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Abstract: In this paper, we first introduced systems of generalized vector quasi-variational equilibrium
problems as well as systems of vector quasi-variational equilibrium problems as their special cases
in abstract convex spaces. Next, we established some existence theorems of solutions for systems
of generalized vector quasi-variational equilibrium problems and systems of vector quasi-variational
equilibrium problems in non-compact abstract convex spaces. Furthermore, we applied the obtained
existence theorem of solutions for systems of vector quasi-variational equilibrium problems to solve
the existence problem of Nash equilibria for noncooperative games. Then, as applications of the
existence result of Nash equilibria for noncooperative games, we studied the existence of weighted
Nash equilibria and Pareto Nash equilibria for multi-objective games. The results derived in this paper
extended and unified the primary findings presented by some authors in the literature.
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1. Introduction and preliminaries

It is well-known that the system of vector quasi-equilibrium problems includes the system of
vector quasi-variational inequalities, the system of vector quasi-optimization problems, vector
quasi-saddle point problems, and Debreu-type equilibrium problems as special cases. Therefore, the
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system of vector quasi-equilibrium problems has been extensively and intensively studied by many
authors. In 2004, Ansari et al. [1] established existence theorems of solutions for the system of vector
quasi-equilibrium problems in Hausdorff topological vector spaces. As applications, they obtained
existence results of Debreu-type economic equilibria. In the same year, Ansari and Khan [2]
introduced the system of generalized vector quasi-equilibrium problems in the framework of
Hausdorff topological vector spaces and derived existence results of solutions for these kinds of
problems. Since then, many authors have studied sufficient conditions guaranteeing the existence of
solutions for systems of vector quasi-equilibrium problems in the framework of topological vector
spaces. Lin [3] proved an existence theorem for systems of generalized quasivariational inclusions
and established existence results of solutions for a range of variational analysis and optimization
problems. Lin et al. [4] introduced the concept of systems of generalized vector quasi-equilibrium
problems for set-valued mappings and obtained existence results of solutions for systems of
generalized vector quasi-equilibrium problems based on an existence of equilibria for generalized
abstract economy. Lin and Ansari [5] studied the existence of solutions for systems of
quasi-variational relations and gave various applications in the field of nonlinear analysis.
Al-Homidan et al. [6] proved the existence of weak and strong solutions for systems of generalized
implicit vector variational inequalities under different continuity assumptions. Patriche [7]
investigated the existence of solutions for systems of generalized vector quasi-equilibrium problems
by using the existence results of equilibria for generalized abstract economy. Peng et al. [8] proved
the existence of solutions for systems of generalized vector quasi-equilibrium problems with
set-valued mappings by means of two maximal element theorems. Peng and Wu [9] presented the
equivalent relationship between the generalized Tykhonovwell-posedness of the system of vector
quasi-equilibrium problems and that of the minimization problems. Lin [10] established the existence
and essential components of solutions for the system of generalized vector quasi-equilibrium
problems. Hou et al. [11] introduced the concept of a new system of generalized vector variational
inequalities and derived exisrence results of solutions for the new system. In 2016, Farajzadeh
et al. [12] obtained an existence theorem of solutions for generalized vector quasi-equilibrium
problems in locally convex topological vector spaces. Further, they used the obtained existence
theorem to establish an existence theorem of solutions for a system of generalized vector
quasi-equilibrium problems. Recently, Hung [13] introduced two types of optimal control problems
for systems characterized by the generalized bounded quasi-equilibrium problems and studied the
Levitin-Polyak well-posedness for these problems.

On the other hand, some authors have investigated this topic in topological spaces without linear
and convex structure. Al-Homidan and Ansari [14] obtained existence results of solutions for systems
of generalized vector quasi-equilibrium problems by using existence theorems of equilibria for the
generalized abstract economy in the framework of non-compact topological semilattice spaces.
Plubtieng and Thammathiwat [15] proved existence theorems of solutions for systems of generalized
vector quasi-equilibrium problems based on two maximal element theorems for a family of set-valued
mappings on product G-convex spaces. By utilizing an existence theorem of Nash equilibria for
generalized games, Ding [16] obtained existence results of solutions for several classes of systems of
generalized vector quasi-equilibrium problems in locally FC-uniform spaces. Ding [17] established
existence theorems of solutions for systems of generalized quasi-variational inclusion problems in
non-compact FC-spaces using an existence theorem of Nash equilibria for generalized games.
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In 2008, Park [18] introduced the notion of an abstract convex space that encompasses the vast
majority of spaces in the existing literature for their special cases. However, to the best of our
knowledge, there seems to be few related research works on systems of generalized vector
quasi-variational equilibrium problems and systems of vector quasi-variational equilibrium problems
in abstract convex spaces. Therefore, it is important and interesting to study such problems in abstract
convex spaces under some suitable conditions. Motivated and inspired by the aforementioned works,
the main purpose of this paper is to obtain some existence theorems of solutions for systems of
generalized vector quasi-variational equilibrium problems and systems of vector quasi-variational
equilibrium problems by means of an existence theorem of equilibria for generalized abstract
economy in non-compact abstract convex spaces. As applications, we show existence theorems of
Nash equilibria for noncooperative games as well as weighted Nash equilibria and Pareto Nash
equilibria for multi-objective games in the framework of non-compact abstract convex spaces. At the
same time, we verify the existence result of Pareto Nash equilibria for multi-objective games in the
case of compact abstract convex spaces with an example.

The results obtained by this paper unify and extend many of the results in the existing literature,
which not only provide a theoretical basis for proving the existence of solutions for equilibrium
problems of complex systems in mathematical economics, but can also be applied to analyze and
solve related problems in multi-objective decision-making scenarios with practical applications, for
example, multi-objective games and conflicts in water allocation.

Now, we introduce some preliminaries that will be used in subsequent discussions.
Let N and R denote the set of the natural numbers and the set of all real numbers, respectively. For a

nonempty set X, let 2X and ⟨X⟩ denote the family of all subsets of X and the family of nonempty finite
subsets of X, respectively. Let X and Y be two nonempty sets and T : X → 2Y be a set-valued mapping.
Then, the set-valued mapping T−1: Y → 2X is defined by

T−1(y) = {x ∈ X : y ∈ T (x)}

for each y ∈ Y . For every X0 ⊆ X, let
T (X0) =

⋃
x∈X0

T (x).

Let

∆n = {t = (t0, t1, . . . , tn) ∈ Rn+1
+ :

n∑
i=0

ti = 1}

denote the standard n-dimensional simplex with vertices {e0, e1, . . . , en}, where ei is the (i + 1)th unit
vector in Rn+1. It is easy to see that

∆n = co{e0, e1, . . . , en},

where co{e0, e1, . . . , en} denotes the convex hull of {e0, e1, . . . , en}. For any nonempty subset

J = {i0, i1, . . . , ik}

of {0, 1, . . . , n}, let

∆J = co{ei0 , ei1 , . . . , eik} = {t ∈ ∆n :
k∑

j=0

ti j = 1},
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which is the face of ∆n spanned by {ei0 , ei1 , . . . , eik}.
The following definitions can be found in Park [18].

Definition 1.1. If D is a nonempty set, E is a topological space, and Γ: ⟨D⟩ → 2E is a set-valued
mapping with nonempty values

ΓA := Γ(A)

for every A ∈ ⟨D⟩, then the family (E,D;Γ) is called an abstract convex space. If E = D, then (E;Γ) is
denoted for (E, E;Γ).

Example 1.1. We give two special cases of abstract convex spaces as follows:
(1) Any topological vector space can be viewed as a special case of an abstract convex space.

Indeed, suppose that X is a topological vector space. Define a a nonempty-valued set-valued mapping

Γ : ⟨X⟩ → 2X

by
ΓA = co(A)

for every A ∈ ⟨X⟩, where co(A) denotes the convex hull of A. It is clear that (X;Γ) becomes an abstract
convex space.

(2) A couple (X, FA) is called an H-space if X is a topological space and {CA} is a given family of
nonempty contractible subsets of X such that CA ⊆ CB whenever A ⊆ B (see Horvath [19]). Obviously,
for any H-space (X,CA), define a nonempty-valued set-valued mapping

Γ : ⟨X⟩ → 2X

by
ΓA = CA

for every A ∈ ⟨X⟩. Then, (X;Γ) forms an abstract convex space.

Definition 1.2. Let (E,D;Γ) be an abstract convex space and D
′

be a nonempty subset of D. The
Γ-convex hull of D

′

is defined by

coΓ(D
′

) =
⋃
{ΓA : A ∈ ⟨D

′

⟩}.

