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1. Introduction

Markov processes [1, 2], and in particular Markov jump processes (MJPs), are widely used
both as models of real-world phenomena and as tools for solving a broad range of analysis,
estimation/identification, and control/optimization problems [3]. Their popularity stems from the
simplicity of their probabilistic description, the efficiency of their mathematical framework for system
analysis, and the potential for stochastic analysis under additional but non-restrictive assumptions.
However, the need for more precise modeling of various jump-like phenomena leads to increasingly
complex mathematical models, resulting in the emergence of multivariate point processes (MPPs) [4].
Markov renewal processes [5, 6] offer a middle ground between MJPs and MPPs. Any jump-like
process can be expressed as a sequence of the pair “inter-arrival time – process value”. For MRPs, this
sequence forms a Markov chain. This allows for the relaxation of the Markov property in continuous
time while still describing the process distribution via the transition kernel. However, this simplification
comes at the cost of significantly complicating optimal estimation and control of MRPs. Specifically,
the dynamics of a general MRP are not governed by a single finite-dimensional stochastic system, but
rather by a sequence of such systems glued at random MRP transition times.

The goal of this paper is to introduce a subclass of MRPs of practical interest. This subclass is
broader than finite-state CTMCs and shows promise as a model for various jump-like processes arising
in fields such as tracking and navigation, telecommunications, financial mathematics, etc. The paper
does not aim to describe the broadest class of MRPs for subsequent theoretical inferences. Instead, it
focuses on MRPs that allow a straightforward “kinematic” description via the solution to a linear SDS
with a martingale on the RHS. The advantage of this approach lies in the relative simplicity of filtering
estimates, which, in turn, facilitates the design of efficient numerical filtering algorithms.

The paper is structured as follows: Section 2 introduces the subclass of MRPs under investigation,
detailing their key probabilistic properties and showing how any arbitrary function of the MRP can be
represented as the solution to a closed linear SDS with a martingale on the RHS.

Section 3 is dedicated to formulating the optimal filtering problem. The hidden system state is
modeled by the studied MRP, while the available observations consist of both continuous diffusion
and counting components. The drift coefficients of all observations are functions of the system state.
The optimality criterion is the traditional mean squared error, meaning the filtering problem involves
finding the conditional expectation (CE) of a signal process based on the available observations.

Section 4 forms the core of the paper and contains the solution to the filtering problem. The optimal
filtering estimate of the signal process is expressed through the solution of a potentially non-closed
SDS with innovation processes on the RHS. To address this non-closedness, we derive an analog of
the Kushner-Stratonovich equation, which describes the evolution of the conditional PDF and aids in
computing the CE for arbitrary functions of the MRP state.

Section 5 presents the results of an extensive numerical analysis of the proposed filter. A monitoring
problem is considered, in which the qualitative state and numerical characteristics of communication
channels are inferred from noisy observations of RTT and packet loss flows. The robustness of the
filter against uncertainty in the MRP distribution is also demonstrated.

Section 6 concludes the paper with final remarks.
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2. A sub-class of Markov renewal processes

First, we present an informal description of a subclass of Markov renewal processes (MRPs), which
we later use as a hidden state in stochastic observation systems.

We introduce the process Zt , col(θt,Yt) ∈ RN+M, t ∈ [0,T ]. The first N-dimensional component θt

represents a CTMC with the state set SN , {e1, . . . , eN} (here, SN stands for the set of the unit coordinate
vectors in RN), initial distribution p0 , col(p1

0, . . . , pN
0 ), and the transition rate matrix (TRM) Λ(t). The

second compound component Yt ∈ R
M also has piece-wise constant paths changing synchronously with

θt. If {τn}n∈N is a sequence of θt transition instants and {θτn}n∈N is known, then {Yτn}n∈N is a sequence of
mutually independent random vectors with the conditional distribution Π(B) , col(Π1(B), . . . ,ΠN(B)):

P
{
Yτn ∈ B|θ[0,T ]

}
=

∫
B
θ>τn

Π(dy) P − a.s. ∀ B ∈ B(RM).

The distribution of the initial value Y0 is defined via Φ(A) , col(Φ1(A), . . . ,ΦN(A)) quite analogously:

P
{
Y0 ∈ B|θ[0,T ]

}
=

∫
B
θ>0 Φ(dy) P − a.s. ∀ B ∈ B(RM).

One can interpret the sub-vector Yt as a CTMC with the state set constituted by the random
vectors with the distribution Π(·). There exists a Wiener–Poisson canonical space with filtration(
Ω,F,P, {F}t∈[0,T ]

)
[7], such that the introduced process Zt is properly defined on it and Ft-adapted.

Further in the presentation we use the following notations:

– 1 is a row vector of an appropriate dimensionality formed by units.
– 0 is a zero row vector of an appropriate dimensionality.
– I is a unit matrix of an appropriate dimensionality.
– IB(x) is an indicator function of the set B.
– Nt is the number of process θt transitions occurring on the interval [0, t].
– Tn(s, t) , P {Nt − Ns = 0|θs = en} = exp

(∫ t

s
Λnn(u)du

)
(0 6 s < t) is a survival function of θt

inter-arrival time under the condition θs = en; T (s, t) , row(T1(s, t), . . . ,TN(s, t)).
– λ(t) , row(Λ11(t), . . . ,ΛNN(t)) is a row-vector collecting the diagonal elements of TRM Λ(t);

Λ̃(t) , Λ(t) − diag λ(t).
– P(s, t) = ‖Pi j(s, t)‖i, j=1,N is a transition matrix of the CTMC θt on the interval [s, t] (s 6 t):
Pi j(s, t) , P

{
θt = e j | θs = ei

}
; P(s, t) is a solution to the Kolmogorov system: P′t(s, t) =

P(s, t)Λ(t), 0 6 s < t, P(s, s) ≡ I.
– Any function f (e, y) : SN × RM → R can be rewritten in the form f (e, y) = f (y)e, where

f (y) , row( f (e1, y), . . . , f (eN , y)).

– En
f ,

∫
RM

f (y, en)Πn(dy), E f = col(E1
f , . . . ,E

N
f ) =

∫
RM

diag f (y)Π(dy).

– Any probability measure Q(·) on (SN × RM, 2S
N
× B(RM)) can be expressed via the distribution

mQ(B) = col(mQ
1 (B), . . . ,mQ

N(B)), where mn(B) , Q{θ = en,Y ∈ B}.

By definition, Zt is Markovian on (Ω,F,P, {Ft}t∈[0,T ]) and has the following properties [2]:

1) The matrix-valued transition probability function P(y, s, B, t) = ‖Pi j(y, s, B, t)‖i, j=1,N :
Pi j(y, s, B, t) , P

{
θt = e j,Yt ∈ B | θs = ei,Ys = y

}
, 0 6 s < t 6 T has the form

P(y, s, B, t) = IB(y) diagT (s, t) + diag Π(B)
(
P(s, t) − diagT (s, t)

)
. (2.1)
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The function P(y, s, B, t) is a solution to the system
P′t(y, s, B, t) = P(y, s, B, t) diag λ(t) + diag (Π(B))P(s, t)Λ̃(t),
P′t(s, t) = P(s, t)Λ(t), 0 6 s < t 6 T,
P(y, s, B, s) = IB(y)I, P(s, s) = I.

