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Abstract: The current systematic logical rules in the Discrete Hopfield Neural Network encounter 

significant challenges, including repetitive final neuron states that lead to the issue of overfitting. 

Furthermore, the systematic logical rules neglect the impact on the appearance of negative literals 

within the logical structure, and most recent efforts have primarily focused on improving the learning 

capabilities of the network, which could potentially limit its overall efficiency. To tackle the limitation, 

we introduced a Negative Based Higher Order Systematic Logic to the network, imposing restriction 

on the appearance of negative literals within the clauses. Additionally, a Hybrid Black Hole Algorithm 

was proposed in the retrieval phase to optimize the final neuron states. This ensured that the optimized 

states achieved maximum diversity and reach global minima solutions with the lowest similarity index, 

thereby enhancing the overall performance of the network. The results illustrated that the proposed 

model can achieve up to 10,000 diversified and global solutions with an average similarity index of 

0.09. The findings indicated that the optimized final neuron states are in optimal configurations. Based 

on the findings, the development of the new systematic SAT and the implementation of the Hybrid 

Black Hole algorithm to optimize the retrieval capabilities of DHNN to achieve multi-objective 
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functions result in updated final neuron states with high diversity, high attainment of global minima 

solutions, and produces states with a low similarity index. Consequently, this proposed model could 

be extended for logic mining applications to tackle classification tasks. The optimized final neuron 

states will enhance the retrieval of high-quality induced logic, which is effective for classification and 

knowledge extraction. 

Keywords: negative based higher order satisfiability; discrete Hopfield neural network; multi-

objectives; hybrid black hole algorithm 

Mathematics Subject Classification: 68N17, 68R07, 68T27 

 

1. Introduction 

In the domain of computational intelligence, researchers have utilized the remarkable capabilities 

of Artificial Neural Networks ANNs to develop intelligent models capable of learning, reasoning and 

decision-making. The structure of ANNs is subject to variation, influencing the network's capabilities 

and efficiency in processing and learning from data [1]. As a flexible mathematical model, ANNs 

sparked a revolution in diverse fields. This transformative impact has led to significant progress in 

specific areas including image processing [2], speech recognition [3], time series analysis [4], traffic 

classification [5] and optimization of wireless networks [6]. Building upon the flexible capabilities of 

ANNs, one variant of ANNs is Discrete Hopfield Neural Network (DHNN) [7]. This network 

employed local field equation to update the neuron states, offering a potential solution to optimization 

problems. DHNN have gained considerable attention due to its straightforward structure, resembling 

of single-layer feedback neural networks [8]. These single-layer networks typically consist of input 

and output layers without hidden layers. The synaptic weights represent the connections between the 

neurons and their ability to learn and store information. Specifically, the simple structure of DHNN 

has proven effective in tackling various optimization challenges [9,10]. While acknowledging the 

capabilities and efficiency of DHNN in solving optimization problems, there is a very limited strategy 

to govern the structure of DHNN, primarily due to the predominant focus on achieving optimal neuron 

states. This often leaves DHNN functioning as a black box model. The term "black box model" implies 

that the inner workings of the network are not well-understood. This lack of interpretability can lead 

researchers into uncertainty, potentially optimizing the wrong aspects or facing challenges in 

determining what should be optimized. By refining these models, the capacity of the network to 

effectively store and retrieve patterns can be enhanced.  

Abdullah [11] addressed this gap by further advancing the DHNN through the incorporation of 

the concept of satisfiability (SAT) ensuring proper neuron connectivity without compromising network 

behavior. This approach utilized the structure of Horn Satisfiability (HornSAT), where each clause has 

at most one positive literal to represent the neurons in DHNN. This milestone not only established a 

novel approach to neuron representation but also laid the foundation for the subsequent development 

of the Wan Abdullah (WA) method. This WA method involves comparing the cost function and 

Lyapunov energy function to find the synaptic weight values. This innovation sparked a new wave of 

research perspectives, which led to the recognition of SAT as systematic SAT and non-systematic SAT. 