Definition 1.3. Let (E,D;Γ) be an abstract convex space. A nonempty subset F of E is said to be
a Γ-convex subset of (E,D;Γ) relative to a nonempty subset D

′

of D if we have ΓN ⊆ F for every
N ∈ ⟨D

′

⟩, that is, coΓ(D
′

) ⊆ F.

Remark 1.1. Let (E,D;Γ) be an abstract convex space. Then, by Definition 1.3, we can see that if a
nonempty subset F of E is a Γ-convex subset of (E,D;Γ) relative to a nonempty subset D

′

of D, then
(F,D

′

;Γ|⟨D′ ⟩) itself is an abstract convex space which is called to be a subspace of (E,D;Γ).

Definition 1.4. Let (E,D;Γ) be an abstract convex space and Z be a set. A set-valued mapping G:
D → 2E is said to be a Knaster-Kuratowski-Mazurkiewicz (KKM) mapping if for any A ∈ ⟨D⟩, we
have ΓA ⊆ G(A). For a set-valued mapping H: E → 2Z with nonempty values, if a set-valued mapping
G: D → 2Z satisfies H(ΓA) ⊆ G(A) for every A ∈ ⟨D⟩, then G is called a KKM mapping with respect
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to H. It is obvious that a KKM mapping G: D → 2E is a KKM mapping with respect to the identity
mapping 1E.

Definition 1.5. Let (E,D;Γ) be an abstract convex space and Z be a topological space. A set-valued
mapping H: E → 2Z is said to be a RC-mapping, if for any closed-valued KKM mapping G: D → 2Z

with respect to H, the family {G(y) : y ∈ D} has the finite intersection property. We denote

RC(E,Z) := {H : E → 2Z | H is a RC-mapping}.

Example 1.2. Here, we give an example of the RC-mapping. A sup-semilattice X is a partially ordered
set with the partial ordering denoted by ≤, in which any pair (x, x′) ∈ X × X has a least upper bound
x ∨ x′ (see Horvath and Ciscar [20]). Now, suppose that (X,≤) is a sup-semilattice and A ∈ ⟨X⟩. Then,
A has a least upper bound sup A. If x and x′ are two elements in a partially ordered set (X,≤) with the
case that x ≤ x′, then we call the set

[x, x′] = {y ∈ X : x ≤ y ≤ x′}

an order interval. Let (X,≤) be a sup-semilattice and A ∈ ⟨X⟩. Then, the nonempty set

∆(A) :=
⋃
a∈A

[a, sup A]

is well-defined. A topological sup-semilattice is a topological space X with a partial ordering ≤ for
which it is a sup-semilattice with a continuous sup-operation, that is, the function X × X → X, defined
by (x, x′) 7→ x∨ x′ for every (x, x′) ∈ X × X, is continuous. Let X be a topological sup-semilattice with
path-connected intervals and let Γ: X → 2X be a nonempty-valued set-valued mapping defined by

ΓA := ∆(A)

for every A ∈ ⟨X⟩. Then, we can see that (X;Γ) becomes an abstract convex space. Now, we show that
the identity mapping 1X ∈ RC(X, X). In fact, let G: X → 2X be a KKM mapping with closed values,
which implies that for each

A = {x0, x1, . . . , xn} ∈ ⟨X⟩, ∆(A) =
⋃
a∈A

[a, sup A] ⊆ G(A).

Then, by the proof of Theorem 1 in Horvath and Ciscar [20], it follows that there exists a continuous
mapping ξ: ∆n → ∆(A) such that

ξ(∆J) ⊆ ∆({x j : j ∈ J})

for every nonempty subset J ⊆ {0, 1, . . . , n}. Define

Fi = G(xi)
⋂
∆(A)

for every i ∈ {0, 1, . . . , n}. It is obvious that each Fi is closed in ∆(A) and, thus, ξ−1(Fi) is closed in ∆n.
Since

ξ(∆J) ⊆ ∆({x j : j ∈ J}) ⊆
⋃
i∈J

Fi
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for every nonempty subset J ⊆ {0, 1, . . . , n}, we have

∆J ⊆
⋃
i∈J

ξ−1(Fi)

and so, it follows from the KKM lemma that

n⋂
i=0

ξ−1(Fi) , ∅.

Taking any

z ∈
n⋂

i=0

ξ−1(Fi)

leads to

ξ(z) ∈
n⋂

i=0

G(xi),

which implies that the family {G(x) : x ∈ X} has the finite intersection property. Thus, 1X ∈ RC(X, X).

Lemma 1.1. [21] Let {(Ei,Di;Γi)}i∈I be any family of abstract convex spaces. Let

E :=
∏
i∈I

Ei

be equipped with the product topology and

D :=
∏
i∈I

Di.

For each i ∈ I, let πi: D→ Di be the projection. Define

Γ =
∏
i∈I

Γi : ⟨D⟩ → 2E

by
Γ(A) :=

∏
i∈I

Γi(πi(A))

for each A ∈ ⟨D⟩. Then, (E,D;Γ) is an abstract convex space.

Remark 1.2. For more details on abstract convex spaces, the reader may consult Park [22,23], and the
references therein.

2. Systems of generalized vector quasi-variational equilibrium problems

Let I be a finite index set. For each i ∈ I, let (Xi;Γi) be an abstract convex space, Yi be a topological
space, and let

X =
∏
i∈I

Xi.
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For each i ∈ I, let
Ai, Bi, Fi : X → 2Xi , Ψi : X × X × Xi → 2Yi

and
Ci : X × X × Xi → 2Yi

be set-valued mappings with nonempty values. We consider the following systems of generalized
vector quasi-variational equilibrium problems (for short, SGVQVEP):

(SGVQVEP1): Find (x, y) ∈ X × X such that for each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and Ψi(x, y, ui) ⊆
Ci(x, y, xi) for all ui ∈ Ai(x).

(SGVQVEP2): Find (x, y) ∈ X × X such that for each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and
Ψi(x, y, ui)

⋂
Ci(x, y, xi) , ∅ for all ui ∈ Ai(x).

(SGVQVEP3): Find (x, y) ∈ X × X such that for each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and
Ψi(x, y, ui)

⋂
Ci(x, y, xi) = ∅ for all ui ∈ Ai(x).

(SGVQVEP4): Find (x, y) ∈ X × X such that for each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and Ψi(x, y, ui) ⊈
Ci(x, y, xi) for all ui ∈ Ai(x).

Clearly, each solution of (SGVQVEP1) (respectively, (SGVQVEP3)) is a solution of (SGVQVEP2)
(respectively, (SGVQVEP4)), but the converse is not always true.

To ensure the generality of the aforementioned problems setting, we examine certain specific cases
related to recent papers in the literature.

(a) For each i ∈ I, let Xi be a topological semilattice space with path-connected intervals, Yi be a
topological vector space, and let

Ci(x, y, ui) = Ci(x, y)

or
Ci(x, y, ui) = −intCi(x, y)

for all (x, y, ui) ∈ X × X × Xi, where Ci: X × X → 2Yi is a set-valued mapping such that each Ci(x, y) is
a proper closed convex cone with intCi(x, y) , ∅. Then, (SGVQVEP1)–(SGVQVEP4) reduces to the
systems of generalized vector quasi-equilibrium problems considered by Al-Homidan and Ansari [14].

(b) For each i ∈ I, let Xi and Yi be two topological vector spaces. If for each i ∈ I, Ai(x) = Bi(x) for
all x ∈ X and

Ci(x, y, ui) = Ci(x)

or
Ci(x, y, ui) = −intCi(x)

for all (x, y, ui) ∈ X × X × Xi, where Ci: X → 2Yi is a set-valued mapping such that each Ci(x) is
a proper closed convex cone with intCi(x) , ∅, then (SGVQVEP1)–(SGVQVEP4) reduces to the
systems of generalized vector quasi-equilibrium problems introduced and studied by Lin et al. [4] and
Peng et al. [8].

(c) If for each i ∈ I and each x ∈ X,

Ai(x) = Bi(x) = Fi(x) = Xi
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and for each (x, y, ui) ∈ X × X × Xi,
Ψi(x, y, ui) = Ψi(x, ui)

and
Ci(x, y, ui) = −intCi(x),

where Ci: X → 2Yi is a set-valued mapping such that each Ci(x) is a proper closed convex cone with
intCi(x) , ∅, then (SGVQVEP4) is considered and studied by Ansari et al. [24].

(d) Let I be a singleton and let Xi, Yi be two topological vector spaces. If

Ai = Bi, Fi(x) = Xi

for every x ∈ Xi,
Ψi(x, y, ui) = Gi(x, ui) + Hi(x, ui)

and
Ci(x, y, ui) = Yi \ (−intCi)

for every (x, y, ui) ∈ Xi×Xi×Xi, where Gi,Hi: Xi×Xi → 2Yi are two set-valued mappings, and Ci ⊆ Yi is
a proper cone, then (SGVQVEP1) collapses to the vector quasi-equilibrium problem studied by Kassay
et al. [25].