(2.2)

2) For an arbitrary bounded Borel function f (e, y) : SN × RM → R, the infinitesimal generatorAt of
the process Zt has the form

At f (e, y) , lim
h↓0

E { f (θt+h,Yt+h)|θt = e,Yt = y} − f (e, y)
h

= [ f (y) diag λ(t) + E>f Λ̃>(t)]e. (2.3)

3) For an arbitrary probability distribution m(B) = col(m1(B), . . . ,mN(B)) on (SN ×RM, 2S
N
×B(RM))

the operatorA∗t , adjoint to the generatorAt, has the form

A∗t m(B) = diag(λ(t))m(B) + diag (Π(B)) Λ̃>(t) m(RM). (2.4)

4) The distribution P(t, B) = col(P1(t, B), . . . , PN(t, B)) of the process Zt (Pn(t, B) ,
P {θt = en,Yt ∈ B}) is a solution to the system

P′t(t, B) = diag(λ(t))P(t, B) + diag (Π(B)) Λ̃>(t) P(t,RM), P(0, B) = diag (φ(B)) p0. (2.5)

Formally, the compound component Yt of the process Zt represents an MRP. The MJP θt serves
as a subordinator: it defines the transition times {τn} for Yt and selects the distributions Πn(·) for the
values of Yτn . In general, the MRP Yt is non-Markovian. It exhibits the Markov property only when
the support sets of the distributions Πn(·) are disjointed [8]. Below in the presentation, the components
θt and Yt act as the hidden states in stochastic observation systems aimed at estimating these states.
Therefore, we combine them into Zt and refer to it as the MRP.

The proposed class of MRPs is a promising tool for modeling real-world phenomena characterized
by a combination of “qualitative state” and “numerical characteristics”. Let us illustrate this concept.

First, consider the motion of a maneuvering target [9, 10]. As is well-known, maneuvers are
performed with various accelerations, which we assume to follow a piecewise constant process [11].
Typically, there are only a few types of maneuvers, such as:

– Nearly uniform rectilinear motion.
– Uniformly accelerated or decelerated rectilinear motion.
– Turning.

Thus, the process θt of maneuver changes has three possible states and can be modeled as an MJP [12].
Note, that the numerical parameters Yt of a particular maneuver can vary in each instance. These
parameters are described by a three-dimensional vector, including tangential acceleration and two
components of normal acceleration.

Second, consider the price evolution of a risky asset. It is assumed that the financial market is
governed by a hidden regime-switching process θt [13, 14]. There are relatively few possible market
regimes [15, 16], making it natural to describe them using a finite-state MJP [17]. The local numerical
characteristics of the market Yt, including the instantaneous interest rate and volatility, are random and
follow specific probability distributions for each regime.
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The third example of applying the proposed class of MRPs to mathematical modeling relates to
telecommunications and is detailed in Section 5.

Let us introduce a process f (Zt) that is a scalar function of Zt: f = f (e, y) : SN × RM → R. It
is easy to verify that f (Zt) can be expressed as a linear function of the process Ft , col(θt, f (Zt)θt) ∈
R2N: f (Zt) = row(0, 1)Ft. The process Ft is called the process associated with f (Zt). Below in the
presentation we reserve the notation ft for the second N-dimensional sub-vector of Ft: ft , f (Zt)θt.

From the Dynkin formula [2], it follows the martingale representation of an arbitrary function of Zt.
If f = f (e, y) : SN × RM → R is the function, such that∫

RM
‖ f (y)‖2(Π(dy) + Φ(dy)) < ∞, (2.6)

then the process Ft has a finite second moment and represents the unique strong solution to the linear
SDS

Ft = F0 +

∫ t

0
D f (s)Fs−ds + µ

f
t , (2.7)

where D f (t) is 2N × 2N-dimensional matrix-valued non-random function

D f (t) ,
[

Λ>(t) 0
diag E f Λ̃

>(t) diag λ(t)

]
and µ f

t ∈ R
2N is an Ft-adapted square integrable martingale.

If the MRP Zt satisfies the condition
∫
RM ‖y‖2(Π(dy) + Φ(dy)) < ∞, then the process Zt ,

col(θt,Y1
t θt, . . . ,Y M

t θt) ∈ R(M+1)N , associated with Zt, is a solution to the linear SDS

Zt = Z0 +

∫ t

0
DZ(s)Zsds + µZ

t , (2.8)

where DZ(t) is (M + 1)N × (M + 1)N-dimensional matrix-valued non-random function

DZ(t) ,


Λ>(t) 0 0 . . . 0

diag EY1Λ̃>(t) diag λ(t) 0 . . . 0
diag EY2Λ̃>(t) 0 diag λ(t) . . . 0

. . . . . . . . . . . . . . .

diag EY M Λ̃>(t) 0 0 . . . diag λ(t)


and µZ

t ∈ R
(M+1)N is an Ft-adapted square integrable martingale.

The generalized Itô rule allows us to derive a formula for the mutual quadratic characteristic of the
functions of the MPRs. If g = g(e, y) : SN × RM → R is another function, satisfying (2.6) and the
process Gt , col(θt, g(Zt)θt) ∈ R2N , associated with g(Zt), admits the martingale representation similar
to (2.7) with a martingale µg

t , then the mutual quadratic characteristic of ft and gt components has the
form

〈f, g〉t =

∫ t

0

[
diag E f g diag(Λ̃>(s)θs) − diag(fs) diag λ(s) diag(gs) (2.9)

− diag(fs)Λ̃(s) diag Eg − diag E f Λ̃
>(s) diag(gs)

]
ds.
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The class of MRPs under study is, of course, not as general as the one proposed in [18].
Nevertheless, the fact that an arbitrary function of the studied MRP can be expressed through the
solution of a linear SDS has the potential to simplify the form of the optimal filtering equations.
Moreover, it could lead to a successful solution of conditionally-optimal filtering problems, such as
optimal polynomial filtering. Additionally, the adjoint operator A∗ is sufficiently simple, allowing
the temporal evolution of the process distribution to be described by the functions T (s, t) and P(s, t).
This provides a relatively simple analog to the Kushner-Stratonovich equation, which describes the
evolution of the conditional distribution of the state process. In the case of a diffusion observation
system, the Kushner-Stratonovich equation falls within the class of stochastic partial integro-
differential equations. However, in the present case, it is expected that the Kushner-Stratonovich
equation will take the form of a stochastic integral equation. This simplified form suggests the potential
for various efficient algorithms to solve it numerically.

3. Problem statement

On the Wiener–Poisson basis
(
Ω,F,P, {F}t∈[0,T ]

)
, we consider the observation system

Zt = Z0 +

∫ t

0
DZ(s)Zsds + µZ

t , qt = q(Zt) = q(Yt)θt,

ξt =

∫ t

0
g(Zs)ds +

∫ t

0
R1/2dws, ηt =

∫ t

0
h(Zs)ds + µ

η
t .

(3.1)

Here,

– Zt ∈ R
(M+1)N is a system state, which is the process associated with the MRP Zt ∈ R

N+M; it is
described by the martingale representation (2.8).

