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Abstract: To investigate potentially dependent lifetimes, it is necessary to extend the 𝛼  quantile 

inactivity time to bivariate and multivariate frameworks. To extend this measure to a dynamic 

multivariate framework, all possible trajectories at time 𝑡  are considered. The behavior of the 

extended 𝛼 quantile of inactivity time was investigated in relation to the corresponding multivariate 

hazard rate function. The 𝛼  quantile of the inactivity order is defined and discussed for the 

multivariate case. The difference between the two bivariate 𝛼 quantile functions of inactivity, which 

is an important measure for studying the effect of treatment on lifespan, was also investigated. This 

measure was used to analyze the effect of laser treatment on the delay of blindness. Two bootstrap 

approaches were implemented to construct confidence bounds for the difference measure. 

Keywords: multivariate quantile inactivity time; reversed hazard rate; stochastic orders; bootstrap 
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1. Introduction 

For a random lifetime 𝑇 , the conditional inactivity time is 𝑇𝑡 = 𝑡 − 𝑇|𝑇 < 𝑡 , 𝑡 > 0 . In the 

reliability theory and survival analysis literature, some proper measures are defined based on the 

conditional inactivity time, e.g., the reversed hazard rate (RHR), the mean inactivity time (MIT) and 

the 𝛼 quantile inactivity time (𝛼 QIT) functions. The later, which we will focus on it, gives the 𝛼 

quantile of the 𝑇𝑡, 𝑞𝛼(𝑡) = 𝑄𝛼(𝑇𝑡), 𝑡 ≥ 0 and for a continuous random lifetime 𝑇, could be written 

as in the following.  
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 𝑞𝛼(𝑡) = 𝑡 − 𝐹−1(�̅�𝐹(𝑡)),   𝑡 ≥ 0,  

where 𝐹 represents the distribution function of 𝑇 and 𝐹−1(𝑝) = inf{𝑥: 𝐹(𝑥) = 𝑝} is the inverse of 

𝐹. Let 𝑇 be an event time related to some identical objects, and at a time 𝑡 > 0, it is revealed that 

some instances experienced the event previously. Then, we expect that 100(1 − 𝛼)% (100𝛼%) of 

these instances experiencethe event before (after) time 𝑡 − 𝑞𝛼(𝑡). The 𝛼 QIT is a rival for the MIT 

and when the data are highly right censored or skewed, it is preferred to MIT. Also, the MIT is infinite 

for some lifetime models and the 𝛼  QIT or its special case 𝛼 = 0.5 , the median inactivity time 

function, is recommended. Refer to Schmittlein and Morrison [1] for a detailed discussion about 

preference of quantile based rather than moment based measures in survival analysis.  

For a univariate random lifetime 𝑇  with density function 𝑓  and distribution function 𝐹 , the 

RHR function is  

 𝑟(𝑡) =
𝑓(𝑡)

𝐹(𝑡)
,   𝑡 ≥ 0,  

and computes the instantaneous risk of failure at (𝑡 − 𝛿, 𝑡] given that it has occured at [0, 𝑡]. It was 

introduced by Barlow et al. [2] and explored by many authors, e.g., Block et al. [3], Di Crescenzo [4], 

Chandra and Roy [5], Finkelstein [6], Kundu et al. [7], Li et al. [8], Burkschat and Torrado [9], Esna 

Ashari et al. [10], and Contreras Reyes et al. [11].  

Since 𝛼 QIT does not depend on the density function, it is prefered to the RHR function when 

analyzing lifetime data. The 𝛼 QIT function was considered by Unnikrishnan and Vineshkumar [12]. 

They studied its basic properties and discussed how it can characterize the underlying distribution. 

Also, they investigated its connection with the RHR function as  

 𝑞′
𝛼

(𝑡) = 1 −
𝑟(𝑡)

𝑟(𝑡−𝑞𝛼(𝑡))
.  

Mahdy [13] estimated 𝛼 QIT function applying simple empirical estimator of the distribution 

function. Shafaei [14] focused on the problem of characterizing a lifetime model by its 𝛼  QIT 

functions. Shafaei and Izadkhah [15] discussed attributes of parallel systems by the 𝛼 QIT concept. 

Balmert and Jeong [16] considered right censored data and provided a nonparametric inference on the 

median inactivity time function. A log linear quantile regression model for inactivity time was the topic 

worked out by Balmert et al. [17]. Kayid [18] proposed an estimator of the 𝛼 QIT function for right 

censored data, applying the Kaplan Meier survival estimator.  

However, the univariate 𝛼 QIT function is proven to be quite useful, but in some situations, we 

encounter two or more dependent events, e.g., subsequent tumor recurrences, events related to pairs of 

organs like eyes, ears, hands, legs, and so on. In such cases, we need to extend the concepts to 

multivariate settings. In this way, Basu [19] and Johnson and Kotz [20] proposed multivariate hazard 

rate function as a gradient vector. Nair and Nair [21] proposed bivariate mean residual life vector. 

Shaked and Shanthikumar [22] proposed a dynamic version of the multivariate MRL measure. The 𝛼 

quantile residual life function was extended to multivariate settings by Shafaei et al. [23] and Shafaei 

and Kayid [24]. Kayid [25] developed the multivariate MIT function. Also, Buono et al. [26] used the 

multivariate RHR concept to study inactivity times of systems. Recently, Kayid extended the 𝛼 QIT 

function for multivariate random lifetimes. They assumed a vector 𝑻 = (𝑇1, 𝑇2, . . . , 𝑇𝑚) of lifetimes 

and considered the history to be of the form 𝑇1 < 𝑡1, 𝑇2 < 𝑡2, . . . , 𝑇𝑚 < 𝑡𝑚, succinctly 𝑻 < 𝒕. They 

considered the following RHR gradient.  

�̃�(𝒕) = (
𝜕

𝜕𝑡1
,

𝜕

𝜕𝑡2
, . . . ,

𝜕

𝜕𝑡𝑚
) log𝐹(𝒕),   𝒕 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) ∈ 𝑅+𝑚. 
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It is clear from the meanning of the component 𝑖 of vector �̃�(𝒕) that  

�̃�𝑖(𝒕) = lim
𝛿→0

𝑃(𝑡𝑖 − 𝛿 < 𝑇𝑖 < 𝑡𝑖|𝑻 < 𝒕). 