(e) Let I be a singleton and let Xi, Yi be two topological vector spaces. If

Ai = Bi, Fi(x) = Xi

for every x ∈ X,
Ψi(x, y, ui) = Hi(x, ui)

and
Ci(x, y, ui) = Yi \ (−intCi)

for every (x, y, ui) ∈ Xi × Xi × Xi, where

Hi : Xi × Xi → 2Yi

is a set-valued mapping and Ci ⊆ Yi is a proper cone, then (SGVQVEP1) becomes the vector quasi-
equilibrium problem considered in Capǎtǎ [26].

(f) Let I be a singleton, Xi be a H-space, and

Yi = R
⋃
{±∞}.

If
Ai = Bi, Ψi(x, y, ui) = fi(x, x) − fi(ui, x)

and
Ci(x, y, ui) = (−∞, 0]

for every (x, y, ui) ∈ Xi × Xi × Xi, where

fi : Xi × Xi → R
⋃
{±∞}
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is a function, then (SGVQVEP1) reduces to the quasi-equilibrium problem studied by Ding [27].
The above special cases (a)–(f) show that our (SGVQVEP1)–(SGVQVEP4) extends and unifies

many kinds of systems of generalized vector quasi-equilibrium problems in the literature.
For each i ∈ I, if Ψi is a single-valued mapping, then (SGVQVEP1)–(SGVQVEP4) reduces to the

following systems of vector quasi-variational equilibrium problems (for short, SVQVEP), respectively.

(SVQVEP1): Find (x, y) ∈ X × X such that for each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and Ψi(x, y, ui) ∈
Ci(x, y, xi) for all ui ∈ Ai(x).

(SVQVEP2): Find (x, y) ∈ X × X such that for each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and Ψi(x, y, ui) <
Ci(x, y, xi) for all ui ∈ Ai(x).

Definition 2.1. Let I be a finite index set. For each i ∈ I, let (Xi;Γi) be an abstract convex space, Yi be
a topological space, and let

X =
∏
i∈I

Xi.

For each i ∈ I, let
Ψi : X × X × Xi → 2Yi

and
Ci : X × X × Xi → 2Yi

be two set-valued mappings. Then, for each i ∈ I and each y ∈ X, Ψi is said to be a Γi-Ci-diagonally
quasi-convex mapping of type(1) (respectively, type(2)–type(4)) in the third argument if for each

Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩

and each x ∈ X with xi ∈ Γi(Ni), there exists j ∈ {1, 2, . . . , n} such that Ψi(x, y, ui j) ⊆ Ci(x, y, xi)
(respectively, Ψi(x, y, ui j)∩Ci(x, y, xi) , ∅, Ψi(x, y, ui j)∩Ci(x, y, xi) = ∅, and Ψi(x, y, ui j) ⊈ Ci(x, y, xi)).

Remark 2.1. Definition 2.1 generalizes the corresponding definitions introduced by Peng et al. [8]
from topological vector spaces to abstract convex spaces without any linear and convex structure.

If Ψi is a single-valued mapping for every i ∈ I, then Definition 2.1 reduces to the following
definition.

Definition 2.2. Let I be a finite index set. For each i ∈ I, let (Xi;Γi) be an abstract convex space, Yi be
a topological space and let

X =
∏
i∈I

Xi.

For each i ∈ I, let
Ψi : X × X × Xi → Yi

be a single-valued mapping and
Ci : X × X × Xi → 2Yi

be a set-valued mapping. Then, for each i ∈ I and each y ∈ X, Ψi is said to be a Γi-S Ci-diagonally
quasi-convex mapping of type(1) (respectively, type(2)) in the third argument if for each

Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩
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and each x ∈ X with xi ∈ Γi(Ni), there exists j ∈ {1, 2, . . . , n} such that Ψi(x, y, ui j) ∈ Ci(x, y, xi)
(respectively, Ψi(x, y, ui j) < Ci(x, y, xi)).

For each i ∈ I, let
Yi ≡ R, Ci ≡ (0,+∞)

and let
Ψi : X × X × Xi → R

be a real-valued function defined by

Ψi(x, y, ui) = fi(x̂i, ui) − fi(x)

for every (x, y, ui) ∈ X × X × Xi, where fi: X → R is a real-valued function and

x̂i := (x1, . . . , xi−1, xi+1, . . . , xn).

Then, by Definition 2.2 associated to type(2), we have the following definition:

Definition 2.3. Let I be a finite index set such that (Xi;Γi) is an abstract convex space for every i ∈ I.
Let

X =
∏
i∈I

Xi

and fi: X → R be a real-valued function. Then, for each i ∈ I, we say that fi is a Γi-diagonally
quasi-convex function if for each

Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩

and each x ∈ X with xi ∈ Γi(Ni), there exists j ∈ {1, 2, . . . , n} such that

fi(x̂i, ui j) − fi(x) ≤ 0.

The following lemma is a special case of Lu and Hu [28, Corollary 28].

Lemma 2.1. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of abstract convex spaces such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

and (X × X;Γ × Γ) are two abstract convex spaces defined as in Lemma 1.1. Let

Ω = ((Xi;Γi), Ai, Bi, Fi, Pi)i∈I

be a generalized abstract economy and K be a nonempty compact subset of X × X. For each i ∈ I,
assume that

(i) For each x ∈ X, Ai(x) , ∅, and coΓi Ai(x) ⊆ Bi(x);

(ii) For each x ∈ X, Fi(x) is nonempty Γi-convex;

(iii) For each (x, y) ∈ X × X, xi < coΓi Pi(x, y);

(iv) For each ui ∈ Xi, A−1
i (ui), F−1

i (ui), and P−1
i (ui) are open in X;

AIMS Mathematics Volume 9, Issue 11, 29942–29973.



29952

(v) The set Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅} is closed in X × X;

(vi) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that, for

L :=
∏
i∈I

LN0i ×
∏
i∈I

LN1i ,

we have

L \ K ⊆
⋃

(ui,vi)∈LN0i×LN1i

{
[(A−1

i (ui)
⋂

F−1
i (vi)) × X]

⋂
[P−1

i (ui)
⋃

(X × X \Wi)]
}
.

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then there exists (x, y) ∈ X × X such that for
each i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x) and

Pi(x, y)
⋂

Ai(x) = ∅.

By Lemma 2.1, we have the following existence theorems of solutions for
(SGVQVEP1)–(SGVQVEP4) in non-compact abstract convex spaces.

Theorem 2.1. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of abstract convex spaces such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

and (X × X;Γ × Γ) are two abstract convex spaces defined as in Lemma 1.1. Let K be a nonempty
compact subset of X × X. For each i ∈ I, let

Ai, Bi, Fi : X → 2Xi

be set-valued mappings such that for each ui ∈ Xi, A−1
i (ui) and F−1

i (ui) are open in X and for each
x ∈ X, Ai(x) , ∅, coΓi Ai(x) ⊆ Bi(x), and Fi(x) is nonempty Γi-convex. For each i ∈ I, let Yi be a
topological space and let

Ψi,Ci : X × X × Xi → 2Yi

be two set-valued mappings such that the following conditions are satisfied:

(i) For each y ∈ X, Ψi is a Γi-Ci-diagonally quasi-convex mapping of type(1) in the third argument;

(ii) For each ui ∈ Xi, the set {(x, y) ∈ X × X : Ψi(x, y, ui) ⊈ Ci(x, y, xi)} is open in X × X;

(iii) The set {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui) ⊈ Ci(x, y, xi)} is closed in
X × X;

(iv) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that for each (x, y) ∈ L \ K, there exists (ui, vi) ∈ N0i × N1i

satisfying ui ∈ Ai(x), vi ∈ Fi(x), and Ψi(x, y, ui) ⊈ Ci(x, y, xi), where

L :=
∏
i∈I

LN0i ×
∏
i∈I

LN1i .

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then (SGVQVEP1) has a solution.
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Proof. For each i ∈ I, let us define a set-valued mapping Pi: X × X → 2Xi by

Pi(x, y) = {ui ∈ Xi : Ψi(x, y, ui) ⊈ Ci(x, y, xi)}, ∀(x, y) ∈ X × X.

Step 1. Show that for each i ∈ I and each (x, y) ∈ X × X, we have

xi < coΓi Pi(x, y). (2.1)

Suppose to the contrary that there exist î ∈ I and (x̂, ŷ) ∈ X × X such that

x̂̂i ∈ coΓ̂i
P̂i(x̂, ŷ).