– qt ∈ R is an estimated scalar process, which is a function of the MRP Zt.
– ξt ∈ R

K is a continuous observation process.
– ηt ∈ R

L is an observable process with counting components.

In the observation system (3.1)

– µZ
t ∈ R

(M+1)N and µηt ∈ RL are Ft-adapted martingales from the representations of the MRP Zt and
counting observations ηt.

– g(Zt) = g(e, y) : SN × RM → RK and h(Zt) = h(e, y) : SN × RM → RL constitute the “useful
signals”, governed by the estimated state, in the observations.

– wt ∈ R
K is an Ft-adapted standard Wiener process, characterizing the noise in the continuous

observations ξt; the matrix-valued function R denotes the noise intensity in the observations ξt

(here, R1/2 stands for the symmetric square root of the non-negative square matrix R).

For the proper formulation of the optimal filtering problem, we should make the following
assumptions concerning the observation system (3.1):

A1. In the Wiener-Poisson basis Ft ≡ σ{Zs, ws, ηs : 0 6 s 6 t}.
A2. All trajectories of Zt and ηt are càdlàg functions.
A3. The TRM Λ(t) consists of the piecewise continuous components.
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A4. For any n = 1,N the functions g(en, y), h(en, y), and q(en, y) are continuous in y. There exists a
constant C1 such that

∑N
n=1

∫
RM

(
‖g(en, y)‖2 + ‖h(en, y)‖2 + q2(en, y)

)
(Π(dy) + Φ(dy)) 6 C1 < ∞.

A5. There exists a constant C2 > 0 such that minen∈SN h(en, y) > C2 and R > C2I.
A6. The components of the martingale µηt are orthogonal to each other, i.e.,

〈µη, µη〉t ≡

∫ t

0
diag h(s,Zs)ds. (3.2)

A7. The purely discontinuous martingales µZ and µη are strongly orthogonal, i.e., 〈µZ, µη〉t ≡ 0.

Let Ot , {ξs, ηs : 0 6 s 6 t} be a natural filtration generated by the observations available up to
time t. The optimal filtering problem for the signal process qt is to find q̂t , E {qt|Ot}.

Conditions A1 and A2 ensure the correct application of the stochastic analysis framework [19],
and Eq (3.1) represents a properly defined SDS. Condition A1 also implies that all randomness in the
canonical space is generated solely by the random processes in (3.1).

Condition A3 guarantees that the transition matrix P(s, t) of the CTMC θt is the solution to the
Kolmogorov differential system.

Condition A4 assures that the state Zt, observations ξt, ηt, and the estimated process qt have finite
moments up to the second order; hence, the CE q̂t is optimal in the mean square sense.

Condition A5 is standard for the filtering problem. It means the uniform non-degeneracy of both
the observation noise in the continuous observations ξt and intensity of the counting observations ηt.
The condition also guarantees the legitimacy of the Girsanov change of measure.

Any observable counting process can be factorized into the process with the orthogonal components,
satisfying Condition A6; the mutual jumps in various components of the “genuine” counting
observations could be separated into the new counting observable processes.

Finally, Conditions A1–A6 look mainly technical but are non-restrictive in practice.

4. Solution to filtering problem

Below in the presentation we use the notation ĉt , E {c(Zt) | Ot} for any function c(e, y), for which∑N
n=1

∫
Rm ‖c(en, y)‖2 (Π(dy) + Φ(dy)) < +∞, and ĉt− , lims↑t ĉs.

Theorem 4.1. The optimal filtering estimate q̂t of the signal process q(Zt) has the form q̂t =

row(0, 1)Q̂t, where Q̂t = E {col(θt, q(Zt)θt) | Ot} is a filtering estimate of the process Qt associated
with q(Zt); Q̂t is a solution to the SDS

Q̂t =E {Q0}+

∫ t

0
DQ(s)Q̂s−ds+

∫ t

0

(
Q̂g>s− − Q̂s−ĝ>s−

)
R−1/2dνs+

∫ t

0

(
Q̂h>s− − Q̂s−ĥ>s−

)
diag−1(̂hs−)dζs, (4.1)

where

νt = R−1/2
∫ t

0
(dξs − ĝs−ds) (4.2)

and

ζt =

∫ t

0
(dηs − ĥs−ds) (4.3)

are the innovation processes.
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Proof of Theorem 4.1 is given in Appendix A.

Remark 4.1. In the case of pure counting observations, the possibility of describing the optimal
filtering estimate using Eq (4.1) has been proven in a recent and novel paper [18] for the general
class of MRPs.

One can see that Eq (4.1), which describes the evolution of the estimate Q̂t, is not a closed-form
equation. Besides the estimate itself, the RHS includes the CEs of the observation drifts and their
products with the estimated process. The question of whether or not an optimal filtering estimate is
a solution to a finite-dimensional system has its history [20–22]. The general answer sounds rather
pessimistic: the optimal filters have a finite-dimensional form only for some narrow class of the
observation systems [23–25].

An alternative approach to solving the optimal filtering problem involves finding the conditional
distribution of the state Zt. Let ψ̂(t, y) , col(ψ̂1(t, y), . . . , ψ̂N(t, y)) denote the conditional PDF, defined
such that the identity P {θt = en,Yt ∈ B | Ot} ≡

∫
B
ψ̂n(t, y))dy holds P-a.s. for all t ∈ [0; T ], n = 1,N and

B ∈ B(RM). The optimal filtering estimate q̂t = E {q(Zt)|Ot} takes the form

q̂t =

N∑
n=1

∫
RM

q(en, y)ψ̂n(t, y)dy =

∫
RM

q(y)ψ̂(t, y)dy.

If the observation system is described by the diffusion processes, then under certain additional
assumptions, the conditional PDF exists and satisfies the Kushner-Stratonovich equation [26]. We
impose an additional assumption to derive an analogous equation for the observation systems in (3.1).

A8. The distributions Π(·) and Φ(·) are absolutely continuous with respect to the Lebesgue
measure. The corresponding vector-valued PDFs are π(y) = col(π1(y), . . . , πN(y)) and φ(y) =

col(φ1(y), . . . , φN(y)).

Condition A8 ensures that the distribution P(t, B) = col(P1(t, B), . . . , PN(t, B)) of the process Zt has a
PDF ψ(t, y) = col(ψ1(t, y), . . . , ψN(t, y)). This PDF satisfies the following Kolmogorov system

ψ′t(t, y) = diag(λ(t))ψ(t, y) + diag (π(y)) Λ̃>(t)
∫
RM
ψ(t, u)du, ψ(0, y) = diag (p0) φ(y).

Theorem 4.2. Under conditions A1–A8, the evolution of ψ̂(t, y) is described by the system

ψ̂(t, y) = diag(p0)φ(y) +

∫ t

0

[
diag λ(s)ψ̂(s−, y) + diag π(y)Λ̃>(s)̂θs−

]
ds (4.4)

+

∫ t

0
diag

(
ψ̂(s−, y)

) (
g(y) − ĝs−1

)> R−1/2dνs

+

∫ t

0
diag

(
ψ̂(s−, y)

) (
h(y) − ĥs−1

)>
diag−1(̂hs−)dζs,

where θ̂s, ĝs and ĥs− are expressed via ψ̂(s, y):

θ̂s =

∫
RM
ψ̂(s, y)dy, ĝs =

∫
RM

g(y)ψ̂(s, y)dy, ĥs− =

∫
RM

h(y)ψ̂(s−, y)dy, (4.5)
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and g(y) and h(y) are the matrix-valued functions

g(y) ,


g1(e1, y) . . . g1(eN , y)
. . . . . . . . .

gK(e1, y) . . . gK(eN , y)

 , h(y) ,


h1(e1, y) . . . h1(eN , y)
. . . . . . . . .

hL(e1, y) . . . hL(eN , y)

 .
Proof of Theorem 4.2 is given in Appendix B.