Also, they defined the 𝛼 QIT vector as in the following.  

𝑞𝛼(𝒕) = (�̃�𝛼,1(𝒕), �̃�𝛼,2(𝒕), . . . , �̃�𝛼,𝑚(𝒕)), 

in which  

�̃�𝛼,𝑖(𝒕) = sup{𝑥: 𝑃(𝑡𝑖 − 𝑇𝑖 > 𝑥|𝑻 < 𝒕) = �̅�},   �̅� = 1 − 𝛼, 𝑖 = 1,2, . . . , 𝑚. 

This form of extended 𝛼 QIT is not a dynamic measure. In this paper, we propose a dynamic 

multivariate 𝛼 QIT version. The proposed dynamic 𝛼 QIT functions consider all possible histories, 

which could be observed at a time 𝑡 > 0 and could be quite useful from theoretical and applied points 

of view. Evaluating the effect of a treatment on some event times related to eyes, ears, hands, or legs may 

be the major goal of a research. Based on the proposed 𝛼 QIT function, we define a new measure for 

investigation the effect of a treatment on event times.  

The rest of this article is organized as follows. In Section 2, we introduce the dynamic multivariate 

𝛼  QIT functions and their basic properties and explore their connection with the dynamic RHR 

function. In Section 3, we extend the RHR and 𝛼 QIT orders to a dynamic multivariate context and 

examine their relationships. In Section 4, we discuss the difference measure 𝑑𝛼, which is useful for 

detecting the treatment effect. A simulation study was conducted to investigate the behavior of the 𝑑𝛼 

function. In Section 5, we analyze a dataset of patients with diabetic retinopathy at risk of blindness. 

Confidence limits for the 𝑑𝛼 function are calculated using two bootstrap approaches. The final results 

are presented in Section 6. 

2. Dynamic multivariate 𝜶-QIT 

In the first step, assume a bivariate random lifetime 𝑻 = (𝑇1, 𝑇2) . An observer that starts 

screening at any time 𝑡 > 0 may observe one of three different histories. The observer may find that 

both elements experienced the event before 𝑡 , i.e., ℎ𝑡 = {𝑇1 < 𝑡, 𝑇2 < 𝑡} , the first element 

experienced the event before 𝑡 and the second element experienced it at a time 𝑡2 ≥ 𝑡, ℎ𝑡,𝑡2
1 = {𝑇1 <

𝑡, 𝑇2 = 𝑡2}, or the second element experienced it before 𝑡 and the first elemet experiences it at a time 

𝑡1 ≥ 𝑡, ℎ𝑡,𝑡1
2 = {𝑇1 = 𝑡1, 𝑇2 < 𝑡}. In light of these histories, the following three functions define the 

𝛼 QIT concept in the bivariate framework and in a dynamic manner.  

𝑞𝛼,𝑖
∗ (𝑡) = 𝑄𝛼(𝑡 − 𝑇𝑖|ℎ𝑡) = 𝑄𝛼(𝑡 − 𝑇𝑖|𝑇1 < 𝑡, 𝑇2 < 𝑡),   , 𝑖 = 1,2, (1) 

𝑞𝛼,1
∗ (𝑡|𝑡2) = 𝑄𝛼(𝑡 − 𝑇1|ℎ𝑡,𝑡2

1 ) = 𝑄𝛼(𝑡 − 𝑇1|𝑇1 < 𝑡, 𝑇2 = 𝑡2),   𝑡2 ≥ 𝑡, 

and  

 𝑞𝛼,2
∗ (𝑡|𝑡1) = 𝑄𝛼(𝑡 − 𝑇2|ℎ𝑡,𝑡1

2 ) = 𝑄𝛼(𝑡 − 𝑇2|𝑇1 = 𝑡1, 𝑇2 < 𝑡),   𝑡1 ≥ 𝑡. (2) 

These relations could be simplified as in the following.  
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𝑞𝛼,𝑖
∗ (𝑡) = 𝑡 − 𝐹𝑖

−1(�̅�𝐹(𝑡, 𝑡); 𝑡),   , 𝑖 = 1,2, 

𝑞𝛼,1
∗ (𝑡|𝑡2) = 𝑡 − 𝐹1

∗−1(�̅�𝑓2(𝑇1 ≤ 𝑡, 𝑇2 = 𝑡2); 𝑡2),   𝑡2 ≥ 𝑡, 

and  

𝑞𝛼,2
∗ (𝑡|𝑡1) = 𝑡 − 𝐹2

∗−1(�̅�𝑓1(𝑇1 = 𝑡1, 𝑇2 ≤ 𝑡); 𝑡1),   𝑡1 ≥ 𝑡, 

where  

𝐹1
−1(𝑝; 𝑡) = sup{𝑥: 𝐹(𝑇1 ≤ 𝑥, 𝑇2 ≤ 𝑡) = 𝑝}, 

𝐹2
−1(𝑝; 𝑡) = sup{𝑥: 𝐹(𝑇1 ≤ 𝑡, 𝑇2 ≤ 𝑥) = 𝑝}, 

𝐹1
∗−1(𝑝; 𝑡2) = sup{𝑥: 𝑓2(𝑇1 ≤ 𝑥, 𝑇2 = 𝑡2) = 𝑝}, 

𝐹2
∗−1(𝑝; 𝑡1) = sup{𝑥: 𝑓1(𝑇1 = 𝑡1, 𝑇2 ≤ 𝑡) = 𝑝}, 

𝑓2(𝑇1 ≤ 𝑡, 𝑇2 = 𝑡2) = lim
𝛿→0+

1

𝛿
𝑃(𝑇1 ≤ 𝑡, 𝑡2 − 𝛿 < 𝑇2 ≤ 𝑡2), 

and 

𝑓1(𝑇1 = 𝑡1, 𝑇2 ≤ 𝑡) = lim
𝛿→0+

1

𝛿
𝑃( 𝑡1 − 𝛿 < 𝑇1 ≤ 𝑡1, 𝑇2 ≤ 𝑡). 

The functions defined in (1) to (2) computes the quantile of inactivity time of components 

conditioning on the observed history from time 𝑡 > 0 . As stated, the 𝛼  QIT is defined based on 

different histories, which may be the case. For the next result, we need to review the dynamic bivariate 

RHR concept from Buono et al. [26], which is defined by the following relations.  