By the definition of the convex hull in abstract convex spaces, we can see that there exists

N̂i = {ûi1, ûi2, . . . , ûin} ∈ ⟨P̂i(x̂, ŷ)⟩

such that x̂̂i ∈ Γ̂i(N̂i). Thus, we have

Ψ̂i(x̂, ŷ, ûi j) ⊈ Ĉi(x̂, ŷ, x̂̂i), ∀ j ∈ {1, 2, . . . , n}. (2.2)

By (i), there exists ĵ ∈ {1, 2, . . . , n} such that

Ψ̂i(x̂, ŷ, ûî j) ⊆ Ĉi(x̂, ŷ, x̂̂i),

which contradicts (2.2). Hence, (2.1) holds.

Step 2. Verify that P−1
i (ui) is open in X × X for every i ∈ I and every ui ∈ Xi, and each

Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅}

is closed in X × X. Indeed, by the definition of Pi, it follows that

P−1
i (ui) = {(x, y) ∈ X × X : Ψi(x, y, ui) ⊈ Ci(x, y, xi)}

for every i ∈ I and every ui ∈ Xi. Then, by (ii), one can conclude that P−1
i (ui) is open in X × X.

Furthermore, by the definition of Pi again, for each i ∈ I, we have the following:

Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅}

= {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui) ⊈ Ci(x, y, xi)}.

Now, by (iii), we can see that the set

Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅}

is closed in X × X for every i ∈ I.

Step 3. Prove that (iv) of Theorem 2.1 implies (vi) of Lemma 2.1. In fact, by (iv), for each i ∈ I
and each

N0i × N1i ∈ ⟨Xi × Xi⟩,
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there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi) containing N0i, N1i, respectively, such that,
for

L :=
∏
i∈I

LN0i ×
∏
i∈I

LN1i ,

we have the following:

L \ K ⊆
⋃

(ui,vi)∈LN0i×LN1i

{
[(A−1

i (ui)
⋂

F−1
i (vi)) × X]

⋂
P−1

i (ui)
}

⊆
⋃

(ui,vi)∈LN0i×LN1i

{[(A−1
i (ui)

⋂
F−1

i (vi)) × X]
⋂

[P−1
i (ui)

⋃
(X × X \Wi)]}.

Thus, one can see that (vi) of Lemma 2.1 is satisfied. At this point, all the conditions of Lemma 2.1
are fulfilled. Therefore, it follows from Lemma 2.1 that there exists (x, y) ∈ X × X such that for each
i ∈ I, xi ∈ Bi(x), yi ∈ Fi(x), and

Pi(x, y)
⋂

Ai(x) = ∅,

i.e.,
Ψi(x, y, ui) ⊆ Ci(x, y, xi)

for all ui ∈ Ai(x), which implies that (x, y) ∈ X × X is a solution of (SGVQVEP1). This completes the
proof. □

Remark 2.2. (i) of Theorem 2.1 can be replaced by the following stronger conditions:

(i)′ For each (x, y) ∈ X × X, Ψi(x, y, xi) ⊆ Ci(x, y, xi);

(i)′′ For each (x, y) ∈ X × X, the set {ui ∈ Xi : Ψi(x, y, ui) ⊈ Ci(x, y, xi)} is Γi-convex.

Indeed, for each i ∈ I and each (x, y) ∈ X × X, define a set-valued mapping Pi: X × X → 2Xi by

Pi(x, y) = {ui ∈ Xi : Ψi(x, y, ui) ⊈ Ci(x, y, xi)}, ∀(x, y) ∈ X × X.

Suppose that (i) of Theorem 2.1 does not hold. Then, there exist i ∈ I, ŷ ∈ X,

Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩,

and x̂ ∈ X with x̂i ∈ Γi(Ni) such that

Ψi(x̂, ŷ, ui j) ⊈ Ci(x̂, ŷ, x̂i), ∀ j ∈ {1, 2, . . . , n}.

Thus, we have Ni ⊆ Pi(x̂, ŷ). By (i)′′, the set

Pi(x̂, ŷ) = {ui ∈ Xi : Ψi(x̂, ŷ, ui) ⊈ Ci(x̂, ŷ, x̂i)}

is Γi-convex and so,
x̂i ∈ Γi(Ni) ⊆ Pi(x̂, ŷ).

Therefore, we have
Ψi(x̂, ŷ, x̂i) ⊈ Ci(x̂, ŷ, x̂i),

which contradicts (i)′. Hence, (i) of Theorem 2.1 holds.
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Theorem 2.2. Suppose that I, {(Xi;Γi)}i∈I , (X;Γ), (X × X;Γ × Γ), K, Ai, Bi, Fi and Yi are as in
Theorem 2.1. For each i ∈ I, let

Ψi,Ci : X × X × Xi → 2Yi

be two set-valued mappings such that the following conditions are satisfied:

(i) For each y ∈ X, Ψi is a Γi-Ci-diagonally quasi-convex mapping of type(2) in the third argument;

(ii) For each ui ∈ Xi, the set {(x, y) ∈ X × X : Ψi(x, y, ui)
⋂

Ci(x, y, xi) = ∅} is open in X × X;

(iii) The set {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui) ⊆ Yi \ Ci(x, y, xi)} is closed
in X × X;

(iv) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that for each (x, y) ∈ L \ K, there exists (ui, vi) ∈ N0i × N1i

satisfying ui ∈ Ai(x), vi ∈ Fi(x), and

Ψi(x, y, ui) ⊆ Yi \Ci(x, y, xi),

where
L :=

∏
i∈I

LN0i ×
∏
i∈I

LN1i .

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then (SGVQVEP2) has a solution.

Proof. For each i ∈ I, we define a set-valued mapping Pi: X × X → 2Xi by

Pi(x, y) = {ui ∈ Xi : Ψi(x, y, ui)
⋂

Ci(x, y, xi) = ∅}, ∀(x, y) ∈ X × X.

Step 1. Show that for each i ∈ I and each (x, y) ∈ X × X, we have

xi < coΓi Pi(x, y), ∀i ∈ I and ∀(x, y) ∈ X × X. (2.3)

Suppose to the contrary that there exist î ∈ I and (x̂, ŷ) ∈ X × X such that

x̂̂i ∈ coΓ̂i
P̂i(x̂, ŷ).

The definition of the convex hull in abstract convex spaces tells us that there exists

N̂i = {ûi1, ûi2, . . . , ûin} ∈ ⟨P̂i(x̂, ŷ)⟩

such that x̂̂i ∈ Γ̂i(N̂i). Thus, we have

Ψ̂i(x̂, ŷ, ûi j)
⋂

Ĉi(x̂, ŷ, x̂̂i) = ∅, ∀ j ∈ {1, 2, . . . , n}. (2.4)

By (i), there exists ĵ ∈ {1, 2, . . . , n} such that

Ψ̂i(x̂, ŷ, ûî j)
⋂

Ĉi(x̂, ŷ, x̂̂i) , ∅,

which contradicts (2.4). Hence, (2.3) holds.
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Step 2. Verify that P−1
i (ui) is open in X × X for every i ∈ I and every ui ∈ Xi, and each

Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅}

is closed in X × X. Indeed, by the definition of Pi, it follows that

P−1
i (ui) = {(x, y) ∈ X × X : Ψi(x, y, ui)

⋂
Ci(x, y, xi) = ∅}

for every i ∈ I and every ui ∈ Xi. Then, by (ii), one can see that P−1
i (ui) is open in X × X. Furthermore,

by the definition of Pi again, for each i ∈ I, we have the following:

Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅}

= {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui)
⋂

Ci(x, y, xi) = ∅}

= {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui) ⊆ Yi \Ci(x, y, xi)}.

Now, by (iii), we can see that the set

Wi = {(x, y) ∈ X × X : Pi(x, y)
⋂

Ai(x) , ∅}

is closed in X × X for every i ∈ I.

Step 3. Prove that (iv) of Theorem 2.1 implies (vi) of Lemma 2.1. In fact, by (iv), for each i ∈ I
and each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi) containing
N0i, N1i, respectively, such that, for

L :=
∏
i∈I

LN0i ×
∏
i∈I

LN1i ,

we have the following:

L \ K ⊆
⋃

(ui,vi)∈LN0i×LN1i

{
[(A−1

i (ui)
⋂

F−1
i (vi)) × X]

⋂
P−1

i (ui)
}

⊆
⋃

(ui,vi)∈LN0i×LN1i

{[(A−1
i (ui)

⋂
F−1

i (vi)) × X]
⋂

[P−1
i (ui)

⋃
(X × X \Wi)]}.

