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1. Introduction

The problem of change point detection originates from practical application research such as
product quality control and risk management. Its application fields are extremely broad, spanning
signal processing [1], finance [2], ecology [3], disease outbreak monitoring [4], and neuroscience [5,6],
and it has been extensively studied over the past few decades. To detect change points and estimate their
locations, numerous methods have emerged, including least squares (LS, [7]), Bayesian methods [8],
maximum likelihood methods [9], and some nonparametric methods [10, 11]. Among them, the
cumulative sum (CUSUM) method based on LS estimation stands out as an attractive approach for
detecting variance changes in sequences, as it avoids certain assumptions about the underlying error
distribution function and is computationally simple [12].

We consider the following variance change point model:

Yt =

µ + σ1et, 1 ≤ t ≤ k0,

µ + σ2et, k0 + 1 ≤ t ≤ n,
(1.1)
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where µ and σ1 , σ2 are parameters, and k0 is the unknown location of a change point with k0 = [τ0n].
Throughout the remainder of this paper, we operate under the assumption that 0 < γ1 < τ0 < γ2 < 1,
where γ1 and γ2 are constants and independent of n.

In prior works, [13] as well as [14] tackled the issue of identifying scale shifts in infinite order
moving average processes. [15] introduced a novel class of weighted difference statistics aimed at
detecting and estimating variance change points in time series featuring weakly dependent blocks and
dependent panel data; and [16] derived the strong convergence rate for variance change estimators in
linear processes. More recently, [17] proposed a weighted sum of variance powers test for variance
shifts in data sequences; and [18] established the weak convergence rate for multiple variance change
estimation in linear processes under negatively super-additive dependence and so on. Building upon
these foundations, the present paper delves into the realm of variance change point estimation for
strong-mixing (or α-mixing) dependent random variables.

Now, let us revisit the notion of strong-mixing (or α-mixing) random variables, which is defined
as follows.
Definition 1.1. For a sequence {Xn, n ≥ 1} of random variables or random vectors, the α-mixing
coefficient α(n) is defined as

α(n) := sup
k≥1

sup{|P(AB) − P(A)P(B)| : A ∈ F ∞n+k, B ∈ F
k

1 },

where F m
n = σ(Xi : n ≤ i ≤ m) denotes the σ-algebra generated by Xn, · · · , Xm with n ≤ m. Then, the

sequence {Xn, n ≥ 1} is said to be strong-mixing (or α-mixing), if α(n)→ 0 as n→ ∞.
The strong-mixing is weaker than most other mixing conditions. One can refer to [19], for

instance. There are several examples of α-mixing sequences, including the AR (Autoregressive) model
and many time series models, which have many applications in practice. For more details about the
examples of time series with strong mixing properties, one can refer to [20] and [21], among others.

For the change point model under strong-mixing, [22] got the consistency estimators for
mean and covariance functions and the limit distribution of the CUSUM estimator under strong-
mixing sequences; and [23] considered the mean-variance model with strong-mixing and described
a combination test for the mean shift and variance change. So far, no scholars have discussed the
strong consistency of the CUSUM estimator of the variance change point model under strong mixing
conditions, which arouses the author’s interest. The objective of this research endeavor is to identify
variance change point in strong-mixing samples. To this end, we derive the strong convergence rate
of the variance change point estimator. Furthermore, we demonstrate the efficacy of the CUSUM-type
estimator through simulation and the analysis of real data, utilizing the R software package.

The structure of this paper is outlined as follows: In Section 2, we introduce the CUSUM-type
variance change point estimator and establish its strong convergence rate. Section 3 presents simulation
studies designed to showcase the performance of the proposed estimator. Lastly, Section 4 provides
the proofs of our main results.

Throughout the paper, an = O(bn) denotes that there exists a positive constant C such that |an| ≤

C|bn|, while an = o(bn) means an/bn → 0, as n → ∞. Let C, C1, C2, · · · denote positive constants
whose values may vary at each occurrence. All limits are taken as the sample size n tends to∞, unless
otherwise specified.

AIMS Mathematics Volume 9, Issue 11, 30059–30072.