Kasihmuddin et al. [12] introduced the incorporation of 2 Satisfiability (2SAT) into DHNN. This 

implementation resulted in a notable increase in the states that achieve global minima energy. 
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Moreover, Sathasivam et al. [13] introduced the first non-systematic SAT namely, Random 2 

Satisfiability (RAN2SAT), which incorporates both first and second-order logics. The flexibility to 

represent the number of literals in each clause results in enhanced logical variation during the learning 

phase. However, in minimizing the cost function, the task of finding a satisfied interpretation becomes 

increasingly challenging as the number of neurons increases. This is due to the presence of more first 

order logic, which has a low probability of getting satisfied interpretation thereby contributing to more 

logical inconsistency. Expanding on this idea, Karim et al. [14] extended RAN2SAT to include third-

order logic, known as Random 3 Satisfiability (RAN3SAT). The proposed RAN3SAT comprises three 

different logical combinations, ( )1,3, 2,3, and 1,2,3k k k= = = . The simulation results indicated that 

the combination of second and third-order logics offers the most promising results such that this 

combination is more consistent in obtaining lower learning and testing errors. This finding led to the 

introduction of another new non-systematic logical rule, namely Major 2 Satisfiability (MAJ2SAT) in 

DHNN [15]. While the ( )2,3k =  ratio remains consistent in RAN3SAT, the structure of MAJ2SAT 

diverged by incorporating a bias 2SAT clauses compared to 3SAT clauses. Simulated results 

demonstrated the successful incorporation of MAJ2SAT into DHNN, as the model exhibited the 

capability to generate global minima solutions and retrieve the optimal final neuron states. Conversely, 

Zamri et al. [16] proposed another non-systematic logic that represents a distinct perspective. In this 

work, Weighted Random k Satisfiability (r2SAT) was proposed with inclusion of a weighted ratio 

involving negative literals. r2SAT managed to obtain a good performance as compared to existing SAT 

which indicates that having dynamic distribution of negative literals will facilitate producing global 

minima solutions with diverse final neuron states. 

However, the role of negative literals in systematic SAT remain unclear as current works based 

on systematic SAT failed to emphasize the influence of negative literals within the clauses. For 

example, Mansor et al. [17] capitalizes 3 Satisfiability (3SAT) structure to represent the neurons in 

DHNN. Despite the great performance of higher-order systematic logic, this model neglects the 

negative links in the neuron connections. The formulation of this logical rule only considers the random 

distribution of positive and negative literals within e clauses. No attention has been given to investigate 

the impact of negative synaptic weight distribution on the retrieval of final neuron states with global 

energy. Negative literals are often neglected due to their association with faults or errors. It is crucial 

to mention that variations in synaptic weights in terms of magnitude are essential for accurately 

representing real-life classification problems. Therefore, introducing a systematic SAT that promotes 

the appearance of negative literals results in diverse final neuron states produced, making DHNN a 

more effective computational system for any optimization problem. 

In enhancing the overall performance of DHNN, various initiatives have been proposed by recent 

researchers to optimize the learning phase of DHNN [12,15,17–20]. However, there has been limited 

attention among researchers towards optimizing the retrieval phase. The most recent work that focused 

on enhancing the retrieval capabilities of DHNN was proposed by Kasihmuddin et al. [21]. In this 

work, an Estimation of Distribution Algorithm (EDA) was employed to optimize the retrieval phase. 

Specifically, a univariate marginal Gaussian distribution probability model was used to introduce 

minor perturbations to the neurons, which in turns will reduce the possible local minima solutions. 

However, the diversification of the optimized final neuron states in terms of negativity remains unclear 

and the proposed model failed to guarantee all the optimized final neuron states attained global minima 

energy. Additionally, the dissimilarity of the optimized final neuron states, particularly focusing on the 

negative states, also remains uncertain. 