Thus, one can see that (vi) of Lemma 2.1 is satisfied. At this point, all the assumptions of Lemma 2.1
are fulfilled. Therefore, according to Lemma 2.1, there exists (x, y) ∈ X × X such that for each i ∈ I,
xi ∈ Bi(x), yi ∈ Fi(x), and

Pi(x, y)
⋂

Ai(x) = ∅,

i.e.,
Ψi(x, y, ui)

⋂
Ci(x, y, xi) , ∅

for all ui ∈ Ai(x), which implies that (x, y) ∈ X × X is a solution of (SGVQVEP2). This completes the
proof. □

By using the same arguments as in the proof of Theorems 2.1 and 2.2, we can obtain the following
theorems of solutions for (SGVQVEP3) and (SGVQVEP4). Here, we omit their proofs.
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Theorem 2.3. Suppose that I, {(Xi;Γi)}i∈I , (X;Γ), (X × X;Γ × Γ), K, Ai, Bi, Fi, and Yi are as in
Theorem 2.1. For each i ∈ I, let

Ψi,Ci : X × X × Xi → 2Yi

be two set-valued mappings such that the following conditions are satisfied:

(i) For each y ∈ X, Ψi is a Γi-Ci-diagonally quasi-convex mapping of type(3) in the third argument;

(ii) For each ui ∈ Xi, the set {(x, y) ∈ X × X : Ψi(x, y, ui)
⋂

Ci(x, y, xi) , ∅} is open in X × X;

(iii) The set {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui)
⋂

Ci(x, y, xi) , ∅} is closed
in X × X;

(iv) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that for each (x, y) ∈ L \ K, there exists (ui, vi) ∈ N0i × N1i

satisfying ui ∈ Ai(x), vi ∈ Fi(x), and

Ψi(x, y, ui)
⋂

Ci(x, y, xi) , ∅,

where
L :=

∏
i∈I

LN0i ×
∏
i∈I

LN1i .

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then (SGVQVEP3) has a solution.

Theorem 2.4. Suppose that I, {(Xi;Γi)}i∈I , (X;Γ), (X × X;Γ × Γ), K, Ai, Bi, Fi, and Yi are as in
Theorem 2.1. For each i ∈ I, let

Ψi,Ci : X × X × Xi → 2Yi

be two set-valued mappings such that the following conditions are satisfied:

(i) For each y ∈ X, Ψi is a Γi-Ci-diagonally quasi-convex mapping of type(4) in the third argument;

(ii) For each ui ∈ Xi, the set {(x, y) ∈ X × X : Ψi(x, y, ui) ⊆ Ci(x, y, xi)} is open in X × X;

(iii) The set {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψ(x, y, ui) ⊆ Ci(x, y, xi)} is closed in
X × X;

(iv) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that for each (x, y) ∈ L \ K, there exists (ui, vi) ∈ N0i × N1i

satisfying ui ∈ Ai(x), vi ∈ Fi(x), and

Ψi(x, y, ui) ⊆ Ci(x, y, xi),

where
L :=

∏
i∈I

LN0i ×
∏
i∈I

LN1i .

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then (SGVQVEP4) has a solution.

Remark 2.3. (1) Theorems 2.1–2.4 are new results, which partially improve and extend the
Theorems 5.1–5.4 obtained by Al-Homidan and Ansari [14] in the following aspects:

(a) From topological sup-semilattice spaces with path-connected intervals to abstract convex spaces
(see Example 1.1);
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(b) The Hausdorff property of topological sup-semilattice spaces with path-connected intervals
involved in Theorems 5.1–5.4 of Al-Homidan and Ansari [14] is necessary, while the Hausdorff
property of abstract convex spaces in our Theorems 2.1–2.4 is not required;

(c) The equilibrium problems in our Theorems 2.1–2.4 are more general than those involved in
Theorems 5.1–5.4 of Al-Homidan and Ansari [14];

(d) The spaces Yi in Theorems 5.1–5.4 obtained by Al-Homidan and Ansari [14] are topological
vector spaces, while the spaces Yi in our Theorems 2.1–2.4 are general topological spaces without
linear and convex structure.

(2) From the above analyses, together with Remark 5.3 in Al-Homidan and Ansari [14], we can
see that Theorems 2.1–2.4 extend and generalize Theorems 3.2.1–3.2.4 by Lin et al. [4], and the
Theorems 3.1–3.4 by Peng et al. [8] in a number of other ways, in addition to generalizing the
Theorems 3.2.1–3.2.4 by Lin et al. [4], and Theorems 3.1–3.4 by Peng et al. [8] from topological
vector spaces to abstract convex spaces. Here, from a general point of view, it is necessary to explain
why an abstract convex space X satisfying property 1X ∈ RC(X, X) contains a topological vector space
as its special case. In fact, let X be a topological vector space and let Γ: ⟨X⟩ → 2X be a
nonempty-valued set-valued mapping defined by

ΓA = co(A)

for every A ∈ ⟨X⟩, where co(A) denotes the convex hull of A. Then, it follows that (X;Γ) becomes an
abstract convex space. Now, let us prove that 1X ∈ RC(X, X). Indeed, suppose that G: X → 2X is a
KKM mapping such that G(x) is closed in X for every x ∈ X. Then, we have

ΓA = co({x0, x1, . . . , xn}) ⊆
n⋃

i=0

G(xi)

for every
A = {x0, x1, . . . , xn} ∈ ⟨X⟩.

Define a continuous mapping ξ: ∆n → co({x0, x1, . . . , xn}) by

ξ(t) =
n∑

i=0

tixi

for every
t = (t0, t1, . . . , tn) ∈ ∆n.

Let
C = co({x0, x1, . . . , xn})

and define
Fi = G(xi)

⋂
C

for every i ∈ {0, 1, . . . , n}. It is obvious that each Fi is closed in C. Thus, by the continuity of ξ, we can
see that each ξ−1(Fi) is closed in ∆n. Since

ξ(∆J) ⊆ co({x j : j ∈ J}) ⊆
⋃
i∈J

Fi
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for any nonempty subset J ⊆ {0, 1, . . . , n}, we have

∆J ⊆
⋃
i∈J

ξ−1(Fi).

Hence, by the KKM lemma, we have
n⋂

i=0

ξ−1(Fi) , ∅,

which implies
n⋂

i=0

G(xi) , ∅.

Therefore, we have 1X ∈ RC(X, X).

If Ψi is a single-valued mapping for every i ∈ I, then we have the following two existence theorems
of solutions for (SVQVEP1) and (SVQVEP2) from Theorems 2.1–2.4.

Theorem 2.5. Suppose that I, {(Xi;Γi)}i∈I , (X;Γ), (X × X;Γ × Γ), K, Ai, Bi, Fi, and Yi are as in
Theorem 2.1. For each i ∈ I, let

Ψi : X × X × Xi → Yi

be a single-valued mapping and
Ci : X × X × Xi → 2Yi

be a set-valued mapping such that the following conditions are satisfied:

(i) For each y ∈ X,Ψi is a Γi-S Ci-diagonally quasi-convex mapping of type(1) in the third argument;

(ii) For each ui ∈ Xi, the set {(x, y) ∈ X × X : Ψi(x, y, ui) < Ci(x, y, xi)} is open in X × X;

(iii) The set {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui) < Ci(x, y, xi)} is closed in
X × X;

(iv) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that for each (x, y) ∈ L \ K, there exists (ui, vi) ∈ N0i × N1i

satisfying ui ∈ Ai(x), vi ∈ Fi(x), and

Ψi(x, y, ui) < Ci(x, y, xi),

where
L :=

∏
i∈I

LN0i ×
∏
i∈I

LN1i .

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then (SVQVEP1) has a solution.

Theorem 2.6. Suppose that I, {(Xi;Γi)}i∈I , (X;Γ), (X × X;Γ × Γ), K, Ai, Bi, Fi, and Yi are as in
Theorem 2.1. For each i ∈ I, let

Ψi : X × X × Xi → Yi

be a single-valued mapping and
Ci : X × X × Xi → 2Yi

be a set-valued mapping such that the following conditions are satisfied:
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(i) For each y ∈ X,Ψi is a Γi-S Ci-diagonally quasi-convex mapping of type(2) in the third argument;

(ii) For each ui ∈ Xi, the set {(x, y) ∈ X × X : Ψi(x, y, ui) ∈ Ci(x, y, xi)} is open in X × X;

(iii) The set {(x, y) ∈ X × X : there exists ui ∈ Ai(x) such that Ψi(x, y, ui) ∈ Ci(x, y, xi)} is closed in
X × X;

(iv) For each N0i × N1i ∈ ⟨Xi × Xi⟩, there exist compact Γi-convex subsets LN0i , LN1i of (Xi;Γi)
containing N0i, N1i, respectively, such that for each (x, y) ∈ L \ K, there exists (ui, vi) ∈ N0i × N1i

satisfying ui ∈ Ai(x), vi ∈ Fi(x), and

Ψi(x, y, ui) ∈ Ci(x, y, xi),

where
L :=

∏
i∈I

LN0i ×
∏
i∈I

LN1i .