𝑟𝑖
∗(𝑡) = lim

𝛿→0+

1

𝛿
𝑃(𝑡 − 𝛿 < 𝑇𝑖 ≤ 𝑡|𝑇1 ≤ 𝑡, 𝑇2 ≤ 𝑡),   𝑡 ≥ 0, 𝑖 = 1,2, 

𝑟1
∗(𝑡|𝑡2) = lim

𝛿→0+

1

𝛿
𝑃(𝑡 − 𝛿 < 𝑇1 ≤ 𝑡|𝑇1 ≤ 𝑡, 𝑇2 = 𝑡2),   𝑡2 > 𝑡, 

and  

𝑟2
∗(𝑡|𝑡1) = lim

𝛿→0+

1

𝛿
𝑃(𝑡 − 𝛿 < 𝑇2 ≤ 𝑡|𝑇1 = 𝑡1, 𝑇2 ≤ 𝑡),   𝑡2 > 𝑡. 

Theorem 1. Assume that the �̃�𝛼,𝑖(𝑡, 𝑡)  has continuous differentiation with respect to their both 

coordinates. Then, we can write  

1 −
𝑑

𝑑𝑡
𝑞𝛼,1

∗ (𝑡) =
�̃�1(𝑡, 𝑡)

�̃�1(𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑡)

+
𝑓2(𝑇1 ≤ 𝑡 − 𝑞𝛼,1

∗ (𝑡|𝑡), 𝑇2 = 𝑡) − 𝑓2(𝑇1 ≤ 𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑇2 = 𝑡)

𝑓1(𝑇1 = 𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑇2 ≤ 𝑡)
,

 (3) 

1 −
𝑑

𝑑𝑡
𝑞𝛼,2

∗ (𝑡) =
�̃�2(𝑡, 𝑡)

�̃�2(𝑡, 𝑡 − �̃�𝛼,2(𝑡, 𝑡))

+
𝑓1(𝑇1 = 𝑡, 𝑇2 ≤ 𝑡 − 𝑞𝛼,2

∗ (𝑡|𝑡)) − 𝑓1(𝑇1 = 𝑡, 𝑇2 ≤ 𝑡 − �̃�𝛼,2(𝑡, 𝑡))

𝑓2(𝑇1 ≤ 𝑡, 𝑇2 = 𝑡 − �̃�𝛼,2(𝑡, 𝑡))
,

 (4) 
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1 −
𝑑

𝑑𝑡
𝑞𝛼,1

∗ (𝑡|𝑡2) =
𝑟1

∗(𝑡|𝑡2)

𝑟1
∗(𝑡 − 𝑞𝛼,1

∗ (𝑡|𝑡2)|𝑡2)
, (5) 

and  

1 −
𝑑

𝑑𝑡
𝑞𝛼,2

∗ (𝑡|𝑡1) =
𝑟2

∗(𝑡|𝑡1)

𝑟2
∗(𝑡 − 𝑞𝛼,2

∗ (𝑡|𝑡1)|𝑡1)
. (6) 

Proof. To prove (3), note that 𝑞𝛼,1
∗ (𝑡) = �̃�𝛼,1(𝑡, 𝑡), so we have  

 
𝑑

𝑑𝑡
𝑞𝛼,1

∗ (𝑡) =
𝑑

𝑑𝑡1
�̃�𝛼,1(𝑡1, 𝑡)|𝑡1=𝑡 +

𝑑

𝑑𝑡2
�̃�𝛼,1(𝑡, 𝑡2)|𝑡2=𝑡. (7) 

Applying Theorem 2 of Kayid [18], the first derivative of (7) is  

𝑑

𝑑𝑡1
�̃�𝛼,1(𝑡1, 𝑡)|𝑡1=𝑡 = 1 −

�̃�1(𝑡, 𝑡)

�̃�1(𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑡)
. (8) 

It could be checked that �̃�𝛼,1(𝑡1, 𝑡2) verifies the following relation.  

 𝑃(𝑇1 ≤ 𝑡1 − �̃�𝛼,1(𝑡1, 𝑡2), 𝑇2 ≤ 𝑡2) = �̅�𝑃(𝑇1 ≤ 𝑡1, 𝑇2 ≤ 𝑡2).  

Thus, for the second derivative of (7), we differentiate both sides of the following relation in 

terms of 𝑡2.  

𝑃(𝑇1 ≤ 𝑡 − �̃�𝛼,1(𝑡, 𝑡2), 𝑇2 ≤ 𝑡2) = �̅�𝑃(𝑇1 ≤ 𝑡, 𝑇2 ≤ 𝑡2). 

Then, we have  

𝑑

𝑑𝑡2
�̃�𝛼,1(𝑡, 𝑡2)|𝑡2=𝑡 =

𝑓2(𝑇1 ≤ 𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑇2 = 𝑡) − �̅�𝑓2(𝑇1 ≤ 𝑡, 𝑇2 = 𝑡)

𝑓1(𝑇1 = 𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑇2 ≤ 𝑡)

=
𝑓2(𝑇1 ≤ 𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑇2 = 𝑡) − 𝑓2(𝑇1 ≤ 𝑡 − 𝑞𝛼,1

∗ (𝑡|𝑡), 𝑇2 = 𝑡)

𝑓1(𝑇1 = 𝑡 − �̃�𝛼,1(𝑡, 𝑡), 𝑇2 ≤ 𝑡)
.

 (9) 

Now, (3) is followed by (7), (8), and (9). The proof of (4) is completely similar. To prove 

(5), we check that 𝑞𝛼,1
∗ (𝑡|𝑡2) satisfies the relation  

𝑓2(𝑇1 ≤ 𝑡 − 𝑞𝛼,1
∗ (𝑡|𝑡2), 𝑇2 = 𝑡2) = �̅�𝑓2(𝑇1 ≤ 𝑡, 𝑇2 = 𝑡2), 

and by differentiation from both sides of this relation in terms of 𝑡, it follows that  

1 −
𝑑

𝑑𝑡
𝑞𝛼,1

∗ (𝑡|𝑡2) =
�̅�𝑓12(𝑇1 = 𝑡, 𝑇2 = 𝑡2)

𝑓12(𝑇1 = 𝑡 − 𝑞𝛼,1
∗ (𝑡|𝑡2), 𝑇2 = 𝑡2)

, 

Then, the result follows by applying  

𝑓12(𝑇1 = 𝑡, 𝑇2 = 𝑡2) = 𝑟1
∗(𝑡|𝑡2)𝑓2(𝑇1 ≤ 𝑡, 𝑇2 = 𝑡2). 

