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Abstract: The objective of this work is to provide the method of getting the closed-form solitary wave
solution of the fractional (3 + 1)-generalized nonlinear wave equation that characterizes the behavior
of liquids with gas bubbles. The same phenomena are evident in science, engineering, and even in
the field of physics. This is done by employing the Riccati-Bernoulli sub-ode in a systematic manner
as applied to the Bäcklund transformation in the study of this model. New soliton solutions, in the
forms of soliton, are derived in the hyperbolic and trigonometric functions. The used software is the
computational software Maple, which makes it possible to perform all the necessary calculations and
the check of given solutions. The result of such calculations is graphical illustrations of the steady-state
characteristics of the system and its dynamics concerning waves and the inter-relationships between
the parameters. Moreover, the contour plots and the three-dimensional figures describe the essential
features, helping readers understand the physical nature of the model introduced in this work.
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1. Introduction

The fractional differential equations have been the focus of many contributions, taking into account
their application in various areas such as finance, engineering, biology and physics, control theory,
system identification, and signal processing [1–5]. Their applications include; social sciences, dietary
supplements, climate, and economics, among others [6–11]. Hence, the exact solutions to fractional
differential equations are important. To solve these equations, numerous analytical and numerical
approaches have been reported, in the literature such as the modified F-expansion systematic [12], the
extended tanh-coth method [13], the mapping method [14], the (G’/G)-expansion technique [15], etc.
Rayleigh [16] did the first work on bubble dynamics. Since many subjects and industries deal with
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bubbly liquids, including medical science and engineering, bubbly liquids have received significant
attention. This collection of recent research articles covers a broad range of topics in mathematical
physics, nonlinear dynamics, and applied mathematics. They delve into Gaussian traveling wave
solutions for a Schrödinger equation with logarithmic nonlinearity [17], while their subsequent work
explores exact solutions for a nonlinear fourth-order time-fractional partial differential equation [18].
Focus on soliton solutions to the (2+1) dimensional Chaffee-Infante equation [19]. Investigate
synchronization patterns in memristive neuron maps [20], alongside studies of ADHD brain networks
and chimera states in FitzHugh-Nagumo oscillators [21, 22]. The present digital integrators are based
on trigonometric quadrature rules, contributing to advancements in industrial electronics [23]. It has
been found out that the propagation of linear acoustic waves in isothermal bubbly liquids, assuming that
the radius of the bubbles is uniform, is governed by a fourth-order linear partial differential equation.
A generalized (3+1)-dimensional nonlinear wave equation is one such model used to characterize a
liquid containing gas bubbles:

∂

∂x

(
∂ f
∂t
+ (p1)

∂ f
∂t
+ (p2)

∂3 f
∂x3 + (p3) f

∂ f
∂x

)
+ (p4)

∂2 f
∂z2 + (p5)

∂2 f
∂y2 = 0. (1.1)

In the context of the equation, f (x, y, z, t) stands for the amplitude of a wave, where p1 is the
bubble liquid viscosity and p2 is the bubble liquid dispersion, p3 is the bubble liquid nonlinearity,
p4 is the z transverse perturbation, and p5 is the transverse perturbation. Equation (1.1) can be used
for the description of different nonlinear processes occurring in liquids with gas bubbles. Therefore,
this equation has received a lot of attention in research. For example, within the frame of linear
superposition, soliton solutions of N-soliton waves have been obtained [24]. Furthermore, lump-stripe
solitons and rogue wave-stripe solutions have been built [25], and lump, stripe periodic, and multi
solitons also have been found [26]. Soliton solutions have been obtained by using the technique that
is now known as the Hirota bilinear form and has resulted in a new form of a generalized exponential
rational function of Hirota [27, 28]. Additionally, the use of the modified Kudryashov method and
Nuccis reduction has been made to investigate the behavior of solitary waves [29]. However, in the past
studies, the consideration of fractional derivatives on Eq (1.1) has not been thoroughly investigated,
which hinders the ability to simulate the detailed kinetics of wave in systems having memory as well
as non-local interactions. This has limited the modeling of wave interactions in near-neighbourhood
systems with memory and non-locality. To this end, in this study, we will extend the above analysis to
the generalized fractional nonlinear wave equation (GFNWE). By means of this, we obtain a more
reliable and extensive model for nonlinear wave interactions that is significant for the description
of various processes in fluid dynamics, plasma physics, and other complex systems. In this study,
we extend this work by examining the generalized fractional nonlinear wave equation (GFNWE) as
follows:

Dα
x

(
Dα

t f + (p1) Dα
x f + (p2) D3α

x f + (p3) f Dα
x f

)
+ (p4) D2α

z f + (p5) D2α
y f = 0. (1.2)

Further, the operator integrating α-derivatives of powers agrees exactly to the idea of conformable
fractional derivatives [30].