If (X × X;Γ × Γ) satisfies 1X×X ∈ RC(X × X, X × X), then (SVQVEP2) has a solution.

For each i ∈ I, let
A(xi) = B(xi) = F(xi) ≡ Xi

for all xi ∈ Xi, Yi = R, and let
Ci(x, y, xi) ≡ (0,+∞)

and
Ψi(x, y, ui) = fi(x̂i, ui) − fi(x)

for every (x, y, ui) ∈ X × X × Xi, where fi: X → R is a real-valued function. Then, by Theorem 2.6,
we can derive the following existence theorem of Nash equilibria for noncooperative games in non-
compact abstract convex spaces.

Theorem 2.7. Suppose that I, {(Xi;Γi)}i∈I , and (X;Γ) are as in Theorem 2.1. Let K be a nonempty
compact subset of X. For each i ∈ I, let fi: X → R be a real-valued function such that the following
conditions are satisfied:

(i) fi is a Γi-diagonally quasi-convex function;

(ii) For each ui ∈ Xi, the set {x ∈ X : fi(x̂i, ui) > fi(x)} is open in X;

(iii) The set {x ∈ X : there exists ui ∈ Xi such that fi(x̂i, ui) > fi(x)} is closed in X;

(iv) For each Ni ∈ ⟨Xi⟩, there exists a compact Γi-convex subsets LNi of (Xi;Γi) containing Ni such
that for each x ∈ L \ K, there exists ui ∈ Ni satisfying

fi(x̂i, ui) > fi(x),

where
L :=

∏
i∈I

LNi .

If (X;Γ) satisfies 1X ∈ RC(X, X), then there exists one Nash equilibrium x ∈ X for the
noncooperative game ((Xi;Γi), fi)i∈I , i.e.,

fi(x̂i, ui) ≤ fi(x)
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for every ui ∈ Xi.

Remark 2.4. If {(Xi;Γi)}i∈I is a family of Hausdorff abstract convex spaces such that Xi satisfies the first
countable axiom for every i ∈ I, then (iii) of Theorem 2.7 can be replaced by the following condition:

(iii)′ For each i ∈ I, the graph of the set-valued mapping Pi: X → 2Xi defined by

Pi(x) = {ui ∈ Xi : fi(x̂i, ui) > fi(x)}

for each x ∈ X, is closed and for each compact subset Z ⊆ X, the set Pi(Z) is compact subset of Xi.
Indeed, by the fact that every Xi satisfies the first countable axiom, we can see that

X =
∏
i∈I

Xi

is also a first-countable topological space. Thus, for each i ∈ I, let {xn}n∈N be a net in {x ∈ X : Pi(x) , ∅}
such that xn → x∗ ∈ X. Therefore, for each n ∈ N, we have Pi(xn) , ∅ and there exists uin ∈ Xi such
that uin ∈ Pi(xn). Let

M = {xn}
⋃
{x∗}.

Then, M is a compact subset of X. By (iii)′, the set

Pi(M) =
⋃
x∈M

Pi(x)

is a compact subset of Xi. Since
{uin}n∈N ⊆ Pi(M),

it follows that {uin}n∈N has a convergent subnet with limit u∗i . Without loss of generality, we assume that
uin → u∗i . By (iii)′ again, we have u∗i ∈ Pi(x∗), which implies that x∗ ∈ {x ∈ X : Pi(x) , ∅}. Therefore,
the set {x ∈ X : Pi(x) , ∅} is closed in X, i.e., the set {x ∈ X : there exists ui ∈ Xi such that fi(x̂i, ui) >
fi(x)} is closed in X.

Corollary 2.1. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of compact abstract convex spaces
such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

is an abstract convex space defined as in Lemma 1.1. For each i ∈ I, let fi: X → R be a real-valued
function such that the following conditions are satisfied:

(i) fi is a Γi-diagonally quasi-convex function;

(ii) For each ui ∈ Xi, the set {x ∈ X : fi(x̂i, ui) > fi(x)} is open in X;

(iii) The set {x ∈ X : there exists ui ∈ Xi such that fi(x̂i, ui) > fi(x)} is closed in X.

If (X;Γ) satisfies 1X ∈ RC(X, X), then there exists one Nash equilibrium x ∈ X for the
noncooperative game ((Xi;Γi), fi)i∈I , i.e., fi(x̂i, ui) ≤ fi(x) for every ui ∈ Xi.

Proof. For each i ∈ I and each Ni ∈ ⟨Xi⟩, let

LNi = Xi
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and
K = L =

∏
i∈I

LNi =
∏
i∈I

Xi.

Then, it is clear that (iv) of Theorem 2.7 is satisfied automatically. Therefore, it follows from
Theorem 2.7 that the conclusion of Corollary 2.1 holds. This completes the proof. □

3. Existence of equilibria for multiobjective games

Now, we give the definition of a multi-objective game in its strategy form as follows:

Definition 3.1 Let I = {1, 2, . . . , n} denote the set of players. The family ((Xi;Γi),V i)i∈I is called a
multi-objective game if for each i ∈ I, Xi is the set of strategies of the ith player such that (Xi;Γi) is an
abstract convex space. Let

X =
∏
i∈I

Xi

and V i: X → Rmi be the vector payoff function of the ith player, which is defined, for each

x = (x1, x2, . . . , xn) ∈ X

by
V i(x) := (vi

1(x), vi
2(x), . . . , vi

mi
(x)),

where mi ∈ N and vi
j stands for noncommensurable outcomes for every i ∈ I and every

j ∈ {1, 2, . . . ,mi}.

The following definitions can be found in Patriche [29].

Definition 3.2. For a multi-objective game ((Xi;Γi),V i)i∈I , a strategy portfolio x ∈ X is called a
weighted Nash equilibrium with respect to the weighted vector

Q = (Qi)i∈I

such that
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

if for each i ∈ I, we have
Qi · V i(x) ≤ Qi · V i(x̂i, ui)

for every ui ∈ Xi, where

Rmi
+ := {t = (t1, t2, . . . , tmi) ∈ R

mi : t j ≥ 0,∀ j = 1, . . . ,mi}

has a nonempty interior with the topology induced by the Euclidian metric, · denotes the inner product
in Rki , and

x̂i := (x1, . . . , xi−1, xi+1, . . . , xn).

Remark 3.1. If
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}
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with
mi∑
j=1

Qi j = 1

for every i ∈ I, then the strategy portfolio x ∈ X is said to be a normalized weighted Nash equilibrium
with respect to the weight vector Q.

Definition 3.3. For a multi-objective game ((Xi;Γi),V i)i∈I , a strategy xi ∈ Xi of the ith player is called
a Pareto efficient strategy (respectively, a weak Pareto efficient strategy) with respect to x ∈ X if there
does not exist any ui ∈ Xi such that

V i(x) − V i(x̂i, ui) ∈ R
mi
+ \ {0} (respectively,V i(x) − V i(x̂i, ui) ∈ intRmi

+ ),

where Rmi
+ and x̂i have the same meaning as in Definition 3.2, and

intRmi
+ := {t = (t1, t2, . . . , tmi) ∈ R

mi : t j > 0,∀ j = 1, 2, . . . ,mi}.

Definition 3.4. For a multi-objective game ((Xi;Γi),V i)i∈I , a strategy portfolio x ∈ X is said to be a
Pareto equilibrium (respectively, a weak Pareto equilibrium) if for each i ∈ I, the strategy xi ∈ Xi of the
ith player is a Pareto efficient strategy (respectively, a weak Pareto efficient strategy) with respect to x.

The following lemma can be seen as a particular case of Lemma 2.1 of Wang [30].

Lemma 3.1. For a multi-objective game ((Xi;Γi),V i)i∈I , each normalized weighted Nash equilibrium
with respect to a weighted vector

Q = (Qi)i∈I

with
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

respectively,
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ intRmi

+

and
mi∑
j=1

Qi j = 1

is a weak Pareto equilibrium (respectively, a Pareto equilibrium).

Remark 3.2. The conclusion of Lemma 3.1 still holds for the nonnormative case, i.e., each weighted
Nash equilibrium with respect to a weighted vector

Q = (Qi)i∈I

with
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

respectively,
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ intRmi

+ )

is a weak Pareto equilibrium (respectively, a Pareto equilibrium).
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As an application of Theorem 2.7, we can derive the following existence theorem of weighted Nash
equilibria for multi-objective games in non-compact abstract convex spaces.