The proof of (6) is completely similar.   ◻  

The relations (3) to (6) show how the dynamic RHR and 𝛼QIT at bivariate context are related. 

For example (5)  shows that if the RHR function 𝑟1
∗(𝑡|𝑡2)  is increasing (decreasing) in 𝑡 , then 

𝑞𝛼,1
∗ (𝑡|𝑡2)  is decreasing (increasing). Similarly, if 𝑟2

∗(𝑡|𝑡1)  is increasing (decreasing) in 𝑡 , then 

𝑞𝛼,2
∗ (𝑡|𝑡1) is decreasing (increasing)  
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To extend the concept to more than two elements, assume a lifetime vector 𝑻 = (𝑇1, 𝑇2, . . . , 𝑇𝑚) 

and let the history at time 𝑡 > 0, denoted by ℎ𝑡,𝐼, where 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑘} and 𝑡𝐼 = (𝑡1, 𝑡2, . . . , 𝑡𝑘), 

𝑡1 > 𝑡, . . . , 𝑡𝑘 > 𝑡 , determines that 𝑇𝑖 < 𝑡  for every 𝑖 ∈ 𝐼′  and 𝑇𝑖1
= 𝑡1, . . . , 𝑇𝑖𝑘

= 𝑡𝑘 . This means 

that the history at 𝑡 determines that which elements have their events before or after 𝑡 and if the 

event is after 𝑡, its time is known. Note that 𝐼 can be an empty set or refer to all element indexes 

exluding just one. Notationally,  

ℎ𝑡,𝐼 = {𝑇𝐼′ < 𝑡1, 𝑇𝐼 = 𝑡𝐼}, 

where 1 is a vector of 1’s with propoer length. For simplicity we denote this history by ℎ𝑡 hereafter. 

For a fixed history ℎ𝑡, the dynamic multivariate RHR function of a comonent 𝑗 ∈ 𝐼′, is defined to be 

(see Buono et al. [26])  

𝑟𝑗
∗(𝑡|ℎ𝑡) = lim

𝛿→0+

1

𝛿
𝑃(𝑡 − 𝛿 < 𝑇𝑗 ≤ 𝑡|ℎ𝑡),   𝑡 ≥ 0. 

We define the dynamic multivariate 𝛼 QIT function for index 𝑗 ∈ 𝐼′ at time 𝑡 by  

𝑞𝛼,𝑗
∗ (𝑡|ℎ𝑡) = 𝑄𝛼(𝑡 − 𝑇𝑗|ℎ𝑡),   𝑡 ≥ 0, 

which can be written as in the following.  

𝑞𝛼,𝑗
∗ (𝑡|ℎ𝑡) = inf{𝑦: 𝑃(𝑡 − 𝑇𝑗 > 𝑦|𝑇𝐼′ < 𝑡1, 𝑇𝐼 = 𝑡𝐼) = �̅�}

= inf{𝑦: 𝑃𝐼(𝑇𝑗 ≤ 𝑡 − 𝑦, 𝑇𝐼′ ≤ 𝑡1, 𝑇𝐼 = 𝑡𝐼) = �̅�𝑃𝐼(𝑇𝐼′ ≤ 𝑡1, 𝑇𝐼 = 𝑡𝐼)},   𝑡 ≥ 0,
 

where  

𝑃𝐼(𝑇𝐼′ ≤ 𝑡1, 𝑇𝐼 = 𝑡𝐼) = lim
𝛿→0+

(∏

𝑖∈𝐼

1

𝛿
) 𝑃(𝑇𝐼′ ≤ 𝑡𝐼′, 𝑡𝐼 − 𝛿 < 𝑇𝐼 ≤ 𝑡𝐼). 

It is trivial to extend Theorem 1 to multivariate cases to investigate the relation between the RHR 

and the multivariate 𝛼 QIT.  

Example 1. Let 𝑇1 and 𝑇2 follow the power models with distribution functions 𝐹1(𝑡1) = 𝑡1
𝑎, 𝑎 >

0 , 0 < 𝑡1 < 1  and 𝐹2(𝑡2) = 𝑡2
𝑏 , 𝑏 > 0 , 0 < 𝑡2 < 1 . Using the comonotonocity copula (refer to 

Nelsen [27]), we have the bivariate model with the following distribution.  

𝐹(𝑡1, 𝑡2) = 𝑡1
𝑎 ∧ 𝑡2

𝑏 ,   0 < 𝑡1 < 1, 0 < 𝑡2 < 1. 

Then, we have  

𝑞𝛼,1
∗ (𝑡) = {

𝑡 (1 − �̅�
1
𝑎) 𝑎 ≥ 𝑏,

𝑡 − �̅�
1
𝑎𝑡

𝑏
𝑎 𝑎 < 𝑏,

 

which is increasing for 𝑎 < 𝑏, and for 𝑎 > 𝑏, it is decreasing and then increasing with a minimum at 

the following point: 

𝑡 = (
𝑏

𝑎
)

𝑎
𝑎−𝑏

 �̅�
1

𝑎−𝑏 .  

3. Stochastic order in terms of 𝜶-QIT 

It is said that 𝑇1 is smaller than 𝑇2 in RHR, with 𝑇1 ≤ 𝑇2 in RHR, if 𝑟1(𝑡) ≤ 𝑟2(𝑡) where 𝑟𝑖 
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shows the RHR of 𝑇𝑖. It is justified by the sense that for a small random lifetime 𝑇, when we know 

that 𝑇 ≤ 𝑡 , we expect small instantaneous risk of 𝑇  near 𝑡 . Also, 𝑇1 ≤ 𝑇2  in MIT if 𝑚1(𝑡) ≥

𝑚2(𝑡) and 𝑚𝑖 is the MIT of 𝑇𝑖. Refer to Finkelstein [6] for a connection between RHR and MIT 

orders.  