Dα
ϕW(ϕ) = lim

i→0

W
(
ϕ + i(ϕ)1−α

)
−W(ϕ)

i
, 0 < α ≤ 1. (1.3)
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Dα
ϕϕ

k = kϕk−α.

Dα
ϕ (k1η(ϕ) ± k2t(ϕ)) = k1Dα

ϕ(η(ϕ)) ± m2Dα
ϕ(t(ϕ)).

Dα
ϕ

[
f ◦ g

]
= ϕ1−αg (ϕ) Dα

ϕ f (g(ϕ)) .

(1.4)

The Riccati-Bernoulli sub-ode method is a new effective analytical tool for obtaining the solitary
wave solutions of PDEs and FPDEs. This method works on the basis of altering the original FPDE
into a first-order ODE, that is nonlinear. Subsequent to this transformation, there is the use of a
series-form solution, which results in the derivation of non-linear algebraic equations. Solving the
algebraic equations as mentioned above helps in the determination of the solitary wave solutions of
the concerned FPDE only [31–36]. This approach is specifically efficient so far as it concerns other
analytical techniques utilized for deriving soliton solutions. The Riccati-Bernoulli sub-ode method
allows the identification of other more wide-spread and multifaceted subfamilies of soliton solutions,
thus, proving its vitality in describing various and complicated aspects of solitary waves in various
systems [37–39].

The second part of the paper describes the overall approach used; a detailed explanation is given
in Section 3 when the solution for the generalized fractional nonlinear wave equation is discussed.
The analysis of the results is provided in Section 4 along with graphical representations of the
findings. Lastly, Section 5 provides the conclusion of the study where the major observations and
recommendations will be made.

2. Algorithm

Since it is crucial to provide the reader with a clear understanding of the methods used in this
research, a slightly deeper explanation of the process will be given below. We begin by considering a
general class of nonlinear partial differential equations (PDEs) in the following form:

P1

(
R1,Dα

t (R1),Dα
q1

(R1),Dα
q2

(R1),R1Dα
q1

(R1), . . .
)
= 0, 0 < α ≤ 1, (2.1)

where R1 = R(t, q1, q2, q3, . . . , qk) is a function of (t, q1, q2, q3, . . . , qk) and its partial derivatives. This
transformation changes Eq (2.1) into a nonlinear ordinary differential equation (ODE) of the following
form:

Q1
(
F, F′(ϕ), F′′(ϕ), FF′(ϕ), . . .

)
= 0. (2.2)

Let us suppose that Eq (2.2) has the following solution:

G(ϕ) =
n∑

j=−n

k jg(ϕ) j, (2.3)

where k j are constants and g(ϕ) is obtained from the Bäcklund transformation, g(ϕ) = −ΩE2+E1Z(ϕ)
E1+E2Z(ϕ) .

Where, (Ω) , (E1) , and (E2) are constants such that E2 , 0 and Z(ϕ) are solutions of the following
ODE.

dZ
dϕ
= Ω + Z(ϕ)2. (2.4)
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The Ricatti equation (2.4) possesses the following general solutions [40].

Z(ϕ) =

−
√
−Ω tanh(

√
−Ωϕ), as Ω < 0,

−
√
−Ω coth(

√
−Ωϕ), as Ω < 0,

Z(ϕ) = −
1
ψ
, as Ω = 0,

Z(ϕ) =


√
Ω tan(

√
Ωϕ), as Ω > 0,

−
√
Ω cot(

√
Ωϕ), as Ω > 0.

(2.5)

To eliminate the homogeneous term, which is the ratio of the largest nonlinear term and the highest
order derivative on the right-hand side of Eq (2.2), a positive integer n is derived as given in Eq (2.3).
Therefore, while presenting the balance number of a processor, it is pertinent to mention that it can be
arrived at using the following method [41].

