Then,
LCIFOWA (A1, A2, ..., An) = (sleιwl , smeιwm) .

Monotonocity. Let
A◦ι =

(
sl◦ι e

ιwl◦ι , sm◦ι e
ιwm◦ι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. If
sl◦ι e

ιwl◦ι ≥ slιe
ιwlι

and
sm◦ι e

ιwm◦ι ≤ smι
eιwmι

for any ι. Then,
LCIFOWA

(
A◦1, A

◦
2, ..., A

◦
n
)
≥ LCIFOWA (A1, A2, ..., An) (3.12)

for any ϖ.
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Boundary. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Then,(
min
ι

(slιe
ιwlι),max

ι
(smι

eιwmι )
)
≤ LCIFOWA (A1, A2, ..., An)

≤

(
max
ι

(slιe
ιwlι),min

ι
(smι

eιwmι )
)
.

(3.13)

Definition 3.6. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

a set of LCIFVs. Then, the linguistic complex intuitionistic fuzzy weighted geometric (LCIFWG)
operator is defined as

LCIFWG (A1, A2, ..., An) =

 st(Πn
ι=1(lι/t)ϖι)e

iw
t(Πn

ι=1(lι/t)ϖι) ,

st(Πn
ι=1(1−mι/t)ϖι)e

iw
t(Πn

ι=1(1−mι/t)ϖι)

 , (3.14)

where the weight vector
ϖ = (ϖ1, ϖ2, ..., ϖn)T

of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and

n∑
ι=1

ϖι = 1.

Theorem 3.4. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Here
ϖ = (ϖ1, ϖ2, ..., ϖn)T

is the weight vector of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and

n∑
ι=1

ϖι = 1,

so we have the following:

Idempotency. If all Aι(ι = 1, 2, 3, ..., n) are equal

Aι =
(
slιe

ιwlι , smι
eιwmι

)
= (sleιwl , smeιwm)∀ι.

Then,
LCIFWG (A1, A2, ..., An) = (sleιwl , smeιwm) (3.15)

Monotonicity. Let
Aι =

(
sl◦ι e

ιwl◦ι , sm◦ι e
ιwm◦ι

)
(ι = 1, 2, 3, ..., n)
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be a set of LCIFVs. If
sl◦ι e

ιwl◦ι ≥ slιe
ιwlι

and
sm◦ι e

ιwm◦ι ≤ smι
eιwmι

for all ι. Then,
LCIFWG

(
A◦1, A

◦
2, ..., A

◦
n
)
≥ LCIFWG (A1, A2, ..., An) (3.16)

for any ϖ.

Boundary. Let
A◦ι =

(
sl◦ι e

ιwl◦ι , sm◦ι e
ιwm◦ι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. If
sl◦ι e

ιwl◦ι ≥ slιe
ιwlι

and
sm◦ι e

ιwm◦ι ≤ smι
eιwmι

for all ι.Then, (
min
ι

(slιe
ιwlι),max

ι
(smι

eιwmι )
)
≤ LCIFWG (A1, A2, ..., An)

≤

(
max
ι

(slιe
ιwlι),min

ι
(smι

eιwmι )
)
.

(3.17)

Definition 3.7. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

a finite set of LCIFV. Then, the LCIFOWG operator is defined as,

LCIFOWG (A1, A2, ..., An) =

 st(Πn
ι=1(l(ι)/t)ϖ(ι))e

iw
t(Πn

ι=1(l(ι)/t)ϖι) ,

st(Πn
ι=1(1−m(ι)/t)ϖι)e

iw
t(Πn

ι=1(1−m(ι)/t)ϖι)

 . (3.18)

Theorem 3.5. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Where
ϖ = (ϖ1, ϖ2, ..., ϖn)T ,

where, weight vector of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and

n∑
ι=1

ϖι = 1.