30061

2. Estimation and main results

Let τ0 = k0/n. Assuming the parameter µ is known, without compromising the essence of
generality, we postulate that µ = 0.

We give the CUSUM estimator of the variance change point k0:

k̂n = arg max
1≤k≤n

|Uk|, and τ̂n = k̂n/n, (2.1)

with

Uk =

[
k (n − k)

n

]1−α
∣∣∣∣∣∣∣1k

k∑
t=1

Y2
t −

1
n − k

n∑
t=k+1

Y2
t

∣∣∣∣∣∣∣ ,
where 0 ≤ α < 1. We list some assumptions as follows.
Assumption 1. {et, t = 1, 2, . . .} is a second order stationary sequence of α-mixing random variables
with Eet = 0 and Var(et) = σ2 < ∞.
Assumption 2. E|et|

2(r+δ) < ∞, r > 2, δ > 0, and α(n) = O(n−γ) for some γ > r(r + δ)/(2δ).
Assumption 3. There is a positive constant c and a random variable e, for which, given any et, it holds
true that

P(|et| ≥ a) ≤ cP(|e| ≥ a).

Remark 2.1. If the {et, t ≥ 1} are identically distributed, then Assumption 3 is satisfied obviously. In
addition, let p > 0, P(et = 0) = 1 − 1

t , P(et = t1/p) = 1
t , t ≥ 1. According to [24], we can see that the

sequence {et, t ≥ 1} is stochastically dominated by a nonnegative random variable e with distribution
function F(x) = 1 − supt≥1 P(et > x), x ∈ R. That is to say, Assumption 3 is satisfied.

For the variance change points estimator τ̂n, we demonstrate a result of strong consistency in the
following theorem.
Theorem 2.1. In the model (1.1), let τ̂n be the variance change point estimator defined by (2.1). If the
assumptions (A1)–(A3) hold, then

τ̂n → τ0 a.s., n→ ∞.

Under the premises stated in Theorem 2.1, we proceed to derive the strong convergence rate of
the variance change point estimator τ̂n in the following theorem.
Theorem 2.2. In the model (1.1), let τ̂n be the variance change point estimator defined by (2.1). If the
assumptions (A1)–(A3) hold, then

τ̂n − τ0 = o(M(n)/n) a.s.

for any M(n) satisfying that M(n) ↑ ∞.

3. Numerical analyses

3.1. Simulation

In this section, we undertake a series of straightforward simulations to validate the finite sample
behavior of the CUSUM estimator of the variance change point for strong-mixing sequence.
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We commence by generating strong mixing data. We define an AR(1) process en = 0.5en−1 +

ξn, n ≥ 1, where ξn ∼
i.i.d. N(0, 1) and e0 ∼ N(0, 4

3 ). It is straightforward to observe that {en, n ≥ 1} is a
mean zero sequence of α-mixing random variables, as established by [20].

Take τ0 = 0.25, 0.5, α = 0, 0.1, 0.5 and σ1 = 1, σ2 = δ = 3,−0.8, respectively. We use the R
software to compute τn with n = 200, 400, 800, 1600 for 1000 times. The results of these simulations
are visually represented through the construction of box-plots, which are presented in Figure 1.

Case 1: �0 = 0.25

Case 2: �0 = 0.5

Figure 1. Box-plots of τn with n = 200, 400, 800, 1600.
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As evident from Figure 1, for each specified value of α and δ, the CUSUM estimator τn converges
to the true parameter τ0 uniformly as n increases. Furthermore, as can be seen from Figure 1,
the optimal choice of α varies with different variances, which needs to be determined according to
specific situations.

3.2. Real data analysis

We will utilize variance change point estimator to conduct research on the volatility changes of
stock returns of the AMD (Advanced Micro Devices) Semiconductor Company in the United States.
Through the Yahoo Finance website, we downloaded a total of 212 stock price datasets for AMD
stock, spanning from March 3, 2008 to December 31, 2008. Let Pt represent the closing price of AMD
stock, and the return rate is defined as rt = log Pt − log Pt−1, for 1 ≤ t ≤ 211, with P0 = 1. The
ACF (Autocorrelation Function) graph of AMD stock returns is shown in Figure 2 and the AMD stock
returns are depicted in Figure 3.