D
[
dmF
dψm

]
= n + m, D

[
F J dmF

dψm

]w

= nJ + w(m + n). (2.6)

Subsequently, the function obtained from Eq (2.3) is plugged into Eq (2.2) or in the expression that we
obtain after integrating Eq (2.2). Subsequently, all terms with g(ϕ) are grouped, and the coefficients of
the polynomial are set to zero. This process brings out a system of algebraic equations with the use of
(ki) and other variables applicable in the sequence. These algebraic equations are further solved using
the Maple a computational software. Last of all, the solutions of Eq (1.1) are derived as single wave
solutions and are displayed.

3. Problem execution

In this section, various solutions are discussed for the fractional (3+1)-dimensional generalized
wave model of liquids containing gas bubbles, which has been defined in Eq (1.1). According to the
Riccati-Bernoulli sub-ode technique and Bäcklund transformation process, solitary wave solutions are
attained. The wave transformation employed in this context is as follows:

f (x, y, z, t) = F(ψ), where ψ =
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α
. (3.1)

Where, µ1, µ2, µ3 and ω are unknown constants. This transformation changes Eq (1.2) into a nonlinear
ordinary differential equation (ODE) of the following form:

µ4
1 p3

(
d2F
dψ2

)
+ µ2

1 p1

(
F(ψ)2

)
+ F(ψ)

(
µ2

1 p3 − µ1ω + µ
2
2 p4 + µ

2
3 p5

)
= 0. (3.2)

This makes it possible for us to reduce and solve the system balancing equations and other multiple
wave structures that are complex in a new approach that is adopted. Used in a systematic way, such
integration allows extracting particular traits of the primary constituents of waves, next to which
conventional concepts are employed. By this distinct integration, the characteristics of interactions
and behaviors of waves can be observed. With a view to furthering the solution, Eqs (2.3) and (2.4)
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are integrated into the governing Eq (3.2). Thus, we gather coefficients of the function Z(ϕ) in detail
and obtain an analogous system of equations. This system provides a basis for the analysis of the
objects and future quantitative or qualitative analysis and represents the key characteristics of the wave
structures.

Z1(ϕ) =µ1
2 p1k−2

2E2
8 + 6 µ1

4 p3k−2E2
8Ω2 = 0,

Z2(ϕ) = − 2 µ1
2 p1k−2E2

8k−1Ω − 2 µ1
4 p3k−1E2

8Ω3 = 0,
Z3(ϕ) =k−2E2

8µ2
2 p4Ω

2 + µ1
2 p1k−1

2E2
8Ω2 + k−2E2

8µ3
2 p5Ω

2 + k−2E2
8µ1

2 p3Ω
2 − k−2E2

8µ1ωΩ
2

+ 8 µ1
4 p3k−2E2

8Ω3 + 2 µ1
2 p1k−2E2

8k0Ω
2 = 0,

Z4(ϕ) = − 2 µ1
2 p1k−1E2

8k0Ω
3 + k−1E2

8µ1ωΩ
3 − k−1E2

8µ2
2 p4Ω

3 − 2 µ1
2 p1k−2E2

8k1Ω
3

− 2 µ1
4 p3k−1E2

8Ω4 − k−1E2
8µ3

2 p5Ω
3 − k−1E2

8µ1
2 p3Ω

3 = 0,
Z5(ϕ) =µ1

2 p1k0
2Ω4E2

8 + k0µ3
2 p5Ω

4E2
8 + k0µ1

2 p3Ω
4E2

8 + k0µ2
2 p4Ω

4E2
8

+ 2 µ1
4 p3k2E2

8Ω6 + 2 µ1
4 p3k−2E2

8Ω4 − k0µ1ωΩ
4E2

8 + 2 µ1
2 p1k−2E2

8k2Ω
4

+ 2 µ1
2 p1k−1E2

8k1Ω
4 = 0,

Z6(ϕ) = − 2 µ1
2 p1k−1E2

8k2Ω
5 − 2 µ1

2 p1k0k1Ω
5E2

8 + k1Ω
5E2

8µ1ω − 2 µ1
4 p3k1E2

8Ω6

− k1Ω
5E2

8µ3
2 p5 − k1Ω

5E2
8µ2

2 p4 − k1Ω
5E2

8µ1
2 p3 = 0,

Z7(ϕ) =µ1
2 p1k1

2Ω6E2
8 + k2Ω

6E2
8µ1

2 p3 + k2Ω
6E2

8µ2
2 p4 + k2Ω

6E2
8µ3

2 p5 + 2 µ1
2 p1k0k2Ω

6E2
8

+ 8 µ1
4 p3k2E2

8Ω7 − k2Ω
6E2

8µ1ω = 0,
Z8(ϕ) = − 2 µ1

2 p1k1Ω
7E2

8k2 − 2 µ1
4 p3k1E2

8Ω7 = 0,
Z9(ϕ) =6 µ1

4 p3k2E2
8Ω8 + µ1

2 p1k2
2Ω8E2

8 = 0.