Then, we get the following:

Idempotency. If all Aι(ι = 1, 2, 3, ..., n) are equal then,

Aι =
(
slιe

ιwlι , smι
eιwlι

)
= (sleιwl , smeιwl) ,
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∀ι. Then,
LCIFOWG (A1, A2, ..., An) = (sleιwl , smeιwl) .

Monotonicity. Let
A◦ι =

(
sl◦ι e

ιwl◦ι , sm◦ι e
ιwm◦ι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. If
sl◦ι e

ιwl◦ι ≥ slιe
ιwlι

and
sm◦ι e

ιwm◦ι ≤ smι
eιwmι ,∀ι.

Then,
LCIFOWG

(
A◦1, A

◦
2, ..., A

◦
n
)
≥ (A1, A2, ..., An) .

Boundary. Let
A◦ι =

(
sl◦ι e

ιwl◦ι , sm◦ι e
ιwm◦ι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. If
sl◦ι e

ιwl◦ι ≥ slιe
ιwlι

and
sm◦ι e

ιwm◦ι ≤ smι
eιwmι ,∀ι.

Then, (
min
ι

(slιe
ιwlι),max

ι
(smι

eιwmι )
)
≤ LCIFOWG (A1, A2, ..., An)

≤

(
max
ι

(slιe
ιwlι),min

ι
(smι

eιwmι )
)
.

Leema 3.1. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Where the weight vector

ϖ = (ϖ1, ϖ2, ..., ϖn)T

is of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and

n∑
ι=1

ϖι = 1,

then, by lemma we have

1−Πn
ι=1(1−lι/t)ϖιe

iΠn
ι=1(1−lι/t)ϖι ≥ 1 − Σn

ι=1ϖι (1 − lι/t)ϖι eiΣn
ι=1ϖι(1−lι/t)ϖι

= 1 − Σn
ι=1ϖιe

i
Σn
ι=1ϖι(1−lι/t) + Σn

ι=1ϖιlι/teiΣn
ι=1ϖι(1−lι/t)

= 1 − eiΣn
ι=1(−lι/t) + Σn

ι=1ϖιlι/teiΣn
ι=1(−lι/t)

≥ Πn
ι=1 (lι/t)ϖι eΠ

n
ι=1(lι/t)ϖι
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with equality if and only if l1 = l2 = ... = ln, that is

t
(
Πn
ι=1 (1 − lι/t)ϖι eiΠn

ι=1(1−lι/t)ϖι
)
≥ t

(
Πn
ι=1 (lι/t)ϖι eiΠn

ι=1(lι/t)ϖι
)

with equality if and only if m1 = m2 = ... = mn, that is(
Πn
ι=1 (mι/t)ϖι eiΠn

ι=1(mι/t)ϖι
)
≤ Σn

ι=1ϖιmι/teiΠn
ι=1(mι/t)ϖι

= 1 − Σn
ι=1ϖι

(
1 − mι/t

)
e

i
Σn
ι=1ϖι(1−mι/t)

≤ 1 − Πn
ι=1

(
1 − mι/t

)ϖι e
iΠn
ι=1(1−mι/t)ϖι

with equality if and only if m1 = m2 = ... = mn

t
(
Πn
ι=1 (mι/t)ϖι eiΠn

ι=1(mι/t)ϖι
)
= t

(
1 − Πn

ι=1
(
1 − mι/t

)ϖι e
iΠn
ι=1(1−mι/t)ϖι

)
consequently, we get

(st(1−Πn
ι=1(1−l(ι)/t)ϖ(ι))e

iw
t(1−Πn

ι=1(1−l(ι)/t)ϖι) , st(Πn
ι=1(m(ι)/t)ϖι)e

iw
tΠn
ι=1(m(ι)/t)ϖι

≥

(
st(Πn

ι=1(l(ι)/t)ϖ(ι))e
iw

t(Πn
ι=1(l(ι)/t)ϖι) , st(Πn

ι=1(1−m(ι)/t)ϖι)e
iw

tΠn
ι=1(1−m(ι)/t)ϖι

)
with equality if and only if m1 = m2 = ... = mn; that is

LCIFOWA (A1, A2, ..., An) ≥ LCIFOWG (A1, A2, ..., An) , (3.19)

with equality if and only if A1 = A2 = ... = An; that is, on the base of above property. We can drive the
following results of LCIFOWA and LCIFOWG.