5. Numerical study

5.1. Nominal filtering performance

To demonstrate the performance of the proposed filtering estimate, we present an applied problem
in the field of communications. The problem involves monitoring the qualitative state and numerical
characteristics of heterogeneous (wired/wireless) communication channels, which are hidden from
direct observation, with only indirect noisy observations available.

The “channel health” is fully described by the MRP Zt , col(θt,Yt). The first component, θt, which
represents the qualitative state, is a CTMC with values in S4:

– θt = e1: moderate load, where the “bottleneck” buffer of the channel is empty.
– θt = e2: pre-congestion state, indicating that the “bottleneck” buffer is non-empty.
– θt = e3: congestion phase, where the “bottleneck” buffer is full.
– θt = e4: signal loss in the wireless channel hop.

The TRM Λ and the initial distribution p0 of the CTMC are

Λ =


−3.825 × 10−2 3.75 × 10−2 0 7.5 × 10−4

1.5 × 10−1 −2.01 × 10−1 5.025 × 10−2 7.5 × 10−4

0 2.4975 × 10−1 −2.505 × 10−1 7.5 × 10−4

2.4975 × 10−1 0 0 −2.4975 × 10−1

 , p0 =


0.748
0.186
0.037
0.029

 .
The second component, Yt ∈ R

2, represents the current numerical characteristics of the channel:

– Y1
t is a current RTT value.

– Y2
t indicates the fraction of lost packets in the packet flow.

Given the trajectory of the CTMC {θt}, the components Y1
t and Y2

t are mutually independent and have
the uniform conditional PDFs π1(y1 |θt) and π2(y2 |θt):

π1(y1 |θt = e1) = 100 × I[0.01;0.02](y1), π1(y1 |θt = e2) = 142.857 × I[0.018;0.025](y1),

π1(y1 |θt = e3) = 200 × I[0.022;0.027](y1), π1(y1 |θt = e4) = 250 × I[0.026;0.03](y1),

π2(y2 |θt = e1) = 1000 × I[0.0005;0.0015](y2), π2(y2 |θt = e2) = 1000 × I[0.0005;0.0015](y2),

π2(y2 |θt = e3) = 11.111 × I[0.01;0.1](y2), π2(y2 |θt = e4) = 4 × I[0.05;0.3](y2).

The observations include the noisy RTT measurements

ξt =

∫ t

0
Y1

s ds + 0.0002 wt, (5.1)
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and the counting process of the packet losses

ηt =

∫ t

0

Y2
s

Y1
s
ds + µ

η
t . (5.2)

The channel state filtering problem involves the online estimation of the process Zt = col(θt,Yt)
given the available observations ξt and ηt.

The nonlinearity in the drift term of (5.2) arises because the instantaneous packet loss intensity is
proportional to the packet loss fraction, while the total packet sending rate is inversely proportional to
the RTT.

To avoid errors introduced by the numerical discretization of continuous-time processes, we use
different time scales for simulating the state, observations, and the state filtering procedure: δt = 10−4

for the simulation and ∆t = 10−2 for the estimation procedure.
Since the estimation problem requires solving the Kushner-Stratonovich equation, we apply a grid

method with space step sizes δy1 = 10−3 and δy2 = 6 × 10−3. For the filtering process, we utilize a
hybrid algorithm combining the MJP filtering method for time-discretized observations [27, 28] and
the Euler–Maruyama algorithm adapted for jumps [29]. The idea of the algorithm is to approximate
the continuous component Yt of the MRP on a finite grid with Nm nodes. The proposed algorithm is
stable, ensuring that the resulting numerical solution satisfies the natural conditions of non-negativity
and normalization, which are expected for the actual solution ψ̂n(t, y). Analyzing the algorithm [28],
we can conclude that the computation of each time layer ψ̂n(ti, ·) at time instant ti requires O(N3 × N3

m)
operations.

Although the example is artificial, it exhibits several noteworthy features with practical significance.
First, the chosen numerical characteristics of the channel, representing various qualitative states,
closely approximate real-world values. Second, the noise intensity in the RTT observations is relatively
high. Third, the average duration of states e3 and e4 is rather short, making these states difficult
to identify. Fourth, the support sets Dn of the component Y distributions overlap across different
channel states θ, complicating the recovery of θ from observations of Y . Lastly, the drift in the
counting observations is the nonlinear function of the state. Together, these factors make the example
particularly challenging.

Figure 1 presents the results of the observation system simulation, with the following elements:

– Color filling represents the current system state θt: from e1 until e4.
– The true value of the current RTT Y1

1 .
– The true value of the current loss fraction Y2

t (displayed on the auxiliary ordinate axis).
– The ratio ∆ξt

∆t
, representing the continuous-time observation.

– The observable process ηt, reflecting the packet losses.

The observations exhibit minor fluctuations, indicating transitions in the state Zt. However, visually
identifying the exact current state θt and especially estimating its numerical characteristics Yt, remains
challenging. These subtle differences in the observations do not provide sufficient clarity for direct
visual interpretation of the channel behavior.

Figure 2 shows the filtering performance for the CTMC θt:

– The true state θt.
– The filtering estimate θ̂c

t calculated by the continuous observations ξt.
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– The filtering estimate θ̂t calculated by the continuous and counting observations ξt and ηt.

The figure highlights that incorporating counting observations significantly enhances the accuracy
of the state estimate θt, particularly for the more dynamic “fast” states e3 and e4. These states likely
involve more abrupt transitions, where counting observations provide valuable additional information.

Figure 3 presents the filtering results for the components of Yt:

– Color filling indicates the current state θt: from e1 until e4.
– The true values of Y1

t and Y2
t .

– The filtering estimate Ŷc
t calculated by the continuous observations ξt.

– The filtering estimate Ŷt calculated by the continuous and counting observations ξt and ηt.

The observation process ηt plays a crucial role in estimating Y2
t , the lost packet fraction, as this

component directly reflects the packet loss events. In the filtering process, incorporating ηt notably
improves the accuracy of the filtering estimate for Y2

t . This enhancement is especially evident in the
time interval [0; 12.0], where the system state remains θt ≡ e4 (signal loss state). During this interval,
the continuous observations alone allow the estimate θ̂c

t to track the true state θt quite well. However,
without access to ηt, the filtering estimate Ŷ2,c

t for Y2
t merely aligns with the expectation of Y2

t under the
condition θt = e4, yielding an expected value of approximately 0.175, given the uniform distribution
R[0.05; 0.3]. This causes the estimate to oscillate near this mean value, regardless of the actual
variations in Y2

t .

Figure 1. The channel state, numerical characteristics, and available observations.
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Figure 2. The filtering results of the channel state θt.