(3.3)

This gives us the algebraic equations by setting Z(ϕ) = 0. The solutions of this system of algebraic
equations obtained from Maple are:

Set 1.

k0 = k0, k1 = 0, k−1 = 0, k−2 = −3/8
p1k0

2

µ1
2 p3

, k2 = −6
µ1

2 p3

p1
,Ω = 1/4

p1k0

µ1
2 p3

, µ1 = µ1, µ2 = µ2,

µ3 =

√
−
−µ1ω + p4µ2

2 + µ1
2 p3 + 4 µ1

2 p1k0

p5
.

(3.4)

Set 2.

k0 = k0, k1 = 0, k−1 = 0, k−2 = 0, k2 = −6
µ1

2 p3

p1
,Ω = −1/2

p1k0

µ1
2 p3

, µ1 = µ1, µ2 = µ2,

µ3 =

√
−
−2 µ1

2 p1k0 − µ1ω + p4µ2
2 + µ1

2 p3

p5
.

(3.5)
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Solution Set 1

Set 1. For (Ω < 0), µ3 =

√
−
−µ1ω+p4µ22+µ12 p3+4 µ12 p1k0

p5
and ψ = µ1 xα

α
+

µ2yα

α
+

µ3zα

α
− ω tα

α
, the following

set of solutions for Eq (2.6) are obtained.

f1 = −3/8
p1k0

2
(
E1 − E2

√
−Ω tanh

(√
−Ωψ

))2

µ1
2 p3

(
−Ω E2 − E1

√
−Ω tanh

(√
−Ωψ

))2 + k0 − 6
µ1

2 p3

(
−Ω E2 − E1

√
−Ω tanh

(√
−Ωψ

))2

p1

(
E1 − E2

√
−Ω tanh

(√
−Ωψ

))2 ,

(3.6)

or

f2 = −3/8
p1k0

2
(
E1 − E2

√
−Ω coth

(√
−Ωψ

))2

µ1
2 p3

(
−Ω E2 − E1

√
−Ω coth

(√
−Ωψ

))2 + k0 − 6
µ1

2 p3

(
−Ω E2 − E1

√
−Ω coth

(√
−Ωψ

))2

p1

(
E1 − E2

√
−Ω coth

(√
−Ωψ

))2 .

(3.7)

Solution Set 2

Set 1. For (Ω > 0), the following set of solutions for Eq (2.6) are obtained.

f3 = −3/8
p1k0

2
(
E1 + E2

√
Ω tan

(√
Ωψ

))2

µ1
2 p3

(
−Ω E2 + E1

√
Ω tan

(√
Ωψ

))2 + k0 − 6
µ1

2 p3

(
−Ω E2 + E1

√
Ω tan

(√
Ωψ

))2

p1

(
E1 + E2

√
Ω tan

(√
Ωψ

))2 , (3.8)

or

f4 = −3/8
p1k0

2
(
E1 − E2

√
Ω cot

(√
Ωψ

))2

µ1
2 p3

(
−Ω E2 − E1

√
Ω cot

(√
Ωψ

))2 + k0 − 6
µ1

2 p3

(
−Ω E2 − E1

√
Ω cot

(√
Ωψ

))2

p1

(
E1 − E2

√
Ω cot

(√
Ωψ

))2 . (3.9)

Solution Set 3

Set 2. For (Ω < 0) and µ3 =

√
−
−2 µ12 p1k0−µ1ω+p4µ22+µ12 p3

p5
., the following set of solutions for Eq (2.6)

are obtained.

f5 =k0 − 6 µ1
2 p3

(
−Ω E2 − E1

√
−Ω tanh

(
√
−Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))2

p1
−1

(
E1 − E2

√
−Ω tanh

(
√
−Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))−2

,

(3.10)

or

f6 =k0 − 6 µ1
2 p3

(
−Ω E2 − E1

√
−Ω coth

(
√
−Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))2

p1
−1

(
E1 − E2

√
−Ω coth

(
√
−Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))−2

.