Theorem 3.7. Let
Aι =

(
slιe

ιwlι , smι
eιwmι

)
(ι = 1, 2, 3, ..., n)

be a set of LCIFVs. Here the weight vector

ϖ = (ϖ1, ϖ2, ..., ϖn)T

of A(ι) (ι = 1, 2, 3, ..., n), with ϖι ∈ [0, 1] and
∑n
ι=1 ϖι = 1, then one has the following:

(1) If ϖ = (1, 0, ..., 0)T , then

LCIFOWA (A1, A2, ..., An) = LCIFOWG (A1, A2, ..., An)

= max
ι

(Aι) .

(2) If ϖ = (0, 0, ..., 1)T , then

LCIFOWA (A1, A2, ..., An) = LCIFOWG (A1, A2, ..., An)

= min
ι

(Aι) .
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(3) If ϖι = 1 and ϖ j = 0 for j , ι than

LCIFOWA (A1, A2, ..., An) = LCIFOWG (A1, A2, ..., An)

= (Aι) ,

where
A(ι) =

(
sl(ι)e

ιwl(ι) , sm(ι)e
ιwm(ι)

)
is the largest of A1, A2, A3, ....

Example 3.2. Let

A1 =
(
s1eiw1 , s2eiw2

)
, A2 =

(
s1eiw1 , s3eiw3

)
, A3 =

(
s2eiw2 , s4eiw4

)
and

A4 = (s4eiw4 , s1eiw1)

be LCIFVs, which are derived from

S ◦ =
{
sαeiwα |s0eiw0 ≺ sαeiwα ⪯ steiwt , α ∈ [0, 6]

}
and let

ϖ = (0.2, 0.3, 0.4, 0.1)T

be the weight vector of Aι(ι = 1, 2, 3, 4).

LCIFWA(A1, A2, A3, A4) = (s6(1−Πn
ι=1(1−lι/6)wι)e

iw
6(1−Πn

ι=1(1−lι/6)wι) , s6(Πn
ι=1(mι/6)wι)e

iw6(Πn
ι=1(mι/6)wι ))

=
(
s6(0.3045)eiw6(0.3045) , s6(0.46346)eiw6(0.3045)

)
= (s1.827eiw1.827 , s2.781eiw2.781),

LCIFWG(A1, A2, A3, A4) =
(
s6(Πn

ι=1(lι/6)wι)e
iw

6(Πn
ι=1(lι/6)wι) , s6(1−Πn

ι=1(1−mι/6)wι)e
iw6(1−Πn

ι=1(1−mι/6)9wι )

)
= (s1.516eiw1.516 , s3.157eiw3.157),

so,

LCIFWA(A1, A2, A3, A4) = (s1.827eiw1.827 , s2.781eiw2.781)
> LCIFWG(A1, A2, A3, A4)
= (s1.516eiw1.516 , s3.157eiw3.157).

We get the following values of score function and accuracy function

S (A1) = s(6+1−2)/2eiw(6+1−2)/2 = s2.5eiw2.5 ,

S (A2) = s(6+1−3)/2eiw(6+1−3)/2 = s2eiw2 ,

S (A3) = s(6+2−4)/2eiw(6+2−4)/2 = s2eiw2 ,

S (A4) = s(6+4−1)/2 = s4.5eiw4.5 .
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Since

E(A4) > E(A1) > E(A2) = E(A3),
F(A3) > F (A2) ,

and, then

A(1) = A4 = (s4eiw4 , s1eiw1), A(2) = A1 = (s1eiw1 , s2eiw2),
A(3) = A3 = (s2eiw2 , s4eiw4), A(4) = A2 = (s1eiw1 , s3eiw1).