Similarly, let 𝑞𝛼,𝑖(𝑡) be the 𝛼 QIT function of 𝑇𝑖, then we say that 𝑇1 ≤ 𝑇2 in 𝛼 QIT order, if 

𝑞𝛼,1(𝑡) ≥ 𝑞𝛼,2(𝑡) for every 𝑡.  

Theorem 2.  

i. For two univariate random lifetimes 𝑇1 and 𝑇2, the RHR order implies the 𝛼 QIT order.  

ii. Moreover, 𝑇1 ≤ 𝑇2 in RHR if and only if 𝑇1 ≤ 𝑇2 in 𝛼 QIT for every 𝛼 ∈ (0,1).  

In the reliability theory and survival analysis, various measures are applied for comparing two 

random lifetimes. Two univariate random lifetimes, 𝑇1 and 𝑇2, with reliability functions, �̅�1 and �̅�2, 

could be compared by their reliability functions in the sense that if �̅�1(𝑡) ≤ �̅�2(𝑡) for each 𝑡 in the 

support, then we say that 𝑇1 ≤ 𝑇2 in ordinary stochastic order. Refer to Shaked and Shantikumar [28] 

for detailed discussion about various stochastic orders and related results. The comparsion could be 

done by the hazard rate, RHR, the mean residual life, MIT, 𝛼 quantile residual life, 𝛼 QIT, or other 

proper measures.  

In the multivariate context, a vector of lifetimes 𝑇1 is said to be smaller than 𝑇2 in stochastic 

order if 𝐸𝜙(𝑇1) ≤ 𝐸𝜙(𝑇2) for all nondecreasing functions 𝜙: ℝ+𝑚 → ℝ+ which these expectations 

exist for them. To extend the RHR and 𝛼 QIT orders to multivariate context, we compare different 

histories of 𝑇1 and 𝑇2 in the sense that ℎ̅𝑡
2 of 𝑇2 is said to be more severe than ℎ𝑡

1 of 𝑇1, ℎ𝑡
1 ≤

ℎ̅𝑡
2, if every component passed time 𝑡 in ℎ𝑡

1, it passed 𝑡 in ℎ̅𝑡
2 too. Also, the common components 

in both histories, the event times of ℎ̅𝑡
2 are greater than the correspondings in ℎ𝑡

1. Notationally,  

ℎ𝑡
1 = {𝑇𝐼′

1 < 𝑡1, 𝑇𝐼
1 = 𝑡𝐼

1}, 

and  

ℎ̅𝑡
2 = {𝑇(𝐼∪𝐽)′

2 < 𝑡1, 𝑇𝐼
2 = 𝑡𝐼

2, 𝑇𝐽
2 = 𝑡𝐽

2}, 

and every element of 𝑡𝐼
2 is greater than the corresponding element of 𝑡𝐼

1, i.e., 𝑡𝐼
1 ≤ 𝑡𝐼

2, and 𝐽 could 

be an empty or non empty set.  

Definition 1. The multivariate random lifetime 𝑇1 is said to be smaller than 𝑇2 in RHR if for every 

𝑡 > 0, 𝑘 ∈ (𝐼 ∪ 𝐽)′ and ℎ𝑡
1 ≤ ℎ̅𝑡

2,  

 𝑟𝑘
∗1(𝑡|ℎ𝑡

1) ≤ 𝑟𝑘
∗2(𝑡|ℎ̅𝑡

2).  

Definition 2. The multivariate random lifetime 𝑇1 is said to be smaller than 𝑇2 in 𝛼 QIT if for every 

𝑡 > 0, 𝑘 ∈ (𝐼 ∪ 𝐽)′ and ℎ𝑡
1 ≤ ℎ̅𝑡

2,  

𝑞𝛼,𝑘
∗2 (𝑡|ℎ̅𝑡

2) ≤ 𝑞𝛼,𝑘
∗1 (𝑡|ℎ𝑡

1). 

Suppose that 𝑇 consists of positively dependent components in the sense that for a failed element 

𝑘 before 𝑡, the more severe history it belongs to, the larger lifetime 𝑇𝑘, and specially the smaller 𝛼 

quantile of 𝑡 − 𝑇𝑘 conditional to its history it has. It is equivalent to say that 𝑇 ≤ 𝑇 in 𝛼 QIT. This 

means that the proposed multivariate order in 𝛼 QIT is not reflexive. In other words, 𝑇 ≤ 𝑇 in 𝛼 

QIT may not be true generally. Similarly the multivariate RHR order is not reflexive, and 𝑇 ≤ 𝑇 in 

RHR may not be the true in general. In fact, 𝑇 ≤ 𝑇 in RHR implies positive dependency between 

components too, see Shaked and Shanthikumar [29,30] for similar discussions in the case of 

multivariate hazard rate function.  

The following theorem shows that how the multivariate RHR and 𝛼 QIT orders are related.  
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Theorem 3. 𝑇1 ≤ 𝑇2 in RHR if and only if 𝑇1 ≤ 𝑇2 in 𝛼 QIT order for every 𝛼 ∈ (0,1).  

Proof. In the univariate case, it is straightforward to show that 𝑇1 ≤ 𝑇2 in RHR if and only if the 

fraction 
𝐹1(𝑡)

𝐹2(𝑡)
 is decreasing in 𝑡 > 0. Similarly, we conclude that 𝑇1 ≤ 𝑇2 in RHR if and only if the 

following expression decreases as 𝑧 increases.  

𝑃𝐼(𝑇𝑘
1≤𝑧,ℎ𝑡

1)

𝑃𝐼∪𝐽(𝑇𝑘
2≤𝑧,ℎ̅𝑡

2)
. 