(3.11)
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Solution Set 4

Set 2. For (Ω > 0), the following set of solutions for Eq (2.6) are obtained.

f7 =k0 − 6 µ1
2 p3

(
−Ω E2 + E1

√
Ω tan

(
√
Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))2

p1
−1

(
E1 + E2

√
Ω tan

(
√
Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))−2

,

(3.12)

or

f8 =k0 − 6 µ1
2 p3

(
−Ω E2 − E1

√
Ω cot

(
√
Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))2

p1
−1

(
E1 − E2

√
Ω cot

(
√
Ω

(
µ1xα

α
+
µ2yα

α
+
µ3zα

α
−
ω tα

α

)))−2

.

(3.13)

4. Results and discussion

The use of the Riccati-Bernoulli sub-ODE method with the Bäcklund transformation gave us exact
solutions, which provided wider applicability in comparison with other approaches, such as the sine-
cosine or the homotopy perturbation. It also allows for a powerful solution in handling of nonlinearity
and fractional derivatives; this reduces the number of steps to be followed since FPDE is transformed
into an algebraic statement. This results more stable and accurate waveforms compared to recent
approaches applicable to fluid dynamics and plasma physics, as seen from the comparison. Using
the figures of 3D surface plots and contour plots, it is easy to understand the physical changes of
solitary wave solutions for the generalized fractional nonlinear wave equation with p1 = ω = 0.001,
µ1 = 0.05, µ2 = 0.05, µ3 = 0.0315, p2 = 2, and p3 = 3. Both f1 and f8 solitary wave solutions
depict dark solitary waves, which consist of regions of low amplitude enclosed by regions of high
intensity, thereby illustrating how dark solitary waves create depressions in the media through which
they travel. On the other hand, the bright solitary wave solutions f4 and f6 display the maximum peak in
the amplitudes, and they represent enhanced regional intensity of the wave. Figure 1, 3D and contour
representation of the solution, f1(x, y, z, t). Figure 2, 3D and contour representation of the solution,
f4(x, y, z, t). Figure 3, 3D and contour representation of the solution, f6(x, y, z, t). Figure 4, 3D and
contour representation of the solution, f8(x, y, z, t). Table 1, Comparison of the current approach with
the alternative approach, specifically modified Kudryashov method [29]. These representations added
emphasis on the spatial relationships as well as the changes in amplitudes which, showing how the wave
behaves with its surroundings and how it advances. Taking into account these plots, one obtains more
information about the actual behavior of wave solutions and some characteristics such as their stability
and some features of their interactions with other solutions underlying physical processes modeled by
the equations introduced above. The solutions are trigonometric and hyperbolic, and thus come with
a rich structure, indicative of the wide range of physical processes that can be modeled. These types
of solutions are of special importance for the description of liquid phases with gaseous bubbles, which
are often met in different scientific and engineering practices. The knowledge of such waves in the
field of fluid dynamics is significant to describe the multiphase flow as the key to its behavior consists
of the interaction between the liquid and gaseous phases. For instance, accurate descriptions of bubbly
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flows, in the oil and gas industry are critical in enhancing the extraction processes and the stability of
pipelines.

(a) 3D graphical representation of the solution, f1(x, y, z, t).

(b) Contour representation of the solution, f1(x, y, z, t).

Figure 1. 3D and contour representation of the solution, f1(x, y, z, t).
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(a) 3D graphical representation of the solution, f4(x, y, z, t).

(b) Contour representation of the solution, f4(x, y, z, t).

Figure 2. 3D and contour representation of the solution, f4(x, y, z, t).
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(a) 3D graphical representation of the solution, f6(x, y, z, t).

(b) Contour representation of the solution, f6(x, y, z, t).

Figure 3. 3D and contour representation of the solution, f6(x, y, z, t).

AIMS Mathematics Volume 9, Issue 11, 30043–30058.



30053

(a) 3D graphical representation of the solution, f8(x, y, z, t).

(b) Contour representation of the solution, f8(x, y, z, t).

Figure 4. 3D and contour representation of the solution, f8(x, y, z, t).
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Table 1. Comparison of the current approach with the alternative approach, specifically
modified Kudryashov method [29].

Case I: Ω < 0 Present method

f (x, y, z, t) = −3/8 p1k0
2(E1−E2

√
−Ω tanh(

√
−Ωψ))2

µ12 p3(−Ω E2−E1
√
−Ω tanh(

√
−Ωψ))2 + k0 − 6 µ1

2 p3(−Ω E2−E1
√
−Ω tanh(

√
−Ωψ))2

p1(E1−E2
√
−Ω tanh(

√
−Ωψ))2 .