Assume that ϖ = (0.155, 0.345, 0.345, 0.155)T , which are determined by the normal distribution, is
the associated weight vector of A(ι). So, we have.

LCIFOWA(A1, A2, ..., An) =
(
s6(1−

∏4
ι=1(1−l(ι)/6)ϖι )e

iw6(1−
∏4
ι=1(1−l(ι)/6)ϖι) , s6

∏4
ι=1(mι/6)ϖιe

iw6
∏4
ι=1(mι/6)ϖι

)
= (s1.983eiw1.983 , s2.430eiw2.430),

LCIFOWG(A1, A2, ..., An =

(
s6

∏4
ι=1(l(ι)/6)ϖιe

iw
6
∏4
ι=1(l(ι)/6)ϖι , s6(1−

∏4
ι=1(1−m(ι)/6)ϖι )e

iw6(1−
∏4
ι=1(1−m(ι)/6)ϖι )

)
= (s1.575eiw1.575 , s2.882eiw1.575).

It is easy to see that

LCIFOWA(A1, A2, ..., An) = (s1.983eiw1.983 , s2.430eiw2.430)
> LCIFOWG(A1, A2, ..., An)
= (s1.575eiw1.575 , s2.882eiw1.575).

4. MAGDM method with linguistic complex intuitionistic fuzzy information

A technique for handling MAGDM numerical problems is described below, wherein the weight
vector of the attributes is identified and the attribute performance values are represented as LCIFVs.

Let the set of alternatives
A = (A1, A2, ..., AX)

with the set of attributes
c = (c1, c2, ..., cn),

where the weight vector is
ϖ = (ϖ1, ϖ2, ..., ϖn)

with ϖι ∈ [0, 1] and
n∑
ι=1

ϖι = 1.

Suppose
D = (D1,D2, ...,DY)

be set of the decision makers, and
RK = (rk

i j)r×c

AIMS Mathematics Volume 9, Issue 11, 30122–30152.



30144

be the decision matrix, where
r◦ki j = (sli je

iwli j , smi je
iwmi j )k

represents the preference value that decision-makers provide in the form of LCIFV. DK for alternative
Aι w. r. to attribute CJ and

(sli je
iwli j )k, (smi je

iwmi j )k ∈ S · = {s·ι|ι = 0, 1, ..., t}.

The suggested method could be explained as under:
Step 1. Make LCIF decision matrix RK = (rk

i j)r×c.
Step 2. Normalized the decision matrix.
Step 3. Apply the LCIFOWA or LCIFOWG operator to obtain the aggregated decision matrix:

R = (ri j)r×c

ri j = (sli je
iwli j , smi je

iwmi j ) = LCIFOWA(r1
i j, r

2
i j, ..., r

x
i j),

LCIFOWG
(
r1

i j, r
2
i j, ..., r

x
i j

)
= ri j = (sli je

iwli j , smi je
iwmi j ),

(4.1)

where the LCIFOWA and LCIFOWG weights are calculated by the method of normal distribution.
Step 4. The LCIFWA or LCIFWG operator determines the collective preference values (overall) rι

for each option Aι (ι = 1, 2, ..., r) after aggregating ri j( j = 1, 2, ..., c).
Step 5. Arrange the alternatives according to rι.
In Figure 1, we represent the algorithm.

Figure 1. Flow chart of the algorithm.