These gaps can be addressed by introducing a new metaheuristic approach to optimize the 
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retrieved final neuron states and tackle the multi-objective functions. In response to this, one simple 

algorithm that has gained attention from many researchers is known as the Black Hole algorithm 

(BHA). BHA is a natural phenomenon-based algorithm that draws inspiration from the dynamics of 

black holes in space. It efficiently solves complex optimization problems by simulating how a black 

hole attracts nearby stars to find optimal solutions. As introduced by Hatamlou [22], BHA has been 

successfully applied to data clustering challenges using six different benchmark datasets with varying 

levels of complexity. When compared to other optimization algorithms, BHA outperformed them by 

generating high-quality solutions with low standard deviation. This success paves the way for 

implementing BHA into applications such as machine learning [23], image processing, aircraft systems 

[24] and network applications [25]. In another development, Pashaei & Aydin [26] introduced the 

Binary Black Hole Algorithm (BBHA) as a streamlined solution for feature selection problems in 

biological datasets. BBHA addresses the complexities associated with conventional methods by 

minimizing parameter requirements, offering remarkable computational speed and straightforward 

implementation. BBHA was used as part of a method for feature selection. The research discovered 

that the utilization of the hyperbolic tangent function enabled BBHA to effectively overcome 

challenges associated with feature selection in text, image and biomedical data. This approach 

outperformed other algorithms considered in the study. 

Despite BHA showing promise in various contexts, the incorporation of BBHA into DHNN for 

optimization problems remains uncertain. This gap presents an interesting opportunity for further 

investigation, focusing on examining the effectiveness of incorporating BBHA to optimize the retrieval 

phase of DHNN. It is worth noting that in terms of solving logic satisfiability in DHNN, this work 

represents the first attempt to optimize the retrieval phase of DHNN in achieving multi-objective 

functions, which consequently improves the quality of retrieved final neuron states. Thus, this paper 

presents a new logical rule referred to as Negative Based Higher Order Systematic logic. This logical 

rule emphasizes the restriction in the appearance of negative literals within the clauses of 3SAT. By 

incorporating this new logical rule, we can effectively model the neuron in DHNN, leading to enhanced 

performance of higher order systematic logic. An effective model will result in a higher satisfied 

interpretation and ultimately optimize the learning phase. Consequently, an optimal synaptic weight 

will contribute to an improved retrieval phase. By implementing the Hybrid Binary Black Hole 

Algorithm during the retrieval phase of DHNN, this study aims to enhance the diversification of the 

states in terms of negativity while attaining global minima solutions and minimizing the similarity 

index. Therefore, the contribution of this paper is as follows: 

1. To formulate a new higher order systematic logical rule namely Negative Based Higher Order 

Systematic Logic as a symbolic neuron representation in Discrete Hopfield Neural Network. 

By incorporating the proposed logical rule, the neuron in Discrete Hopfield Neural Network is 

effectively modelled leading to improved performance of higher order systematic logic.  

2. To propose Hybrid Binary Black Hole Algorithm in the retrieval phase of Discrete Hopfield 

Neural Network by implementing Election Algorithm as a learning algorithm. In this context, 

the proposed metaheuristic algorithm will be utilized to optimize the final neuron states, aiming 

to enhance the diversification of the states in terms of negativity and attain global minima 

solutions while having lowest similarity index. Thus, implementation of this proposed 

algorithm will guarantee the optimized final neuron states will be beneficial in the perspective 

of logic mining.  

3. To evaluate the performance of Negative Based Higher Order Systematic Logic in Discrete 
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Hopfield Neural Networks and analyze the effectiveness of Hybrid Binary Black Hole 

Algorithm in optimizing the final neuron states obtained by the network. The performance 

analysis will be divided into two parts. First, the performance of the proposed logic with 

different logical rules will be evaluated using various metrics such as learning error, testing 

error and similarity analysis. Second, we examine how well Hybrid Black Hole Algorithm 

performs in optimizing the retrieval capabilities of Discrete Hopfield Neural Network. 