Figure 3. The filtering results of the channel characteristics Yt.

By contrast, when ηt is utilized in the filtering process, the estimate Ŷ2
t becomes much more

accurate, as ηt provides direct information about packet losses. This highlights that the lost packet
fraction Y2

t can only be accurately estimated by observing the flow of packet losses through the
counting process ηt. Hence, combining both continuous and counting observations significantly
enhances the filtering performance for Y2

t .
The filtering errors in both θ̂t and Ŷt often exhibit peaks due to mismatches between the local random
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behavior of the observations and the true state of the system. This phenomenon is clearly seen in
Figures 2 and 3, particularly in the time interval [7; 10], where the filtering estimates temporarily
deviate from the true values. During this period, both Ŷ1

t and Ŷ2
t tend to underestimate their actual

values. Moreover, a noticeable peak appears in the conditional probability θ̂1
t , suggesting that the

channel is moderately loaded (i.e., θt = e1) even though the true state is θt = e4 (signal loss phase).
This discrepancy is explained by examining the observations in Figure 1, which show that during
this interval, the continuous observation process δξt

ht
is significantly lower than the actual RTT value.

Additionally, no packet losses are recorded, making the local observations resemble those of a channel
in a moderately loaded state with high throughput and minimal packet loss fraction. Despite this
mismatch, the filtering error is short-lived. The estimation is rapidly corrected as new, more relevant
observations become available, which help the filter realign with the true state of the system. This
highlights the adaptive nature of the filtering algorithm, which compensates for temporary observation
anomalies over time.

To illustrate the joint evolution of the conditional PDF ψ̂(t, y) and the filtering estimates Ŷt, we
provide Figures 4 and 5. These figures focus on a short time interval [55.0; 75.0], during which the
process Zt undergoes several jumps.

Figure 4 and 5 contain similar plots:

– The true values of Y1
t and Y2

t .
– The filtering estimates Ŷ1

t and Ŷ2
t .

– Evolution of marginal conditional PDFs ψ̂1(t, y1) and ψ̂2(t, y2).

One can observe that after each transition of the state Yt, the corresponding filtering estimate is also
recalibrated through modifications in the conditional PDF.

Figure 4. The evolution of the marginal conditional PDF ψ̂1(t, y1) and filtering estimate Ŷ1
t .
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Figure 5. The evolution of the marginal conditional PDF ψ̂2(t, y2) and filtering estimate Ŷ2
t .

In practice, the variance of the filtering error serves not only as a performance index for the
estimation but also as a basis for synthesizing control with incomplete information. In only a limited
number of fortunate scenarios within stochastic observation systems can one derive the error variance
analytically. The observation systems investigated in this article do not fall into this category, leading
us to employ the Monte Carlo method (MCM) to compute the sample variance of the filtering error.

For our analysis, we utilize a sample size of Q = 10 000. We compare the variance of the filtering
error to that of the estimated process itself. This comparison is significant because the variance of
the estimated process can be viewed as a performance metric for the unconditional mathematical
expectation, which serves as a trivial estimator. By examining these variances, we gain valuable
insights into the effectiveness of our filtering approach.

Figure 6 presents the performance characteristics of the CTMC θt estimates:

– The value Dθt , E
{
‖θt − E {θt} ‖

2
}
.

– The second moment Dθ̂c
t , E

{
‖̂θc

t − θt‖
2
}

of the estimate θ̂c
t error (calculated by the MCM).

– The second moment Dθ̂t , E
{
‖̂θt − θt‖

2
}

of the estimate θ̂t error (calculated by the MCM).

Figure 7 is analogous to Figure 6 and presents the performance characteristics of Yt estimates:

– The variances of the components Y i
t , i = 1, 2: DY i

t , E
{(

Y i
t − E

{
Y i

t

})2
}
, i = 1, 2.

– The second moment DŶ i,c
t , E

{
(Ŷ i,c

t − Y i
t )

2
}

of Ŷ i,c
t error, i = 1, 2 (calculated by the MCM).

– The second moment DŶ i
t , E

{
(Ŷ i

t − Y i
t )

2
}

of Ŷ i
t error, i = 1, 2 (calculated by the MCM).
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Figure 6. The estimation quality of the CTMC θt.

Figure 7. The estimation quality of the sub-vector Yt.

In addition to Figures 2 and 3, which illustrate specific trajectories of the system state and its
estimates, Figures 6 and 7 support formal conclusions. Moreover, for each filtering estimate of the
system state Zt or its sub-vectors, it is possible to calculate the residual variance ratio using the formula

ρẐ ,

∫ T

0
E

{
‖Zt − Ẑq

t ‖
2
}

dt∫ T

0
E

{
‖Zs − E {Zs} ‖

2} ds
. (5.3)

From the physical point of view, this integral characteristic represents the ratio of the error “power” to
the “power” of the estimated signal itself. A value close to 0 indicates a highly accurate estimate. If
the value is slightly lower than 1, the estimate is only marginally better than a trivial one. When the
ratio exceeds 1, the proposed estimate is ineffective, as it performs worse than the trivial estimate.

The residual variance ratios of the estimates θ̂c, Ŷ1,c, and Ŷ2,c calculated using only the continuous
observations ξt are as follows: ρθ̂c = 0.468, ρŶ1,c = 0.122, and ρŶ2,c = 0.322. In contrast, the
corresponding values for the estimates using the entire observation set are ρθ̂ = 0.384, ρŶ1 = 0.117,
and ρŶ2 = 0.064. Thus, the use of counting observations of packet losses significantly improves the
estimation quality of the channel state θ, has a slight impact on the performance of the current RTT Y1

estimate, and greatly enhances the estimate of the lost packet fraction Y2.
The performance of Ẑt, derived from the entire set of available observations, may be regarded

as unimpressive. However, the proposed estimate is optimal in the mean square sense, meaning
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its precision cannot be improved with the current observations. To enhance estimation precision,
additional observers should be employed, and their observations incorporated into the filtering process.

5.2. Robustness of filtering algorithm

In applied problems, the conditional distribution of the sub-vector Yt in the MRP Zt is partially
or completely unknown. To design filtering algorithms that are robust to potential deviations of π(·),
various approaches can be employed, particularly the minimax approach [30]. This method involves
searching for the least favorable distribution π∗(·) and subsequently constructing the filter in the form
of either (4.1) or (4.4). However, this approach has two significant drawbacks. First, the minimax
filtering algorithm is computationally intensive. Second, the resulting estimates are typically overly
conservative because they are designed to accommodate the least favorable choice of π(·) , which often
results in inappropriately low precision. The distribution π∗(·) can become impractical and unlikely to
occur unless there is intentional counteraction.

To develop a more robust version of the filtering algorithm, we propose selecting a specific variant
of the distribution π(·) and using it in either (4.1) or (4.4). In the case of the bounded support sets D`

of the distributions π`(·), we propose the uniform ones overD`.
Let us illustrate the performance of the proposed robust filtering estimate using the example

discussed above. We will consider three variants of distributions with the common support setsD`:

– The continuous uniform distribution over the setsD` (see previous subsection).
– The continuous symmetric triangular distributions over the setsD`.
– Three-point uniform distributions concentrated at the ends of the intervals and their midpoints.