4.1. Numerical example

Plastic’s low price, effectiveness, and adaptability have made plastic the object of choice in today’s
world. However, plastic waste remains a huge ecological problem, especially in underdeveloped
nations, such as Pakistan, where there is no established system for collecting and recycling this type
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of trash. Toxic compounds from plastic garbage can leach into the ground and water, and ingested
plastic by livestock can make its way up the food cycle and endanger humans. In this section, we
cover the level of plastic pollution in Pakistan as well as possible technological alternatives to this
issue. In Pakistan, a growing country home to nearly 220 million people, plastic trash is now an
ecological problem because of inadequate waste collection and disposal infrastructure. An
estimated 20 million tons of solid trash are produced yearly in Pakistan, with 5%–10% of that being
plastic, according to United Nations development program (UNDP) research. Furthermore, according
to a 2018 worldwide fund for nature (WWF) report, Pakistan ranks as one of the top 10 countries for
plastic waste, with around 90% of plastic trash being disposed of in an unsuitable manner. The health
and ecological consequences of Pakistan’s plastic pollution crisis are substantial. Accumulated plastic
trash pollutes air, soil, and water, which can have devastating long-term effects on ecosystems. In the
monsoon season, the plastic trash often jams gutters and waterways, causing flooding. Air pollution is
partly caused by inhaling pollutants into the air from the combustion of plastic trash. Human health is
also seriously threatened by the plastic waste challenge. Toxic substances from plastic debris that
leach into the environment and water can make their way into the food chain. Furthermore, plastic
trash can serve as an attractive target for pests and disease-transmitting vectors. Pakistan’s plastic
waste is a complicated issue that needs to be addressed from many angles. Some possible scientific
approaches to Pakistan’s plastic waste challenge are outlined.

Pakistan’s plastic waste is a most complicated issue that needs to be addressed at different angles,
and some viable scientific approaches for Pakistan’s plastic waste challenge are as follows: A1 is
recycling, A2 is a collection of plastic from desert locations, A3 is replacement of plastic with glass
biodegradable materials and jute, and A4 is the disposal of plastic in the ocean. Experts select numerous
criteria c1; social benefits, c2; environmental impact, c3; operational cost and c4; effectiveness. The
weight vector is

ϖ = (0.2, 0.1, 0.3, 0.4)T .

Consequently, specialists are asked to provide their choices for each option for each attribute using the
linguistic set which is described in the following:

s0 = extremely e f f ected, s1 = very e f f ected, s2 = e f f ected,
s3 = slightly e f f ected, s4 = moderate, s5 = slightly una f f ected,
s6 = una f f ected, s7 = very una f f ected, s8 = extremely una f f ected.


Step 1. Decision makers construct their evaluation terms and prepare the LCIF decision matrix

Rk = (rk
i j)r×c(k = 1, 2, 3),

which have been represented in the above mentioned Tables 1–3.

Table 1. The decision-making matrix, given by D1.
c1 c2 c3 c4

A1 (s1eiw1 , s6eiw6) (s1eiw1 , s3eiw3) (s3eiw3 , s3eiw3) (s6eiw6 , s1eiw1)
A2 (s4eiw4 , s3eiw3) (s3eiw3 , s4eiw4) (s5eiw

5 , s2eiw2) (s4eiw4 , s2eiw2)
A3 (s3eiw3 , s1eiw1) (s3eiw3 , s2eiw2) (s2eiw2 , s3eiw3) (s1eiw1 , s6eiw6)
A4 (s2eiw2 , s6eiw6) (s3eiw3 , s4eiw4) (s1eiw1 , s5eiw5) (s1eiw1 , s7eiw7)
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Table 2. The decision-making matrix, given by D2.
c1 c2 c3 c4

A1 (s2eiw2 , s3eiw3) (s1eiw5 , s4eiw4) (s4eiw4 , s3eiw3) (s3eiw3 , s2eiw2)
A2 (s2eiw2 , s5eiw5) (s1eiw1 , s2eiw2) (s4eiw4 , s3eiw3) (s5eiw5 , s2eiw2)
A3 (s3eiw3 , s2eiw3) (s3eiw3 , s3eiw3) (s2eiw2, s1eiw1) (s3eiw3 , s3eiw3)
A4 (s2eiw2 , s5eiw5) (s3eiw3 , s3eiw3) (s2eiw2 , s5eiw2) (s1eiw1 , s4eiw4)