To effectively fulfil all the objectives, we begin by discussing its motivation in Section 2. In Section 

3, we describe the proposed logical representation and discuss the implementation of the logical 

structure for DHNN in Section 4. Then, we explain the proposed multi-objective functions in the 

retrieval phase of DHNN in Section 5. In Section 6, we explain the proposed Hybrid Black Hole 

Algorithm in achieving the multi-objective functions. Next, the experimental framework will be 

explained in Section 7, and we focus on the findings and analysis in Section 8. Finally, the conclusions 

drawn from the study and suggestions for future research exploration are provided in Section 9. 

2. Motivation 

2.1. Ineffective structure of logical representation 

Logical rule is important to guarantee that the knowledge can be represented effectively without 

losing any information [27]. Note that each structural component on logical rule must be represented 

correctly before being encoded as symbolic rules into any computational systems. However, much 

uncertainty exists about the generalizability characteristics of logical rule formulation to be formed in 

a specific manner or condition. In the context of systematic Satisfiability (SAT) in the DHNN models, 

existing works such as 2SAT by Kasihmuddin et al. [12] and 3SAT by Mansor et al. [17] disregarded 

the distribution of negative literals throughout respective SAT logical rules. This implied that the 

distribution of negative literals is set randomly. When the SAT model operates with randomized 

positive and negative activated neuron connections, the interpretability quality of DHNN is questioned. 

This is because, with no demand and unclearness on the distribution of either negative or positive 

literals, the SAT model provided unclear information on what logical relations are significant to be 

directed towards optimal production of the final neuron states. Consequently, the practicality of 

embedding SAT as logical rules into DHNN declines which depicts the importance for the SAT to have 

some level of negation control to ensure the direction of the retrieval phase can be strengthened. 

Unfortunately, little attention was given in the development of formulating logic with specific conditions 

before being encoded as an actual symbolic language. Therefore, we introduced Negative Based Higher 

Order Systematic logic or NR3SAT as a logical rule to control the appearance of negative literals within 

the clauses. Note that this is the first approach on introducing higher-order systematic logical rule that 

emphasize the restriction on the appearance of negative literals in the formulation of SAT. 

2.2. Limited diversification of states concerning negativity 

The final neuron states retrieved during the retrieval phase of DHNN are significant as the states 

represent the network's pattern and act as an indicator of successful pattern retrieval. Evaluating the 

quality of the retrieved final neuron states often involves assessing the diversity of the solutions. 

Previous studies in the literature typically assessed solution diversification through similarity index 
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analysis. In this context, a low similarity index indicates high dissimilarity between the retrieved and 

benchmark states, contributing to diversified solutions. For instance, Karim et al. [14], employed 

measures such as the Jaccard index, Kulczynski Measure and Ochiai coefficient to evaluate the quality 

of the retrieved solutions. Additionally, Roslan et al. [28] categorizes a solution as diverse from the 

benchmark if it surpasses the specified diversity tolerance value 0.1dtol = . Another study by Alway 

et al. [29] defined diversified solutions in terms of dissimilarity compared to benchmark states, 

categorizing retrieved final neuron states as diversified if there is at least a 10% dissimilarity to the 

benchmark states. However, existing works have predominantly overlooked a crucial aspect which is 

diversification concerning solution string. While each solution string may differ from the benchmark 

states, the diversification of the solution string in terms of negativity remains uncertain. This oversight 

can lead to high neuron overfitting due to the low impact of diversity. Therefore, this paper proposes 

the incorporation of the Hybrid Black Hole Algorithm to optimize the retrieved final neuron states, 

ensuring that the optimized states achieve the desired proportion of negative states in each solution 

string while maintaining achieve maximum global solutions. 