Figure 2. The ACF of AMD stock returns.

From Figure 2, as the lag increases, the sample autocorrelation function gradually tends to 0,
indicating that the AMD stock return data rt, for 1 ≤ t ≤ 211, satisfies the ρ-mixing property, so the
real data is α-mixing.
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Figure 3. The AMD stock returns from March 3, 2008 to December 31, 2008.

As shown in Figure 3, the mean of AMD stock returns is around zero with no significant changes,
but there is a significant change in variance. Using the CUSUM type statistic for variance change
point, as seen in Eq (2.1), we can detect that the location of the variance change point is at 136
(corresponding to the date of September 12, 2008). In fact, the reason for the fluctuation in AMD
stock is the announcement of the bankruptcy of the American company Lehman Brothers Holdings,
Inc. on September 15, 2008, which undoubtedly increased the risk in the stock market.

4. Proof of the theorems

To substantiate the primary theorems of this paper, we rely on several pivotal lemmas. In this
section, let {ei, i ≥ 1} be a sequence of strong mixing random variables with mixing coefficients
{α(n), n ≥ 1}.

The first one is the Rosenthal type maximum inequality and the Rosenthal type inequality for
strong-mixing random variables.
Lemma 4.1. (i) (cf. [25]). Let r > 2, δ > 0, Eei = 0, and E|ei|

r+δ < ∞. Suppose that α(n) = O(n−γ) for
some γ > r(r + δ)/(2δ). Then, for any ε > 0, there exists a positive constant C = C(τ, r, δ, γ) such that

E

max
1≤m≤n

∣∣∣∣∣∣∣
m∑

i=1

ei

∣∣∣∣∣∣∣
r ≤ C

nτ
n∑

i=1

E|ei|
r +

 n∑
i=1

‖ei‖
2
r+δ

r/2 .
(ii) (cf. [26]) If Eei = 0 and E|ei|

2+δ < ∞ for some δ > 0, then

E

 n∑
i=1

ei

2

≤

1 + 16
n∑

l=1

αδ/(2+δ)(l)

 n∑
i=1

‖ei‖
2
2+δ.
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The second one is about the probabilistic inequalities for strong-mixing random variables, which
is used to prove Theorem 2.1.
Lemma 4.2. Let r > 2, δ > 0, Eei = 0, and E|ei|

r+δ < ∞. Suppose that α(n) = O(n−γ) for some
γ > r(r + δ)/(2δ). Then, we establish, for large n,

(i) P

max
16k6n

∣∣∣∣∣∣∣
k∑

i=1

ei

iα

∣∣∣∣∣∣∣ > n1−αε

 ≤ C

n
2
r εr

,

(ii) P

max
k>n

1
k

∣∣∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣∣∣ > ε
 ≤ C

n
2
r εr

.

Proof. It is readily apparent that

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣∣∣ > ε
 ≤ P

 n⋃
i=1

{|ei| > n}

 + P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

eiI (|ei| ≤ n)

∣∣∣∣∣∣∣ > ε
 .

Since E |ei|
r+δ < ∞, r > 2, and Eei = 0, we have

P

 n⋃
i=1

{|ei| > n}

 ≤ n∑
i=1

P (|ei| > n) ≤
C

nr−1 , (4.1)

1
n1−α max

1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

E
eiI (|ei| ≤ n)

i

∣∣∣∣∣∣∣ ≤ C
nr−1

n∑
i=1

1
iα
≤

C
nr−1 . (4.2)

Utilizing the Markov inequality in conjunction with Lemma 4.1(a), along with the given
conditions in (4.2) and E|ei|

r+δ < ∞, we can deduce that for sufficiently large values of n and τ = 1−rα,

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

eiI (|ei| ≤ n) − EeiI (|ei| ≤ n)
iα

∣∣∣∣∣∣∣ > n1−αε


≤

C
nr−rαεr E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

eiI (|ei| ≤ n) − EeiI (|ei| ≤ n)
iα

∣∣∣∣∣∣∣
r

≤
C

nr−rαεr

nτ
n∑

i=1

E
∣∣∣∣∣eiI (|ei| ≤ n) − EeiI (|ei| ≤ n)

iα

∣∣∣∣∣r
+

 n∑
i=1

∥∥∥∥∥eiI (|ei| ≤ n) − EeiI (|ei| ≤ n)
iα

∥∥∥∥∥2

r+δ

r/2
≤

C
nr−rαεr (nτ + C + nr/2−rα) ≤

C

n
2
r εr

.