Table 3. The decision-making matrix, given by D3.
c1 c2 c3 c4

A1 (s3eiw3 , s3eiw3) (s5eiw5 , s3eiw3) (s1eiw1 , s6eiw6) (s6eiw6 , s2eiw2)
A2 (s2eiw2 , s3eiw3) (s4eiw1 , s2eiw2) (s1eiw4 , s2eiw2) (s4eiw6 , s3eiw3)
A3 (s1eiw1 , s6eiw6) (s5eiw5 , s2eiw2) (s4eiw4 , s3eiw4) (s3eiw3 , s1eiw1)
A4 (s1eiw1 , s5eiw1) (s4eiw4 , s4eiw4) (s2eiw2 , s6eiw6) (s2eiw2 , s5eiw2)

Step 2. Science all the attributes are benefit type, the normalization is not required.

Step 3. To determine the collective (overall) preference values rι for each alternative Aι(ι = 1, ..., 4),
aggregate ri j( j = 1, ..., 4). This may be done using the LCIFWA or LCIFWG operator with the experts
weight vector ϵ = (0.243, 0.514, 0.243)T , as indicated in Tables 4 and 5.

Table 4. The combined decision matrix calculated by the LCIFWA operator.
c1 c2 c3 c4

A1 (s2.1eiw2.04 , s3.5eiw3.5) (s2.3eiw5.2 , s3.2eiw3.2) (s2.8eiw2.8 , s3.5eiw3.5) (s5.5eiw5.5 , s1.7eiw1.7)
A2 (s2.5eiw2.6 , s3.9eiw3.9) (s3.4eiw3.4 , s2.4eiw2.4) (s3.7eiw3.7 , s3.7eiw3.7) (s4.2eiw4.2 , s2.2eiw2.2)
A3 (s2.5eiw2.6 , s2.2eiw4.8) (s3.5eiw3.5 , s2.2eiw2.2) (s3.1eiw3.1 , s2.7eiw2.7) (s2.7eiw2.7 , s2.7eiw2.7)
A4 (s1.6eiw1.6 , s5.2eiw5.2) (s3.5eiw3.5 , s3.7eiw3.7 ) (s1.5eiw1.5 , s5.2eiw5.2) (s1.2eiw1.2 , s4.8eiw4.8)

Table 5. The overall collective preference values of alternatives using LCIFOWA and
LCIFOWG operators.

c1 c2 c3 c4

A1 (s1.8eiw1.8 , s4.0eiw4.0) (s1.4eiw1.4 , s3.2eiw3.2) (s2.4eiw2.4 , s4.0eiw4.0) (s5.1eiw5.1 , s1.7eiw1.7)
A2 (s2.3eiw2.3 , s3.5eiw3.5) (s2.8eiw2.8 , s2.5eiw2.5) (s3.0eiw3.0 , s2.5eiw2.5) (s4.2eiw4.2 , s2.2eiw2.2)
A3 (s2.3eiw2.3 , s3.2eiw3.2) (s3.4eiw3.4 , s2.2eiw2.2) (s2.8eiw2.8 , s2.5eiw2.5) (s2.3eiw2.3 , s3.6eiw3.6)
A4 (s1.4eiw1.4 , s5.2eiw5.2 ) (s3.4eiw3.4 , s3.7eiw3.7) (s1.4eiw1.4 , s5.2eiw5.2) (s1.2eiw1.2 , s4.7eiw4.7)

Step 4. In this step, we apply the LCIFOWA and LCIFOWG operators, and obtain the alternative
values given in Table 6.
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Table 6. The overall collective preference values of alternatives using LCIFOWA and
LCIFOWG operators.

A1 A2 A3 A4

LCIFOWA (s2.8eiw2.8 , s3.1eiw3.1) (s3.2eiw3.2 , s2.7eiw2.7) (s2.5eiw2.5 , s3.2eiw3.2) (s1.4eiw1.4 , s4.9eiw4.9)
LCIFOWG (s3.9eiw3.9 , s2.6eiw2.6) (s3.6eiw3.6 , s2.6eiw2.6) (s2.8eiw2.8 , s2.5eiw2.5) (s1.6eiw1.6 , s4.9eiw4.9)

Step 5. In this step, we find the score values and ranking of the alternatives from Table 7.