Assume that 𝑇1 ≤ 𝑇2 in RHR, then for any 𝑡 > 0 and 0 < 𝑥 < 𝑡,  

𝑃𝐼(𝑇𝑘
1 ≤ 𝑡 − 𝑥, ℎ𝑡

1)

𝑃𝐼∪𝐽(𝑇𝑘
2 ≤ 𝑡 − 𝑥, ℎ̅𝑡

2)
≥

𝑃𝐼(ℎ𝑡
1)

𝑃𝐼∪𝐽(ℎ̅𝑡
2)

. (10) 

On the other hand, by definition of multivariate 𝛼 QIT, we have  

𝑃𝐼(𝑇𝑘
1 ≤ 𝑡 − 𝑞𝛼,𝑘

∗1 (𝑡|ℎ𝑡
1), ℎ𝑡

1)

𝑃𝐼(ℎ𝑡
1)

=
𝑃𝐼∪𝐽(𝑇𝑘

2 ≤ 𝑡 − 𝑞𝛼,𝑘
∗2 (𝑡|ℎ̅𝑡

2), ℎ̅𝑡
2)

𝑃𝐼∪𝐽(ℎ̅𝑡
2)

= �̅�, 

which implies that  

𝑃𝐼(𝑇𝑘
1 ≤ 𝑡 − 𝑞𝛼,𝑘

∗1 (𝑡|ℎ𝑡
1), ℎ𝑡

1)

𝑃𝐼∪𝐽(𝑇𝑘
2 ≤ 𝑡 − 𝑞𝛼,𝑘

∗2 (𝑡|ℎ̅𝑡
2), ℎ̅𝑡

2)
=

𝑃𝐼(ℎ𝑡
1)

𝑃𝐼∪𝐽(ℎ̅𝑡
2)

. 

Taking 𝑥 = 𝑞𝛼,𝑘
∗1 (𝑡|ℎ𝑡

1) in (10), we conclude that  

𝑃𝐼(𝑇𝑘
1 ≤ 𝑡 − 𝑞𝛼,𝑘

∗1 (𝑡|ℎ𝑡
1), ℎ𝑡

1)

𝑃𝐼∪𝐽(𝑇𝑘
2 ≤ 𝑡 − 𝑞𝛼,𝑘

∗1 (𝑡|ℎ𝑡
1), ℎ̅𝑡

2)
≥

𝑃𝐼(ℎ𝑡
1)

𝑃𝐼∪𝐽(ℎ̅𝑡
2)

=
𝑃𝐼(𝑇𝑘

1 ≤ 𝑡 − 𝑞𝛼,𝑘
∗1 (𝑡|ℎ𝑡

1), ℎ𝑡
1)

𝑃𝐼∪𝐽(𝑇𝑘
2 ≤ 𝑡 − 𝑞𝛼,𝑘

∗2 (𝑡|ℎ̅𝑡
2), ℎ̅𝑡

2)
, 

which shows that 𝑃𝐼∪𝐽(𝑇𝑘
2 ≤ 𝑡 − 𝑞𝛼,𝑘

∗1 (𝑡|ℎ𝑡
1), ℎ̅𝑡

2) ≤ 𝑃𝐼∪𝐽(𝑇𝑘
2 ≤ 𝑡 − 𝑞𝛼,𝑘

∗2 (𝑡|ℎ̅𝑡
2), ℎ̅𝑡

2)  and implies that 

𝑞𝛼,𝑘
∗1 (𝑡|ℎ𝑡

1) ≥ 𝑞𝛼,𝑘
∗2 (𝑡|ℎ̅𝑡

2) . This completes the iif  part. The ionly if  part is completely similar to 

Theorem 1 of Kayid [25] and is ommited.   ◻ 

4. Inference on a treatment effect 

The difference  

𝑑𝛼(𝑡) = 𝑞𝛼,1
∗ (𝑡) − 𝑞𝛼,2

∗ (𝑡),   𝑡 ≥ 0, 

could be considered as a measure of difference between two dependent random lifetimes, 𝑇1 and 𝑇2, 

and could reveal the effect of a treatment. As a special ordering based on the 𝛼 QIT concept, we say 

that 𝑇1 ≤ 𝑇2 in identity QIT if 𝑑𝛼(𝑡) ≥ 0, 𝑡 > 0. This measure applied for investigating the effect 

of a laser treatment on the time to blindness of diabetic retinopathy patients. For a sample of bivariate 

lifetimes 𝑻𝑖 = (𝑇1𝑖, 𝑇2𝑖), 𝑖 = 1,2, . . . , 𝑛, we can estimate 𝑞𝛼,1
∗ (𝑡) by  

𝑞𝛼,𝑛,1
∗ (𝑡) = 𝑡 − 𝐹1,𝑛

−1(�̅�𝐹(𝑡, 𝑡); 𝑡),   𝑡 ≥ 0, 

where 𝐹1,𝑛
−1(𝑝; 𝑡) = inf{𝑥: 𝐹(𝑥, 𝑡) = 𝑝} is the inverse of the empirical distribution function 𝐹𝑛 with 

respect to the first element. Similarly, we can estimate 𝑞𝛼,2
∗ (𝑡) by  
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𝑞𝛼,𝑛,2
∗ (𝑡) = 𝑡 − 𝐹2,𝑛

−1(�̅�𝐹(𝑡, 𝑡); 𝑡),   𝑡 ≥ 0. 

Then, the difference 𝑑𝛼(𝑡) is estiamted by the following relation.  

𝑑𝛼,𝑛(𝑡) = 𝑞𝛼,𝑛,1
∗ (𝑡) − 𝑞𝛼,𝑛,2

∗ (𝑡),   𝑡 ≥ 0. (11) 

Due to the results about the estimator vector (𝑞𝛼,𝑛,1
∗ (𝑡), 𝑞𝛼,𝑛,2

∗ (𝑡)) , it is clear that 𝑑𝛼,𝑛(𝑡) →

𝑑𝛼(𝑡) almost surely. The variance of 𝑑𝛼,𝑛(𝑡) could be written as in the following:  

var(𝑑𝛼,𝑛(𝑡)) =
1

𝑛
(𝑐11

2 𝜎11 + 𝑐22
2 𝜎22 − 2𝑐11𝑐22𝜎12), 

where  

𝑐11 =
𝜕

𝜕𝑝
𝐹1

−1(𝑝; 𝑡)|𝑝=�̅�𝐹(𝑡,𝑡), 

𝑐22 =
𝜕

𝜕𝑝
𝐹2

−1(𝑝; 𝑡)|𝑝=�̅�𝐹(𝑡,𝑡), 

𝜎11 = 𝜎22 = 𝛼�̅�𝐹(𝑡, 𝑡), 

and  

𝜎12 = 𝐹(𝐹1
−1(�̅�𝐹(𝑡, 𝑡); 𝑡), 𝐹2

−1(�̅�𝐹(𝑡, 𝑡); 𝑡)) − �̅�2𝐹(𝑡, 𝑡). 