We will compare the filtering estimates using the MCM with a sample size of Q = 5 000.
Figure 8 presents the results of the numerical study of the CTMC θt estimates for the triangular

distribution π(·):

– The unconditional mean square Dθt = Etr

{
‖θt − Etr {θt} ‖

2
}
.

– The mean square error (MSE) of the optimal estimate θ̂tr,tr
t in the case of the triangular distribution:

Dθ̂tr,tr
t = Etr

{
‖̂θtr,tr

t − θt‖
2
}

(calculated by the MCM).

– The MSE of the robust estimate θ̂tr,u
t in the case of the triangular distribution Dθ̂tr,u

t =

Etr

{
‖̂θtr,u

t − θt‖
2
}
: the real π(·) is triangular, and the filtering algorithm uses the uniform one

(calculated by the MCM).

Figure 8. Performance of the robust filtering estimate of θt: the case of triangular π(·).
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Figure 9 presents similar estimation results for Yt under the triangular distribution π(·):

– The unconditional variance DY`
t = Etr

{(
Y`

t − Etr

{
Y`

t

})2
}
, ` = 1, 2.

– The MSE of the optimal estimate Ŷ`,tr,tr
t in the case of the triangular distribution: DŶ`,tr,tr

t =

Etr

{
(Ŷ`,tr,tr

t − Y`
t )2

}
(calculated by the MCM).

– The MSE of the robust estimate Ŷ`,tr,u
t in the case of the triangular distribution DŶ`,tr,u

r =

Etr

{
(Ŷ`,tr,u

t − Y`
t )2

}
: the true distribution π(·) is triangular, and the filtering algorithm uses the

uniform one (calculated by the MCM).

Figure 9. Performance of the robust filtering estimate of Yt: the case of triangular π(·).

Figure 10 presents the results of the comparative numerical study of the CTMC θt estimates for the
three-point discrete uniform distribution Π(·):

– The unconditional mean square Dθt = E3p

{
‖θt − E3p {θt} ‖

2
}
.

– The MSE of the optimal estimate θ̂
3p,3p
t in the case of the three-point distribution Dθ̂3p,3p

t =

E3p

{
‖̂θ

3p,3p
t − θt‖

2
}

(calculated by the MCM).

– The MSE of the robust estimate θ̂3p,u
t in the case of the three-point discrete uniform distribution

Dθ̂3p,u
t = E3p

{
‖̂θ

3p,u
t − θt‖

2
}
: the real Π(·) is three-point discrete uniform, and the filtering algorithm

uses the continuous uniform one (calculated by the MCM).

Figure 10. Performance of the robust filtering estimate of θt: the case of three-point discrete
uniform Π(·).
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Figure 11 presents similar estimation results for Yt under the three-point discrete uniform
distribution Π(·):

– The unconditional variance DY`
t = E3p

{(
Y`

t − E3p

{
Y`

t

})2
}
, ` = 1, 2.

– The MSE of the optimal estimate Ŷ`,3p,3p
t error in the case of the three-point discrete uniform

distribution: DŶ`,3p,3p
t = E3p

{
(Ŷ`,3p,3p

r − Y`
t )2

}
(calculated by the MCM).

– The MSE of the robust estimate Ŷ`,tr,u
t error in the case of the three-point discrete uniform

distribution: DŶ`,3p,u
r = E3p

{
(Ŷ`,3p,u,q

r − Y`,q
t )2

}
: the real Π(·) is three-point discrete uniform, and

the filtering algorithm uses the continuous uniform one (calculated by the MCM).

Figure 11. Performance of the robust filtering estimate of Yt: the case of three-point discrete
uniform Π(·).

To evaluate the performance loss of the robust filtering estimate Ẑi,u (where i = “tr” for triangular
distribution or “3p” for three-point distribution) in comparison with the optimal estimate, we use
the following integral index. Let ρẐi,u denote the performance index (5.3) of the robust filtering
estimate when the real distribution corresponds to i. Additionally, let ρẐi,i represent the performance
index (5.3) calculated for the optimal filtering estimate Ẑi,i. We propose to consider the value

κi
Z ,

(
ρẐi,u

ρẐi,i
− 1

)
× 100%, which is the percentage increase in the index ρ when replacing the optimal

estimator with the robust one.
Table 1 contains the characteristics κ calculated for the robust filtering estimates of CTMC θ and

for the components Y1 and Y2 separately.

Table 1. Performance of robust filtering estimate.

Estimated component Triangular distribution Three-point distribution
θ 0.4 % 18.7 %
Y1 3.6 % 8.9 %
Y2 1.6 % 11.6 %

Note that in the considered case, the performance losses do not exceed 19%. In the adjacent
estimation problem involving a priori uncertainty, one can select the least favorable distribution from

AIMS Mathematics Volume 9, Issue 11, 30073–30099.



30091

the discrete options [30]. Therefore, it is not surprising that the performance loss is greater for the three-
point uniform distribution Π: the actual least favorable distribution is concentrated at distant points
within the support setsD`, and three-point distribution is close to it. By analyzing the presented figures
and the table, we can conclude that the proposed robust filtering algorithm demonstrates acceptable
accuracy and could be beneficial in situations where there is uncertainty in the probability distribution
π(·) of the sub-vector Yt.

6. Conclusions

In summary, we can present the results of the paper as follows:

1) The paper introduces a subclass of MRPs that has practical value for the mathematical modeling
of real-world objects and phenomena.

2) The optimal filtering problem for the MRP, considering both continuous and counting
observations, is properly formulated and solved. The optimal filtering estimate of a scalar signal
process is defined through the solution of a potentially non-closed SDS. Additionally, a variant of
the Kushner-Stratonovich equation, which describes the evolution of the conditional PDF of the
system state, is derived.

3) The high quality of the derived estimate is illustrated through an applied example related to
telecommunications, where the filter enables monitoring of the network channel qualitative state
and numerical characteristics based on observations of the RTT and packet loss flow.

4) The presented filtering algorithm demonstrates robustness to a priori uncertainty in the probability
distribution of the estimated MRP.

These results can serve as a foundation for future studies.
First, the class of observation systems can be expanded to include the considered MRPs as states

for subsequent solutions to the optimal filtering problem. A promising direction involves utilizing
continuous-time observations with multiplicative noise [31] and estimating the CTMC θt using the
noiseless observations of the component Yt. The filtering problems in this context are challenging
because they do not allow for a Girsanov change of measure, which would reduce the original filtering
problem to one involving Wiener and Poisson processes as observations [32].

Second, the Kushner-Stratonovich equation (4.4) is the non-linear stochastic partial integro-
differential equation. It is simpler than the original Kushner-Stratonovich equation derived for diffusion
observation systems because it does not include partial derivatives with respect to the state variable
y. However, to address various applied estimation problems, efficient numerical algorithms for
solving (4.4) and an analysis of their accuracy are required.

Third, the proposed filtering algorithm can be adapted to account for a priori uncertainty in the
parameters of the MRP distribution. The current version already demonstrates some robustness to
imprecise knowledge of the Yt distribution. However, the algorithm can be further developed in several
directions, including uncertain parameter identification [33], the design of a corresponding guaranteed
filter [30], and fuzzy logic adaptations [34, 35].