(4.3)

Combining this with the Eq (4.1), we can deduce that

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

ei

iα

∣∣∣∣∣∣∣ > n1−αε

 ≤ C
nr−1 +

C

n
2
r εr
≤

C

n
2
r εr

.
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For (ii), we split the set {k ≥ n} into a union of subsets of the form
{
(1 + `) jn ≤ k < (1 + `) j+1n

}
for ` > 0 and j = 0, 1, 2, · · · . Leveraging the result from (i), we proceed with the verification of (ii)
as follows:

P

max
k≥n

1
k

∣∣∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣∣∣ > ε
 ≤ ∞∑

j=0

P

 max
(1+`) jn≤k<(1+`) j+1n

1
k

∣∣∣∣∣∣∣
k∑

i=1

ei

∣∣∣∣∣∣∣ > ε


≤

∞∑
j=0

P

 max
1≤k<(1+l) j+1n

∣∣∣∣∣∣∣
k∑

i=1

ei

i

∣∣∣∣∣∣∣ > (1 + l) jnε


≤

∞∑
j=0

C[
(1 + l) j+1n

]r/2 εr
≤

C

n
2
r εr

.

The proof has been thoroughly established. �

Proof of Theorem 2.1. Define β =
(
σ2

1 − σ
2
2

)
. When k ≤ k0, we get

EUk

=

[
k (n − k)

n

]1−α

E

1
k

k∑
t=1

Y2
t −

1
n − k

n∑
t=k+1

Y2
t


=

[
k (n − k)

n

]1−α

E

1
k

k∑
t=1

Y2
t −

1
n − k

k0∑
t=k+1

Y2
t −

1
n − k

n∑
t=k0+1

Y2
t


=

[
k (n − k)

n

]1−α (
σ2

1 −
k0 − k
n − k

σ2
1 −

n − k0

n − k
σ2

2

)
=

[
k (n − k)

n

]1−α n − k0

n − k
|β|.

Similarly, when k > k0, we have

EUk

=

[
k (n − k)

n

]1−α

E

1
k

k0∑
t=1

Y2
t −

1
k

k∑
t=k0+1

Y2
t −

1
n − k

n∑
t=k+1

Y2
t


=

[
k (n − k)

n

]1−α ∣∣∣∣∣k0

k
σ2

1 +
k − k0

k
σ2

2 − σ
2
2

∣∣∣∣∣
=

[
k (n − k)

n

]1−α k0

k
|β|.

It’s easy to see that EUk is increasing when k ≤ k0 and it is decreasing when k > k0, then EUk achieves
the maximum at k0, thus, ∣∣∣EUk0

∣∣∣ =

[
(n − k0) k0

n

]1−α

|β|,

which implies that∣∣∣EUk0

∣∣∣ − |EUk| ≥
k0 ∧ (n − k0)

n1−α |k − k0| |β| ≥
C1

n1−α |k − k0| = C1nα−1
∣∣∣τk − τk0

∣∣∣ .
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Note that
|Uk| −

∣∣∣Uk0

∣∣∣ ≤ |Uk − EUk| +
∣∣∣Uk0 − EUk0

∣∣∣ + |EUk| − |EUk0 |

≤ 2 max
1≤k≤n

|Uk − EUk| + |EUk| − |EUk0 |.