In practice, estimating this variance is a drawback since 𝑐11 and 𝑐22 are not simple. In the next 

section, we use resampling bootstrap methods for obtaining a confidence band of 𝑑𝛼.  

4.1. Simulation study 

In a simulation study, the consistency and efficiency of 𝑑𝛼,𝑛 is investigated. To implement the 

simulation study, we consider the bivariate well known Gumbel and Pareto distributions with the 

following reliability functions, respectively,  

�̅�(𝑥1, 𝑥2) = exp{−𝑥1 − 𝑥2 − 𝛽𝑥1𝑥2},   𝛽 > 0, 𝑥1 ≥ 0, 𝑥2 ≥ 0, 

and  

�̅�(𝑥1, 𝑥2) = (𝑥1 + 𝑥2 − 1)−𝜆,   𝜆 > 0, 𝑥1 ≥ 1, 𝑥2 ≥ 1. 

Let (𝑋1, 𝑋2) follows from Gumbel (Pareto), then we simulate 𝑟 replicates of samples of size 𝑛 

from (𝑇1 = 𝑋1, 𝑇2 = 𝑋2 + 𝑐), 𝑐 > 0. As reliability functions show, 𝑋1 and 𝑋2 are symmetric and 

we shift 𝑋2 by 𝑐 to make a difference to their related quantile functions. In each run, 𝑟 = 1000 

replicates of size 𝑛 = 25 or 50 are generated. Then, for each sample, 𝑑𝛼,𝑛(𝑡) is computed at three 

points on the identity line (𝑡𝑖, 𝑡𝑖) , 𝑖 = 1,2,3 . These points are selected to be 0.3 , 0.5  and 0.7 

quantiles of the underlying distribution. Provided 𝑑𝛼,𝑛  values for 𝑟  replicates, their bias (B) and 

mean squared error (MSE) are computed and reported in Tables 1 and 2. The results show small B and 

MSE values for all runs which indicates that 𝑑𝛼,𝑛 is a good estimator of 𝑑𝛼. Since the true values of 

𝑑𝛼(𝑡)  are small values, the MSE values shows small values too. As 𝑛  increases, MSE decreases 

which means that 𝑑𝛼,𝑛  is consistent for 𝑑𝛼 . Biases are usually negative, which means that 𝑑𝛼,𝑛 

tends to be smaller than the true value of 𝑑𝛼.  
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Table 1. Simulation results about 𝑑0.5,𝑛 for Gumbel model. 

 Parameters 

𝛽 = 0.5, 𝑐 = 0.1 𝛽 = 1.2, 𝑐 = 0.3 

𝑛 point B MSE B MSE 

25 

 

𝑡1  0.00898 8.07e 05  0.01567 2.45e 04 

𝑡2  0.01645 2.70e 04  0.00768 5.90e 05 

𝑡3  0.01455 2.11e 04  0.00505 2.55e 05 

50 

 

𝑡1 0.00231 5.33e 06  0.00760 5.79e 05 

𝑡2 0.00498 2.48e 05  0.00537 2.89e 05 

𝑡3 0.00689 4.75e 05  0.00750 5.62e 05 

100 

 

 

𝑡1  0.00680 4.62e 05  0.00234 5.49e 06 

𝑡2  0.00561 3.15e 05  0.00251 6.30e 06 

𝑡3  0.00569 3.24e 05  0.00147 2.18e 06 

200 

 

 

𝑡1  0.00076 5.87e 07 0.00138 1.91e 06 

𝑡2  0.00073 5.40e 07 0.00117 1.37e 06 

𝑡3  0.00114 1.31e 06 0.00166 2.78e 06 

Table 2. Simulation results about 𝑑0.5,𝑛 for Pareto model. 

 Parameters 

𝜆 = 1, 𝑐 = 2  𝜆 = 1.2, 𝑐 = 5  

𝑛 point B MSE B MSE 

25 𝑡1  0.00608 3.70e 05   0.01311 0.00017  

𝑡2  0.01069 1.14e 04   0.01824 0.00033  

𝑡3  0.01473 2.17e 04  0.01214 0.00014 

50 

 

𝑡1  0.00917 8.41e 05   0.00335 1.12e 05  

𝑡2  0.00796 6.34e 05   0.00118 1.40e 06  

𝑡3  0.00671 4.50e 05  0.00634 4.02e 05 

100 

 

 

𝑡1  0.01136 1.29e 04   0.00537 2.88e 05  

𝑡2  0.00672 4.52e 05   0.00468 2.19e 05  

𝑡3  0.00400 1.60e 05  0.00164 2.71e 06 

200 

 

 

𝑡1  1.45e 03  2.12e 06   0.00556 3.10e 05  

𝑡2  4.70e 05  2.21e 09   0.00354 1.25e 05 

𝑡3  1.84e 04 3.39e 08  0.00303 9.24e 06 

5. Effect of laser treatment on blindness 

In a study started in 1971, researchers were curious about the effect of laser photocoagulation on 

delaying the blindness in diabetic retinopathy patients. Every diabetic retinopathy patient with visual 

acuity of 20/100 or better in their both eyes were eligible to take part in the study. For each participant, 

one eye was randomly selected for as treatment (laser photocoagulation) and the other eye was 

considered to be the control eye. The time from treatment initiation to blindness was of interest and 

recorded. The blindness means visual acuity be smaller than 5/200 in two consecutive visits. The 

isurvival  package of R software contains the complete data of this experiment. We extracted the event 
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times to blindness of both eyes for juvenile patients (the age less than 20 years). Table 3, shows the 

data in which for each patient 𝑖, 𝑇1𝑖 and 𝑇2𝑖 give the observed time to blindness for control and 

treated eyes, respectively.  

Table 3. For juvenile patients, 𝑇1𝑖  and 𝑇2𝑖  show times (in months) to blindness for 

control and treated eyes, respectively. 