Fourth, the paper highlights telecommunications as an application area for the mathematical
modeling of real phenomena using the studied MRPs and the subsequent solutions to estimation
problems. The applicability of MRPs and the corresponding estimation framework could be
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broader, encompassing areas such as navigation and maneuvering target tracking [9, 10], financial
mathematics [36], biology [37], medicine [38], etc.
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A. Proof of Theorem 4.1

We anticipate the proof of the theorem itself by

Lemma A.1. The innovation process νt is an Ot-adapted Wiener process. The innovation process ζt is
an Ot-adapted purely discontinuous martingale with the quadratic characteristic

〈ζ, ζ〉t =

∫ t

0
diag ĥs−ds.

Proof. First, we verify the martingale property of νt. To do this, we consider two time instants 0 6 u <
t 6 T :

E {νt − νu | Ou} = E
{

R−1/2
∫ t

u

(
g(Zs) − ĝs−

)
ds + wt − wu | Ou

}
= R−1/2

∫ t

u
E

{
g(Zs) − ĝs− | Ou

}
ds + E {E {wt − wu | Fu} | Ou} = 0,

because ĝs , ĝs− at a finite subset of [0,T ] P − a.s. So, νt is a martingale.
Further, to define 〈ν, ν〉t, we apply the Itô rule to the product νtν

>
t , keeping in mind that 〈w,w〉t = tI:

νtν
>
t =

∫ t

0
νs−dν>s +

∫ t

0
dνsν

>
s− + 〈ν, ν〉t

=

∫ t

0
νs

(
R−1/2(g(Zs) − ĝs−)ds + dws

)>
+

∫ t

0

(
R−1/2(g(Zs) − ĝs−)ds + dws

)
ν>s + 〈w,w〉t.

We have the equality 〈ν, ν〉t = 〈w,w〉t = tI, and since the quadratic characteristic of wt is the non-
random function with respect to the filtration {Ft}, it also is with respect to {Ot}. The martingale νt has
the quadratic characteristic tI and P-a.s. continuous trajectories, hence this is a K-dimensional Wiener
process [39, Thm 14.4.1].

Now, we verify the martingale property of ζt. We consider two time instants 0 6 u < t 6 T and use
the fact that ĥs− , ĥs at most at a finite set of instants on [0,T ] with probability 1:

E {ζt − ζu | Ou} = E
{∫ t

u

(
h(Zs−) − ĥs−

)
ds + µ

η
t − µ

η
u | Ou

}
=

∫ t

u
E

{
h(Zs) − ĥs | Ou

}
ds + E

{
E

{
µ
η
t − µ

η
u | Fu

}
| Ou

}
= 0. P − a.s.

So, ζt is a martingale.
Further, to define 〈ζ, ζ〉t, we apply the Itô rule to the product ζtζ

>
t keeping in mind the equality

〈η, η〉t =
∫ t

0
diag h(Zs−)ds:

ζtζ
>
t =

∫ t

0
ζs−dζ>s +

∫ t

0
dζsζ

>
s− +

∑
06τ6t

∆ζτ∆ζ
>
τ =

∫ t

0
ζs−dζ>s +

∫ t

0
dζsζ

>
s− +

∑
06τ6t

∆ητ∆η
>
τ
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=

∫ t

0
ζs−dζ>s +

∫ t

0
dζsζ

>
s− + [η, η]t =

∫ t

0
diag ĥs−ds + µ4

t +

∫ t

0
ζs−dζ>s +

∫ t

0
dζsζ

>
s−︸                               ︷︷                               ︸

Ot−adapted martingale

.

Hence, 〈ζ, ζ〉t =
∫ t

0
diag ĥs−ds. �

Now, we go back to the proof of Theorem 4.1. First, if Q̂t is an optimal estimate of the process Qt

associated with q(Zt), and q(Zt) = row(0, 1)Qt is the linear transformation of Qt, then q̂t = row(0, 1)Q̂t.
To derive an equation describing the evolution of Q̂t, we use an approach suggested in [32, Chap. 7]
based on the uniqueness of the special semimartingale decomposition [19].

The associated process Qt can be described by an SDS, which is an appropriate version of (2.7)

Qt = Q0 +

∫ t

0
DQ(s)Qs−ds + dµQ

t , (A.1)

where µQ
t ∈ R

2N is an Ft-adapted square integrable martingale. Conditioning both sides of (A.1) by Ot,
one can obtain, that

Q̂t = E {Q0} +

∫ t

0
DQ(s)Q̂s−ds +

∫ t

0
γsdνs +

∫ t

0
Γsdζs, (A.2)

where γs = γ(s, ωs) ∈ R2N×K and Γs = Γ(s, ωs) ∈ R2N×L are Ot-predictable random matrix-valued
processes that should be determined [32, Lemmas 7.4.1 and 7.4.2]. However, decomposition (A.2) is
true when there exists a suitable Girsanov measure transform for which ξt is the Wiener process, and
ηt is the Poisson one. To meet this condition, the equality

E {ΛT } = 1 (A.3)

should be true [39] for

Λt = exp

−∫ t

0
g>(Zs)R−1/2dws −

1
2

∫ t

0
g>(Zs)R−1g(Zs)ds +

L∑
`=1

∫ t

0

((
h`(Zs) − 1

)
ds − ln h`(Zs−)dη`s

) .
The processes g(·) and h(·) in (3.1) can be expressed via the solution to some linear SDS, and this

is sufficient condition for the fulfillment of (A.3) [40, Theorem 4.1].
Let us consider the product Q̂tξ

>
t . Due to the Itô rule and the fact 〈Q, ξ〉t ≡ 0, we have

Qtξ
>
t =

∫ t

0
Qsdξ>s +

∫ t

0
dQsξ

>
s =

∫ t

0

(
Qsg(Zs)>R−1/2 + DQ(s)Qsξ

>
s

)
ds +

∫ t

0

(
Qsdw>s + dµQ

s ξ
>
s

)
︸                      ︷︷                      ︸

Ft−measurable martingale

.

Conditioning both sides of the last expression with respect to Ot, we obtain the first variant of
decomposition of Q̂tξ

>
t :

E
{
Qtξ

>
t |Ot

}
= Q̂tξ

>
t =

∫ t

0

(
Q̂g>s−R

−1/2 + DQ(s)Q̂s−ξ
>
s

)
ds + µ5

t , (A.4)
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where µ5
t is an Ot-adapted martingale.

Now, we use (4.1) and the expression ξt =
∫ t

0
ĝs−ds + R1/2νt:

Q̂tξ
>
t =

∫ t

0
Q̂s−dξ>s +

∫ t

0
dQ̂sξ

>
s + 〈Q̂, ξ〉t (A.5)

=

∫ t

0

(
Q̂s−ĝ>s−R

−1/2 + DQ(s)Q̂s−ξ
>
s + γs

)
ds +

∫ t

0

(
Q̂s−dν>s R1/2 + (γsdνs + Γsdζs) ξ>s

)
︸                                            ︷︷                                            ︸

,µ6
t

,

where µ6
t is an Ot-adapted martingale.