According to the findings presented in Kokoszka and Leipus (1998), we obtain

|β|γ|τ̂n − τ0| ≤ 2nα−1 max
1≤k≤n

|Uk − EUk| ,

where γ � (1 − α)τ−α0 (1 − τ0)−α min{τ0, 1 − τ0}. Hence, to prove Theorem 2.1, our primary objective is
to demonstrate that

nα−1 max
1≤k≤n

|Uk − EUk| → 0 a.s. n→ ∞. (4.4)

From the definition of EUk, we get

nα−1 max
1≤k≤n

|Uk − EUk|

= nα−1 max
1≤k≤n

∣∣∣∣∣∣∣
 1

kα

k∑
t=1

(Y2
t − EY2

t ) −
1

(n − k)α

n∑
t=k+1

(Y2
t − EY2

t )


∣∣∣∣∣∣∣

≤ nα−1 max
1≤k≤n

1
kα

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ + max
1≤k≤n

1
(n − k)α

∣∣∣∣∣∣∣
n∑

t=k+1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ .
(4.5)

Define γ = C1ε/2. From (4.4) and (4.5), the Theorem 2.1 is followed by showing

P

 ∞⋃
n=h

max
1≤k≤n

1
n1−αkα

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ

→ 0, as h→ ∞ (4.6)

and

P

 ∞⋃
n=h

max
1≤k≤n

1
(n − k)α

∣∣∣∣∣∣∣
n∑

t=k+1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ

→ 0, as h→ ∞. (4.7)

We consider the Eq (4.6), for n → ∞ and h → ∞. Noting that {Y2
t − EY2

t } are α-mixing random
variables with mean zero, we have by Lemma 4.2 that

P

 ∞⋃
n=h

max
1≤k≤n

1
n1−αkα

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ



=P

 ∞⋃
n=h

n⋃
k=1

 1
n1−αkα

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ



≤P

 h⋃
k=1

 1
h1−αkα

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ

 + P

 ∞⋃
k=h

1
k

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ



≤P

max
1≤k≤h

1
h1−α

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )
iα

∣∣∣∣∣∣∣ > γ
 + P

max
k≥h

1
k

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ > γ


≤
C

n
2
r εr

.
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Similarly, Eq (4.7) can be proved by Lemma 4.2. With the above derivation, we have successfully
completed the proof of Theorem 2.1. �

Proof of Theorem 2.2. It suffices to demonstrate for any ε > 0 that

lim
m→∞

P

 ∞⋃
n=m

{|τ̂n − τ0| > εM(n)/n}

 = 0.

Since τ0 ∈ (γ1, γ2), it is readily apparent that

P

 ∞⋃
n=m

{|τ̂n − τ0| > εM(n)/n}


≤ P

 ∞⋃
n=m

{τ̂n < (γ1, γ2)}

 + P

 ∞⋃
n=m

{|τ̂n − τ0| > εM(n)/n, τ̂n ∈ (γ1, γ2)}


� J1 + J2.

By Theorem 2.1, it follows that J1 → 0 as m→ ∞. Next, we prove J2 → 0.
Write Hn,M(n) = {k : nγ1 < k < nγ2, |k − k0| > εM(n)}. It becomes evident upon observation that

for β < 0,

{|τ̂n − τ0| > εM(n)/n, τ̂n ∈ (γ1, γ2)} ⊆
{

max
k∈Hn,M(n)

|Uk| ≥
∣∣∣Uk0

∣∣∣}
⊆

{
max

k∈Hn,M(n)
Uk − Uk0 ≥ 0

}⋃ ⋃
k∈Hn,M(n)

{Uk < 0}

 .
Analogously, we can establish that for β > 0,

{|τ̂n − τ0| > εM(n)/n, τ̂n ∈ (γ1, γ2)} ⊆
{

max
k∈Hn,M(n)

|Uk| ≥
∣∣∣Uk0

∣∣∣}
⊆

{
max

k∈Hn,M(n)
−Uk + Uk0 ≥ 0

}⋃ ⋃
k∈Hn,M(n)

{Uk ≥ 0}

 .
Without compromising the generality of the argument, we postulate that β < 0. To prove the

theorem, our sole objective is to establish that as n→ ∞,

lim
m→∞

P

 ∞⋃
n=m

{
max

k∈Hn,M(n)
Uk − Uk0 ≥ 0

}→ 0 (4.8)

and

P

 ∞⋃
n=m

⋃
k∈Hn,M(n)

{Uk < 0}

→ 0. (4.9)
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It is readily observable that

P

 ∞⋃
n=m

{
max

k∈Hn,M(n)
Uk − Uk0 ≥ 0

}
≤ P

 ∞⋃
n=m

{
max

k∈Hn,M(n),k<k0
Uk − Uk0 ≥ 0

} + P

 ∞⋃
n=m

{
max

k∈Hn,M(n),k≥k0
Uk − Uk0 ≥ 0

}
� K1 + K2.