 Patient (i)   1   2   3   4   5   6   7   8   9  

𝑇1𝑖   6.9   1.63   13.83   35.53   14.8   6.2   22   1.7   43.03  

𝑇2𝑖   20.17   10.27   5.67   5.90   33.9   1.73   30.2   1.7   1.77  

Patient (i)   10   11   12   13   14   15   16   17   18  

𝑇1𝑖   6.53   42.17   48.43   9.6   7.6   1.8   9.9   13.77   0.83  

𝑇2𝑖   18.7   42.17   14.3   13.33   14.27   34.57   21.57   13.77   10.33  

Patient (i)   19   20   21   22   23   24        

𝑇1𝑖   1.97   11.3   30.4   19   5.43   46.63        

𝑇2𝑖   11.07   2.1   13.97   13.80   13.57   42.43        

 

Figure 1. The bivariate median inactivity time functions 𝑞𝑛,0.5,1
∗  and 𝑞𝑛,0.5,2

∗ .  

Figure 1 draws 𝑞0.5,𝑛,1
∗  and 𝑞0.5,𝑛,2

∗  functions and shows that both functions are increasing. The 

difference 𝑑0.5,𝑛 , defined by (11) , is also plotted in Figure 2 by a solid blue line which reveals 

positive values. Positive values of 𝑑0.5 means that 𝑇1 is smaller than 𝑇2 in identity QIT. Then, it 

concludes that the laser treatment causes delay to blindness. We apply two approaches to provide 

confidence bounds for 𝑑0.5. In the first approach, each point 𝑡 is considered separately. Assume that 

we want to compute a confidence interval for 𝑑𝛼(𝑡𝑖). This approach consists of the following steps.   

• Let 𝐵  be the bootstrap resampling size. Generate 𝐵  samples with replacement from the pairs 

(𝑇1𝑖, 𝑇2𝑖), 𝑖 = 1,2, . . . , 𝑛, namely (𝑇1𝑖, 𝑇2𝑖)∗𝑏, 𝑖 = 1,2, . . . , 𝑛, 𝑏 = 1,2. . . , 𝐵.  

• Applying the sample 𝑏, compute the difference 𝑑𝛼,𝑛,𝑏(𝑡𝑖), 𝑏 = 1, . . . , 𝐵.  

• Use the computed differences to compute the confidence interval  

(�̅�𝛼,𝑛(𝑡𝑖) − 𝑠𝑑𝑧
1−

𝑝
2

, �̅�𝛼,𝑛(𝑡𝑖) + 𝑠𝑑𝑧
1−

𝑝
2

), 
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where 𝑧𝛽 represents the 𝛽 quantile of the standard normal distribution, �̅�𝛼,𝑛(𝑡𝑖) is the mean of 𝑏 

values of 𝑑𝛼,𝑛,𝑏(𝑡𝑖) and 𝑠𝑑 is their standard deviation (the square root of their variance).  

Applying the first approach with 𝐵 = 1000, Figure 2 plots 𝑑0.5,𝑛, along with 95% bootstrap 

confidence intervals. Also, the mean of 𝑑0.5,𝑛 values are plotted for each selected 𝑡𝑖.  

In the second approach, which is described in the following steps, a confidence bound for 𝑑𝛼 function 

is derived.   

• Fix the resampling size 𝐵 and generate 𝐵 samples with replacement from the pairs (𝑇1𝑖, 𝑇2𝑖), 𝑖 =

1,2, . . . , 𝑛, namely (𝑇1𝑖, 𝑇2𝑖)∗𝑏, 𝑖 = 1,2, . . . , 𝑛, 𝑏 = 1,2. . . , 𝐵.  

• Select a set of points 𝑡𝑖, 𝑖 = 1,2, . . . , 𝑘, at which we are focused. Compute 𝑑𝛼,𝑛,𝑏(𝑡), 𝑏 = 1, . . . , 𝐵 

for all 𝑡𝑖 . These values could be arranged to a 𝑏 × 𝑘  matrix and shows 𝐵  curves, which all are 

computed at 𝑡𝑖 points.  

• For each 𝑑𝛼,𝑛,𝑏 (row 𝑏 of the matrix) compute the following score.  

𝑆𝐷(𝑑𝛼,𝑛,𝑏) =
1

𝑘
∑

𝑘

𝑗=1

(𝑑𝛼,𝑛,𝑏(𝑡𝑗) − �̅�𝛼,𝑛(𝑡𝑗)), 

where  

�̅�𝛼,𝑛(𝑡𝑗) =
1

𝐵
∑

𝐵

𝑏=1

𝑑𝛼,𝑛,𝑏(𝑡𝑗). 

Then, sort all 𝑑𝛼,𝑛,𝑏 functions in terms of 𝑆𝐷, from smallest to largest 𝑆𝐷.  

• Find largest 𝑑𝛼,𝑛,𝑏, which atmost 100
𝑝

2
% of 𝑑𝛼,𝑛,𝑏 functions lies before it in the sorted list as the 

lower bound of the confidence band of 𝑑𝛼. Also, find the smallest 𝑑𝛼,𝑛,𝑏 where most 100
𝛼

2
% of 

𝑑𝛼,𝑛,𝑏 functions lie after it in the sorted list as the upper bound of the confidence band.  

 

Figure 2. The estimated 𝑑0.5,𝑛 , mean of the bootstraped samples and the 95%  confidence 

bounds applying the first approach (left) and applying the second approach (right).  
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Figure 2, right side, shows the results of the bootstrap 95% confidence bounds with 𝐵 = 1000. 

The estimated 𝑑0.5,𝑛 and mean of 𝑑0.5,𝑛,𝑏 for all bootstraped samples are plotted too. 

6. Conclusions 

The 𝛼 QIT has been extended to a dynamic multivariate environment. The idea is to consider all 

possible trajectories at time 𝑡 > 0. It was shown that the dynamic multivariate 𝛼 QIT and RHR are 

related. A new stochastic ordering based on dynamic multivariate 𝛼 QIT functions is presented and 

its relationship with the RHR ordering is demonstrated. It is proven that the proposed ordering is 

weaker than the corresponding RHR ordering. A difference measure was defined and investigated, 

which is useful for studying the effects of a treatment. The proposed difference measure was used to 

illustrate how to infer the effect of a treatment on life expectancy. One important aspect that may open 

a door for new ideas and future studies is to investigate the possible application of the proposed 

difference measure in the Rubin casual model. 
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