Theorem 3.1. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of abstract convex spaces such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

is an abstract convex space defined as in Lemma 1.1. Let K be a nonempty compact subset of X and
((Xi;Γi),V i)i∈I be a multi-objective game. Suppose that there exists a weighted vector

Q = (Qi)i∈I

with
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

such that for each i ∈ I, the function X ∋ x 7→ Qi · V i(x) satisfies the following conditions:

(i) For each Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩ and each x ∈ X with xi ∈ Γi(Ni) there exists j ∈ {1, 2, . . . , n}
such that Qi · V i(x) − Qi · V i(x̂i, ui j) ≤ 0;

(ii) For each ui ∈ Xi, the set {x ∈ X : Qi · V i(x̂i, ui) < Qi · V i(x)} is open in X;

(iii) {x ∈ X : there exists ui ∈ Xi such that Qi · V i(x̂i, ui) < Qi · V i(x)} is closed in X;

(iv) For each Ni ∈ ⟨Xi⟩, there exists a compact Γi-convex subsets LNi of (Xi;Γi) containing Ni such
that for each x ∈ L \ K, there exists ui ∈ Ni satisfying

Qi · V i(x̂i, ui) < Qi · V i(x),

where
L :=

∏
i∈I

LNi .

If (X;Γ) satisfies 1X ∈ RC(X, X), then the multi-objective game ((Xi;Γi),V i)i∈I possesses at least one
weighted Nash equilibrium x ∈ X with respective to Q.

Proof. Let us construct a noncooperative game ((Xi;Γi), fi)i∈I , where for each i ∈ I, the payoff function
fi: X → R is defined by

fi(x) = −Qi · V i(x)

for every x ∈ X. By (i), it is easy to see that fi is a Γi-diagonally quasi-convex function for every i ∈ I.
It follows from (ii) that the set {x ∈ X : fi(x̂i, ui) > fi(x)} is open in X for every i ∈ I and every ui ∈ Xi.
By (iii), for each i ∈ I, the set {x ∈ X : there exists ui ∈ Xi such that fi(x̂i, ui) > fi(x)} is closed in X.
From (iv), it follows that for each Ni ∈ ⟨Xi⟩, there exists a compact Γi-convex subsets LNi of (Xi;Γi)
containing Ni such that for each x ∈ L \ K, there exists ui ∈ Ni satisfying fi(x̂i, ui) > fi(x), where

L :=
∏
i∈I

LNi .

Therefore, by Theorem 2.7, there exists one Nash equilibrium x ∈ X for the noncooperative game
((Xi;Γi), fi)i∈I , i.e.,

fi(x̂i, ui) ≤ fi(x)
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for every ui ∈ Xi, which implies
Qi · V i(x) ≤ Qi · V i(x̂i, ui)

for every ui ∈ Xi. Thus, the multi-objective game ((Xi;Γi),V i)i∈I has at least one weighted Nash
equilibrium x ∈ X with respective to Q, and we complete the proof. □

Remark 3.3. (i) of Theorem 3.1 is weaker than (i) of Lu et al. [31, Corollary 4.1]. In fact, (i) of Lu
et al. [31, Corollary 4.1] implies (i) of Theorem 3.1. Now, to verify this fact, we argue by contradiction.
Assume that (i) of Theorem 3.1 does not hold. Then, there exist i ∈ I, x̂ ∈ X,

Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩

with x̂i ∈ Γi(Ni) such that

Qi · V i( x̂̂i, ui j) < Qi · V i(x̂), ∀ j ∈ {1, 2, . . . , n}.

Thus, we have
Ni ⊆ {ui ∈ Xi : Qi · V i( x̂̂i, ui) < Qi · V i(x̂)}.

By (i) of Lu et al. [31, Corollary 4.1], the set {ui ∈ Xi : Qi ·V i( x̂̂i, ui) < Qi ·V i(x̂)} is Γi-convex and thus,

x̂i ∈ Γi(Ni) ⊆ {ui ∈ Xi : Qi · V i( x̂̂i, ui) < Qi · V i(x̂)}.

Therefore, we have
Qi · V i( x̂̂i, x̂i) = Qi · V i(x̂) < Qi · V i(x̂),

which is a contraction. Hence, (i) of Theorem 3.1 holds. Moreover, the proof of Theorem 3.1 differs
from that of Corollary 4.1 of Lu et al. [31]. The proof of Theorem 3.1 is based on the existence result
of Nash equilibria for noncooperative games, while the conclusion of Lu et al. [31, Corollary 4.1]
essentially derives from a fixed point theorem.

Corollary 3.1. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of compact abstract convex spaces
such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

is an abstract convex space defined as in Lemma 1.1. Let ((Xi;Γi),V i)i∈I be a multi-objective game.
Suppose that there exists a weighted vector

Q = (Qi)i∈I

with
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

such that for each i ∈ I, the function X ∋ x 7→ Qi · V i(x) satisfies the following conditions:

(i) For each Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩ and each x ∈ X with xi ∈ Γi(Ni) there exists j ∈ {1, 2, . . . , n}
such that Qi · V i(x) − Qi · V i(x̂i, ui j) ≤ 0;

(ii) For each ui ∈ Xi, the set {x ∈ X : Qi · V i(x̂i, ui) < Qi · V i(x)} is open in X;

(iii) {x ∈ X : there exists ui ∈ Xi such that Qi · V i(x̂i, ui) < Qi · V i(x)} is closed in X.
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If (X;Γ) satisfies 1X ∈ RC(X, X), then the multi-objective game ((Xi;Γi),V i)i∈I possesses at least one
weighted Nash equilibrium x ∈ X with respective to Q.

Proof. For each i ∈ I and each Ni ∈ ⟨Xi⟩, let

LNi = Xi

and
K = L =

∏
i∈I

LNi =
∏
i∈I

Xi.

Then, it is clear that (iv) of Theorem 3.1 is satisfied automatically. Therefore, by Theorem 3.1, the
multi-objective game ((Xi;Γi),V i)i∈I has at least one weighted Nash equilibrium x ∈ X with respective
to Q. This completes the proof. □

Now, by using Lemma 3.1 and Theorem 3.1, we have the following existence theorem of Pareto
equilibria for multi-objective games in non-compact abstract convex spaces.

Theorem 3.2. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of abstract convex spaces such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

is an abstract convex space defined as in Lemma 1.1. Let K be a nonempty compact subset of X and
((Xi;Γi),V i)i∈I be a multi-objective game. Suppose that there exists a weighted vector

Q = (Qi)i∈I

with
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

such that for each i ∈ I, the function
X ∋ x 7→ Qi · V i(x)

satisfies the following conditions:

(i) For each Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩ and each x ∈ X with xi ∈ Γi(Ni) there exists j ∈ {1, 2, . . . , n}
such that Qi · V i(x) − Qi · V i(x̂i, ui j) ≤ 0;

(ii) For each ui ∈ Xi, the set {x ∈ X : Qi · V i(x̂i, ui) < Qi · V i(x)} is open in X;

(iii) {x ∈ X : there exists ui ∈ Xi such that Qi · V i(x̂i, ui) < Qi · V i(x)} is closed in X;

(iv) For each Ni ∈ ⟨Xi⟩, there exists a compact Γi-convex subsets LNi of (Xi;Γi) containing Ni such
that for each x ∈ L \ K, there exists ui ∈ Ni satisfying Qi · V i(x̂i, ui) < Qi · V i(x), where L :=

∏
i∈I LNi .

If (X;Γ) satisfies 1X ∈ RC(X, X), then the multi-objective game ((Xi;Γi),V i)i∈I possesses at least one
weak Pareto equilibrium x ∈ X. Furthermore, if

Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ intRmi
+ \ {0}

for every i ∈ I, then the multi-objective game ((Xi;Γi),V i)i∈I has at least one Pareto equilibrium x ∈ X.
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Proof. By Theorem 3.1, the multi-objective game ((Xi;Γi),V i)i∈I has at least one weighted Nash
equilibrium x ∈ X with respective to Q. Now, by using Lemma 3.1 and Remark 3.2, we can see that
x ∈ X is also a weak Pareto equilibrium of the multi-objective game ((Xi;Γi),V i)i∈I , and a Pareto
equilibrium if

Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ intRmi
+ \ {0}

for every i ∈ I. This completes the proof. □

When {(Xi;Γi)}i∈I is a family of compact abstract convex spaces, by Theorem 3.2, we have the
following corollary:

Corollary 3.2. Let I be a finite index set and {(Xi;Γi)}i∈I be a family of compact abstract convex spaces
such that

(X;Γ) := (
∏
i∈I

Xi;Γ)

is an abstract convex space defined as in Lemma 1.1. Let ((Xi;Γi),V i)i∈I be a multi-objective game.
Suppose that there exists a weighted vector

Q = (Qi)i∈I

with
Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ R

mi
+ \ {0}

such that for each i ∈ I, the function X ∋ x 7→ Qi · V i(x) satisfies the following conditions:

(i) For each Ni = {ui1, ui2, . . . , uin} ∈ ⟨Xi⟩ and each x ∈ X with xi ∈ Γi(Ni) there exists j ∈ {1, 2, . . . , n}
such that Qi · V i(x) − Qi · V i(x̂i, ui j) ≤ 0;

(ii) For each ui ∈ Xi, the set {x ∈ X : Qi · V i(x̂i, ui) < Qi · V i(x)} is open in X;

(iii) {x ∈ X : there exists ui ∈ Xi such that Qi · V i(x̂i, ui) < Qi · V i(x)} is closed in X.