Formulae (A.4) and (A.5) represent the same semimartingale, and this presumes P-a.s. fulfillment
of the equality Q̂g>t−R

−1/2 + DQ(t)Q̂t−ξ
>
t = Q̂t−ĝ>t−R

−1/2 + DQ(t)Q̂t−ξ
>
t + γt for almost any t ∈ [0,T ]. It

is easy to verify that the Ot-predictable process

γt =
(
Q̂g>t− − Q̂t−ĝ>t−

)
R−1/2 (A.6)

satisfies the last equality.
We define the integrand Γt analogously. First, we obtain the decomposition of the product Q̂tη

>
t :

Qtη
>
t =

∫ t

0
Qs−dη>s +

∫ t

0
dQsη

>
s− +

∑
06τ6t

∆Qτ∆η
>
τ

=

∫ t

0

(
Qsh(Zs)> + DQ(s)Qsη

>
s

)
ds +

∫ t

0

(
Qs−d(µηs)

> + dµQ
s η
>
s−

)
︸                           ︷︷                           ︸
Ft−measurable martingale

.

Conditioning both sides of the last expression with respect to Ot, we obtain the first variant of
decomposition of Q̂tη

>
t :

E
{
Qtη

>
t |Ot

}
= Q̂tη

>
t =

∫ t

0

(
Q̂h>s− + DQ(s)Q̂s−η

>
s−

)
ds + µ7

t , (A.7)

where µ7
t is an Ot-adapted martingale.

Now, we apply the Itô rule to Q̂tη
>
t and use the expression ηt =

∫ t

0
ĥs−ds + ζt:

Q̂tη
>
t =

∫ t

0
Q̂s−dη>s +

∫ t

0
dQ̂sη

>
s− +

∑
06τ6t

∆Q̂τ∆η
>
τ =

∫ t

0

(
Q̂s−̂h>s− + DQ(s)Q̂sη

>
s + Γs diag ĥs−

)
ds + µ8

t ,

(A.8)
where µ8

t is an Ot-adapted martingale. Formulae (A.7) and (A.8) represent the same semimartingale,
and this presumes P-a.s. fulfillment of the equality Q̂h>t + DQ(t)Q̂tη

>
t = Q̂t̂h>t−+ DQ(t)Q̂tη

>
t +Γt diag ĥt−

for almost any t ∈ [0,T ]. It is easy to verify that the Ot-predictable process

Γt =
(
Q̂h>t− − Q̂t−̂h>t−

)
diag−1 ĥt− (A.9)

satisfies the last equality. The substitution of (A.6) and (A.9) into (A.2) completes the proof.
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B. Proof of Theorem 4.2

The existence of the conditional PDF ψ̂(t, y) follows from an abstract variant of the Bayes rule given
both the continuous and counting observations by analogy with [41, Thm 7.23]. Conditions A1–A8
guarantee the legitimacy of this existence. If ψ̂(t, y) does exist, then expressions (4.5) for θ̂s, ĝs, and
ĥs− are obvious.

Using (4.1), one can obtain the following representation for the estimate q̂t = E {q(Zt)|Ot}:

q̂t =E {q(Z0)} +
∫ t

0

[
λ(s)̂qs− + E>q Λ̃>(s)̂θs−

]
ds (B.1)

+

∫ t

0

(
q̂g>s− − q̂s−ĝ>s−

)
R−1/2dνs +

∫ t

0

(
q̂h>s− − q̂s−ĥ>s−

)
diag−1(̂hs−)dζs.

We choose the function q(·), defining the estimated process, in the form q(z) = q(e, y) = e>n eIB(y) for
some n ∈ {1, . . . ,N} and B ∈ B(RM), hence q(Zt) = e>n θtIB(Yt). The terms in both sides of (B.1) can be
written as follows:

q̂t =

∫
B
ψ̂n(t, y)dy = e>n

∫
B
ψ̂(t, y)dy, (B.2)

E {q(Z0)} = pn
0

∫
B
φn(y)dy = e>n

∫
B

diag(p0)φ(y)dy, (B.3)

∫ t

0
λ(s)̂qs−ds =

∫ t

0
λ(s)E

{
θs−e>n θs−IB(Ys−)|Os−

}
ds (B.4)

=

∫ t

0
λ(s) diag(en)

∫
B
ψ̂(s−, y)dyds = e>n

∫
B

[∫ t

0
diag(λ(s))ψ̂(s−, y)ds

]
dy,

∫ t

0
E>q Λ̃>(s)̂θs−ds =

∫ t

0
e>n diag

(∫
B
π(y)dy

)
Λ̃>(s)̂θs−ds = e>n diag

(∫
B
π(y)dy

) ∫ t

0
Λ̃>(s)̂θs−ds, (B.5)

∫ t

0
q̂g>s−R

−1/2dνs =

∫ t

0
E

{
e>n θs−IB(Ys−)g>(θs−,Ys−)|Os−

}
R−1/2dνs (B.6)

= e>n

∫ t

0

[∫
B

diag
(
ψ̂(s−, y)

)
g>(y)dy

]
R−1/2dνs

= e>n

∫
B

[∫ t

0
diag

(
ψ̂(s−, y)

)
g>(y)R−1/2dνs

]
dy,

∫ t

0
q̂s−ĝ>s−R

−1/2dνs =

∫ t

0
e>n

[∫
B
ψ̂(s−, y)dy

]
ĝ>s−R

−1/2dνs (B.7)

= e>n

∫
B

[∫ t

0
diag

(
ψ̂(s−, y)

) (̂
gs−1

)> R−1/2dνs

]
dy,

∫ t

0
q̂h>s− diag−1(̂hs−)dζs = e>n

∫
B

[∫ t

0
diag

(
ψ̂(s−, y)

)
h
>

(y) diag−1(̂hs−)dζs

]
dy, (B.8)
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∫ t

0
q̂s−̂h>s− diag−1(̂hs−)dζs = e>n

∫
B

[∫ t

0
diag

(
ψ̂(s−, y)

) (̂
hs−1

)>
diag−1(̂hs−)dζs

]
dy. (B.9)

The change of the integration order in (B.4)–(B.9) is proper due to the Fubini theorem. From the
expressions above and (B.1), it follows that

e>n

∫
B

[
ψ̂(t, y) − diag(p0)φ(y) −

∫ t

0

(
diag(λ(s))ψ̂(s−, y) + diag

(∫
B
π(y)dy

)
Λ̃>(s)̂θs−

)
ds (B.10)

−

∫ t

0
diag

(
ψ̂(s−, y)

) (
g>(y) − ĝs−1

)>
R−1/2dνs

−

∫ t

0
diag

(
ψ̂(s−, y)

) (
h
>

(y) − ĥs−1
)>

diag−1
(̂
hs−

)
dζs

]
dy = 0.

From the arbitrariness of n ∈ {1, . . . ,N} and B ∈ B(RM), it follows that (B.10) holds when the equality

ψ̂(t, y) = diag(p0)φ(y) +

∫ t

0

[
diag λ(s)ψ̂(s−, y) + diag π(y)Λ̃>(s)̂θs−

]
ds

+

∫ t

0
diag

(
ψ̂(s−, y)

) (
g(y) − ĝs−1

)> R−1/2dνs +

∫ t

0
diag

(
ψ̂(s−, y)

) (
h(y) − ĥs−1

)>
diag−1(̂hs−)dζs,

is true P-a.s. and almost everywhere with respect to the Lebesgue measure. The theorem is proved.
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