Since the proof that K2 → 0 as n → ∞ mimics the proof that K1 → 0 as n → ∞, we shall solely
focus on proving the latter case. We have

P

 ∞⋃
n=m

{
max

k∈Hn,M(n),k<k0
Uk − Uk0 ≥ 0

}
≤ P

 ∞⋃
n=m

⋃
k∈Hn,M(n),k<k0

{∣∣∣Uk − EUk −
(
Uk0 − EUk0

)∣∣∣ ≥ EUk0 − EUk

} .
(4.10)

For β < 0, EUk ≥ 0, 1 ≤ k ≤ n − 1, we have

EUk0 − EUk =
∣∣∣EUk0

∣∣∣ − |EUk| ≥ Cn−α |β| |k − k0| . (4.11)

Furthermore, for k ∈ Hn,M(n), k < k0, we can derive that∣∣∣Uk − EUk −
(
Uk0 − EUk0

)∣∣∣
≤

C1 |k − k0|

n1+α

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ +
C2 |k − k0|

n1+α

∣∣∣∣∣∣∣
n∑

t=k0+1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣
+

C3

nα

∣∣∣∣∣∣∣
k0∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ +
C4

nα

∣∣∣∣∣∣∣
k0∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ .
(4.12)

By (4.10)–(4.12), it follows that

P

 ∞⋃
n=m

{
max

k∈Hn,M(n),k<k0
Uk − Uk0 ≥ 0

}
≤ P

 ∞⋃
n=m

max
1≤k<n

1
n

∣∣∣∣∣∣∣
k∑

t=1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ ≥ C1


 + P

 ∞⋃
n=m

max
1≤k<n

1
n

∣∣∣∣∣∣∣
n∑

t=k0+1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ ≥ C2




+ P

 ∞⋃
n=m

 max
k∈Hn,M(n),k<k0

1
k0 − k

∣∣∣∣∣∣∣
k0∑

t=k+1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ ≥ C3




+ P

 ∞⋃
n=m

 max
k∈Hn,M(n),k<k0

1
k0 − k

∣∣∣∣∣∣∣
k0∑

t=k+1

(Y2
t − EY2

t )

∣∣∣∣∣∣∣ ≥ C4




� P1 + P2 + P3 + P4.
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By (4.6), it follows that P1 → 0 as m → ∞. Analogously, by leveraging Eq (4.7), it can be
demonstrated that P2 → 0 as m → ∞. Furthermore, in accordance with Lemma 4.2, it follows
logically that P3 → 0 and P4 → 0 since M(n)→ ∞.

Next, we prove (4.9). Drawing upon the proof of Theorem 2.1, it follows that for k ∈ Hn,M(n),

P

 ∞⋃
n=m

⋃
k∈Hn,M(n)

{Uk < 0}

 ≤ P

 ∞⋃
n=m

⋃
k∈Hn,M(n)

{|Uk − EUk| > C5nτ̄}


≤ P

 ∞⋃
n=m

{
max
1≤k<n

|Uk − EUk| > C5nτ̄
} ,

where τ̄ = min {τ0, 1 − τ0}, which tends to zero as n→ ∞.
This concludes the proof of Theorem 2.2, thereby establishing the desired result.�

5. Conclusions

This article primarily utilizes the Rosenthal type inequalities and probabilistic inequalities for
strong-mixing sequences to investigate the strong consistency of variance change point estimation
under strong-mixing sequences. It fills a research gap concerning variance change points in dependent
sequences. While the classic CUSUM estimator is a well-known approach for change point models,
there are other types of change point models and estimators that merit further exploration by readers.
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