If (X;Γ) satisfies 1X ∈ RC(X, X), then the multi-objective game ((Xi;Γi),V i)i∈I possesses at least one
weak Pareto equilibrium x ∈ X. Furthermore, if

Qi = (Qi,1,Qi,2, . . . ,Qi,mi) ∈ intRmi
+ \ {0}

for every i ∈ I, then the multi-objective game ((Xi;Γi),V i)i∈I has at least one Pareto equilibrium x ∈ X.

Now, we give an example to illustrate an application of Corollary 3.2 to the problem of water use
conflicts.

Example 3.1. Suppose that there is a common water body with two players (water users) that can
collect water from the common water body freely to be used for certain needs. Let us assume that
player 1 is located upstream of the common water body and player 2 is located downstream. Let

X1 = [a, b]

and
X2 = [c, d]
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be the strategy spaces of player 1 and player 2, respectively, where a, b, c, d > 0. We call xi ∈ Xi the
amount of water withdrawn by player i, i = 1, 2. Let X1 and X2 be endowed with Euclidean topology.
It is obvious that each Xi becomes an abstract convex space when

Γi = co,

where co denotes the convex hull operator on nonempty finite subsets of the real line R. By Lemma 1.1,
it follows that

X = X1 × X2

is also an abstract convex space. Further, we can show that 1X ∈ RC(X, X); for details, see the proof of
Lu et al. [31, Theorem 6.3].

Suppose that the benefit generated by the unit amount of water withdrawn by player i is ωi(x1, x2)
and the total cost for player i is Ci(xi), where i = 1, 2. From a rational perspective, it is reasonable to
assume that the objective of player 1, located upstream of the common water body, is to maximize its
profit function x1ω1(x1, x2) −C1(x1) or, equivalently, to minimize the opposite C1(x1) − x1ω1(x1, x2) of
its profit function. In order to be consistent with the multi-objective game model in this section, we
take the second case. The same holds for player 2. In reality, however, downstream player 2 in the
common water body often requires higher water withdrawals for reasons of equity. Therefore, we can
consider giving player 2 two objectives: the first is to minimize the opposite C2(x2) − x2ω2(x1, x2) of
its profit function, and the second is to minimize the profit function x1ω1(x1, x2) − C1(x1) of player 1
who is a competitor of player 2. So far, we can see that the game model of water use conflicts can be
summarized as a multi-objective game model. Thus, it is necessary to consider the existence of Pareto
equilibrium of this multi-objective game model. For player 2, let (λ1, λ2) denote the weighted vector
whose components correspond to the components of its vector objective function, where

λ1 + λ2 = 1

and λ1, λ2 > 0. The index λ2/λ1 represents the size of the fairness requirements of player 2. With the
increase of λ2/λ1, the fairness requirements of player 2 are getting higher. Now, we give the following
three assumptions:
Assumption A. For each i ∈ {1, 2}, the functions ωi: X1 × X2 → R and Ci: Xi → R are continuously
differentiable.
Assumption B. For each

x = (x1, x2) ∈ X1 × X2,

the sets
{u1 ∈ X1 : C1(u1) −C1(x1) < u1ω1(u1, x2) − x1ω1(x)}

and

{u2 ∈ X2 : λ1(C2(u2) −C2(x2)) < λ1(u2ω2(x1, u2) − x2ω2(x)) + λ2x1(ω1(x) − ω1(x1, u2))}

are Γ1-convex and Γ2-convex, respectively.
Assumption C. The sets {x = (x1, x2) ∈ X : there exists u2 ∈ X2 such that λ1(C2(u2) − C2(x2)) <
λ1(u2ω2(x1, u2) − x2ω2(x)) + λ2x1(ω1(x) − ω1(x1, u2))} and

{x = (x1, x2) ∈ X : there exists u1 ∈ X1 such that C1(u1) −C1(x1) < u1ω1(u1, x2) − x1ω1(x)}
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are closed in X.
By the above assumptions, it is easy to check that all the conditions of Corollary 3.2 are fulfilled.

Therefore, according to Corollary 3.2, the above multi-objective game has a Pareto equilibrium. To
further analyze the underlying mechanisms of water use conflicts, we simplify and concretize the
relevant functions in the above multi-objective game model as follows: for each

(x1, x2) ∈ X1 × X2,

let
ω1(x1, x2) = ω2(x1, x2) = r − (x1 + x2), C1(x1) = g1 + h1x1

and
C2(x2) = g2 + h2x2,

where r, g1, g2, h1, h2 > 0. If we consider only the noncooperative game model with single-objective
payoff functions, then it is easy to calculate the Nash equilibrium as

x̂1 =
r + h2 − 2h1

2

and
x̂2 =

r − 3h2 + 2h1

4
.

The corresponding Pareto equilibrium in the case of multi-objective game is computed as

x1 =
λ1(r + h2 − 2h1)

2(λ1 + λ2)

and
x2 =

(λ1 + 3λ2)r − (3λ1 + λ2)h2 + 2(λ1 − λ2)h1

4(λ1 + λ2)
.

When λ2 = 0, the Pareto equilibrium of the multi-objective game model clearly coincides with the
Nash equilibrium of the noncooperative game model with single-objective payoff functions. When

λ1 + λ2 = 1

and λ1, λ2 > 0, i.e., taking into account the equity requirements of the downstream player 2, we get the
following interesting conclusions as follows:
• The equilibrium extraction of upstream player 1 under the multi-objective game scenario is clearly

smaller than its equilibrium extraction under the noncooperative game model with single-objective
payoff functions, i.e., x1 < x̂1, and x1 will decrease as the equity requirements of downstream player 2
increase.
• The equilibrium extraction of downstream player 2 under the multi-objective game scenario is

greater than its equilibrium extraction under the noncooperative game model with single-objective
payoff functions, i.e., x2 > x̂2, and x2 will increase as the equity requirements of player 2 increase.
• A simple calculation can lead to the conclusion that the sum of water extractions in the Pareto

equilibrium of the multi-objective game model is equal to the sum of water extractions in the Nash
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equilibrium of the corresponding noncooperative game model with single-objective payoff functions,
i.e.,

x1 + x2 = x̂1 + x̂2.

From this fact, it is evident that when we consider the multi-objective game model characterized by
fairness requirements, its equilibrium water extraction is simply a redistribution of the equilibrium
water extraction of the corresponding noncooperative game model with single-objective payoff
functions while ensuring that the total equilibrium water extraction of the noncooperative game model
with single-objective payoff functions remains unchanged.

4. Conclusions

In this paper, we first obtain several existence theorems of solutions for systems of generalized
vector quasi-variational equilibrium problems and systems of vector quasi-variational equilibrium
problems in the framework of non-compact abstract convex spaces, by using an existence result of
equilibria for generalized abstract economy. Simultaneously, we establish an existence theorem of
Nash equilibria for noncooperative games with single-objective payoff functions. Next, we obtain
existence theorems of weighted Nash equilibria and Pareto Nash equilibria for multi-objective games
in non-compact abstract convex spaces by using the obtained existence theorem of Nash equilibria for
noncooperative games. Finally, an example on the problem of water use conflicts is used to verify the
existence result of Pareto Nash equilibria for multi-objective games.

It is undeniable that there are still some limitations in the results of this paper, which are mainly
reflected in two aspects: First, the index set in systems of generalized vector quasi-variational
equilibrium problems is a finite index set; second, the four types of systems of generalized vector
quasi-variational equilibrium problems are not unified. Therefore, at least three questions can be
explored in further research. The first one is to unify the four types of systems of generalized vector
quasi-variational equilibrium problems under the framework of arbitrary index set and non-compact
abstract convex spaces, and to study the existence of solutions for the unified system of equilibrium
problems. On this basis, we can carry out further the study of the subsequent two problems, i.e., the
second one is to study the generic stability of solution sets for the unified system of equilibrium
problems in non-compact abstract convex spaces. Another interesting issue is to apply the existence
results of solutions for the unified system of equilibrium problems to deal with the existence of Pareto
Nash equilibria for robust multi-objective games with infinite players.
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