Table 7. Score values and their ranking.

Operator Score values Ranking
LCIFOWA s3.87eiw3.87 s4.22eiw4.22 s3.65eiw3.65 s2.25eiw2.25 A2 ≻ A1 ≻ A3 ≻ A4

LCIFOWG s4.66eiw4.66 s4.51eiw4.51 s4.19eiw4.19 s2.33eiw2.33 A1 ≻ A2 ≻ A3 ≻ A4

In Figure 2, we represent the ranking of the alternatives based on Table 7.

Figure 2. Ranking of the alternatives based on Table 7.

5. Comparison analysis and other methods

MAGDM is commonly used in LIFVs, and due to its prominence, MAGDM methods are also
utilized here the newly introduced LCIFVs. We solve the same example in the case of LIFVs as well
as in LCIFVs. A comparison of both examples are presented for observation and explanation using
the other MAGDM methods, including the LCIFWA, LCIFOWA and the LCIFWG, and LCIFOWG.
The comparison results are shown in Table 6. A handling method for MAGDM problems by some
aggregation operators of linguistic intuitionistic fuzzy sets are shown in Table 8.
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Table 8. The overall collective preference values and rankings of alternatives.
Operator A1 A2 A3 A4

LIFOWA [26] (s2.87, s3.14) (s3.20, s2.77) (s2.77, s3.20)
(
s1.44 , s4.94

)
LIFOWG [28] (s3.93, s2.61)

(
s3.62 , s2.60

)
(s2.88, s2.50)

(
s1.65 , s4.99

)
Step 6. In this step, we find the score values of the alternatives from Table 9.

Table 9. Score values and their ranking.
Operator Score values Ranking
LIFOWA [26] s3.86 s4.22 s3.77 s2.25 A2 ≻ A1 ≻ A3 ≻ A4

LIFOWG [28] s4.66 s4.51 s4.19 s2′33 A1 ≻ A2 ≻ A3 ≻ A4

By comparing Tablse 6 and 7, based on the methods used, we get the same kind of
A4 > A1 > A2 > A3. However, in practical applications, comparison, the ranking result of using the
LCIFWA, LCIFOWA and LCIFOWG, LCIFWG, LIFOWA, LIFWA and LIFOWG, LIFWG operators,
the ranking results have not changed. Therefore, the proposed new methods can overcome the
drawbacks of the LIFWA, LIFOWA operators, and the LIFWG, LIFOWG operators. Then, new
introduced operators are more suitable than the previous because the new operators have a vast range
but the already prevailing operators have limited use.

In Figure 3, we show the ranking of Table 9.

Figure 3. Ranking of the alternatives based on Table 9.

6. Conclusions

The Linguistic intuitionistic fuzzy set is proposed by combining the concepts of linguistic
variables and intuitionistic fuzzy sets. Its prominent operators are LIFWG, LIFOWG, and LIFWA,
with LIFOWA in the MAGDM method. The use of these concepts, operators, and applications in
decision-making issues were limited just to linguistic terms and intuitionistic fuzzy sets and have
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limited scope. In this paper, we tried to extend the prevailing methods, strategies, operators, and
applications for a vast range and up to complex variables. New introduced concepts is LCIFs, its
operators, LCIFWG, LCIFOWG, and LCIFWA, with LCIFOWA in the MAGDM method, and the
mentioned procedure, operators, applications, and numerical analysis are evidence that the new
introduced operators and applications cover a vast range and provide novel ideas to give the proper
solutions of the problems in decision-making where data is ambiguous and uncertain. These new
introduced methods are very useful in MAGDM methods.

In the future, we will extend this concept to Dombi operation, Hamacher operation, and Frank
operations.
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