Case I: g2

(
g3l2

1 + g4l2
2 + g5l2

3 − l1v
)
< 0 (modified Kudryashov) method

f (x, y, z, t) = 3(g3l21+g4l22+g5l23−l1v)
g1l21

× csch2
[√

−g3l21−g4l22−g5l23+l1v
4g2l41

(l1x + l2y + l3z − vt)
]
.

Case II: Ω > 0 Present method

f (x, y, z, t) = −3/8 p1k0
2(E1−E2

√
Ω cot(

√
Ωψ))2

µ12 p3(−Ω E2−E1
√
Ω cot(

√
Ωψ))2 + k0 − 6 µ1

2 p3(−Ω E2−E1
√
Ω cot(

√
Ωψ))2

p1(E1−E2
√
Ω cot(

√
Ωψ))2 .

Case II: g2

(
g3l2

1 + g4l2
2 + g5l2

3 − l1v
)
> 0 (modified Kudryashov) method

f (x, y, z, t) = g3l21+g4l22+g5l23−l1v
g1l21

×

(
−3 csch2

[√
g3l21+g4l22+g5l23−l1v

4g2l41
(l1x + l2y + l3z − vt)

]
− 2

)
.

The nonlinear wave equation derived in this work as a fractional derivative can be a useful model
for liquids containing gaseous bubbles that are observed for their complicated wave interaction with a
given environment. This makes the fractional derivatives important for the description of the memory
and nonlocality in the fluid and necessary for the description of bubble, containing liquids. The solitary
wave solutions obtained from the model reflect localized waveform structure, which can travel without
loss of form or amplitude, hence resembling pressure waves in such media. These solutions offer
information on wave behaviour, dispersion, and stability, all of which are critical to the behaviour of gas
bubbles in diverse liquid systems, be it industrial or observed in natural occurrences. Moreover, these
wave solutions are important when discussing the problem of wave carrying in the bubbly medium, a
field important in the sphere of physics. Such models are employed to estimate the processes affecting
sound waves in the media containing bubble gas; it is crucial in various fields, starting with underwater
acoustics and ending with ultrasonography. In underwater acoustics, these models are used in sonar
systems formulation so that the sound can be accurately used to find objects in bubbly water and in
medical ultrasound to improve the techniques used in diagnosis.

In the next steps, potential future studies may be aimed at the further development of the described
analytical approach with the inclusion of more elaborate models of a higher dimensionality and
different forms of nonlinearity. In the same way, the enhancement of these theoretical models by
the experimental confirmation would be the superior achievement, especially concerning the real-
life applications in fluid dynamics of industrial processes, advanced ultrasounds, and diagnostics in
medicine. The investigation of the above-mentioned relations between fractional order parameters and
physical characteristics might help to expand the knowledge of wave processes in the media and to
create more detailed models in the future. These advancements could make a breath of fresh air in the
areas of engineering and technology that require the control and change of wave behavior.

5. Conclusions

In this study, considering the concept of the Bäcklund transformation integrated with the Riccati-
Bernoulli sub-ode method, the solitary wave solutions for the generalized fractional nonlinear wave
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equation have been derived and analyzed. The mentioned approach allowed us to obtain a wide set of
analytical solutions in the form of hyperboles, trigonometric functions, and rational expressions. These
solutions were accurately and completely depicted in terms of space by both the 3D surface plot and
the contour plot regarding the wave behavior. Another innovation has been where wave systems are
nonlinear, and the use of 3D plus contour visualization has been able to provide a clearer picture of
the various behaviors of the wave systems, including applications in fluid dynamics, chemical kinetics,
and biological morphogenesis. The fact that the outlined methodology allows for the depiction of the
diffusion reaction processes with sufficient accuracy to capture the intricate details of the interaction
between the processes underlies one of the primary perceived values derived in this work the solutions
obtained are practical in nature. This paper shows that both the Bäcklund transformation and the sub-
ode method based on the Riccati-Bernoulli equation can be used as a powerful instruments when
studying the generalized fractional nonlinear wave equation. What has been gained by reducing
the equation to a form that admits an ordinary differential equation solution is an asset that is both
mathematically sound to the extent that the analytical method is valid or reliable and qualitatively
useful in charting the nature of solitary waves.
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