2.3. Inefficient discrete Hopfield neural network 

According to Gharehchopogh et al. [30], optimization refers to the process of determining the 

most favorable values for decision variables to achieve either the minimum or maximum value of a 

given objective function. The primary aim of optimization techniques is to thoroughly explore and 

analyze the search space, ultimately finding an optimal solution for a specific problem [31]. In the 

context of logic satisfiability within the DHNN framework, current research predominantly directs its 

efforts toward improving the learning phase of the network. Numerous researchers employ 

metaheuristic algorithms to bolster the DHNN framework, resulting in optimal synaptic weight being 

retrieved during the learning phase [18,20,32,33]. If the proposed learning algorithm fails to attain the 

satisfied interpretation, synaptic weights will be generated randomly. However, despite the 

achievement of optimal synaptic weights leading to the retrieval of global solutions, uncertainties 

persist regarding the quality of the retrieved final neuron states, particularly within the solution strings. 

This can be supported by the work on systematic SAT, which encounters an overfitting issue, even 

though the solutions obtained are global [34]. In another development, Kasihmuddin et al. [21] utilized 

an Estimation of Distribution Algorithm (EDA) to optimize the retrieval phase of DHNN but 

encountered suboptimal results in the learning phase due to relying on Exhaustive Search (ES) as a 

learning algorithm. Previous studies have focused on improving either the learning or retrieval phases 

of DHNN individually, but little attention has been given to enhancing both simultaneously. This 

provides motivation to enhance the efficiency of the DHNN framework by optimizing both learning 

and retrieval phase. Thus, Election Algorithm inspired by Sathasivam et al. [34] will be employed 

during the learning phase to enhance the learning capabilities of DHNN in minimizing the cost function. 

Moreover, Hybrid Black Hole Algorithm will be proposed to optimize the retrieval phase of DHNN in 

achieving the multi-objectives functions. The aim of introducing these objectives is to ensure the 

optimized final neurons state are in optimal configurations. The optimization will focus on generating 

optimal final neuron states by considering the diversification of the solutions string, the attainment of 

global solutions and the lowest similarity index.  
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3. Negative based higher order systematic satisfiability 

Negative Based Higher Order Systematic Satisfiability referred to as NR3SAT is a logical 

representation that consists of higher order logic 3SAT with a restriction on the appearance of negative 

literals within the clauses. The main features of the proposed NR3SAT are presented as follows: 

(a) Set of m  variables represent as 1 2 3, , , , mq q q q  , which holds bipolar values of  1, 1iq  − . 

(b) Set of literals,  ,i i iq q q   such that iq  and iq  represents positive and negative literals, 

respectively. 

(c) Set of n  definite third order clauses represent as 
* * * *
1 2 3, ,Q , , nQ Q Q  such that each clause, 

*
iQ  consists of at least one negative literals in a clause and n Z + . 

(d) Each clause of 
*
iQ is restricted to only three literals such that all clauses are connected to logical 

AND ( )  , and literals in each clause are connected to logical OR ( ) . 

Using the information gathered in (a)–(d), the general formulation of NR3SAT is introduced as 

follows: 

*
3 1 ,n

NR SAT i iQ==           (1) 

where the possible combination of 3NR SAT  is defined as in Eq (2) such that:  

 * 2 1 , 3.k
iQ k − =         (2) 

These combinations of clauses do not consider all positive literals in a clause such that 

( )*
i i j kQ q q q   . By considering both Eq (1) and Eq (2), the possible structure of 3NR SAT  for the 

minimum number of neurons can be represented as follows: 

( ) ( ) ( )3 1 2 3 4 5 6 7 8 9 .NR SAT q q q q q q q q q=            (3) 

4. Negative based higher order systematic satisfiability in discrete Hopfield neural network 

Incorporating NR3SAT into the learning phase of DHNN, often denoted as 3NR SAT serves as 

the central objective, aiming to minimize the cost function of the network corresponding to the logic. 

This minimization of the cost function can be obtained by reducing the logical inconsistency of 

3NR SAT . Therefore, the cost function, 
3NR SAT

E of 3NR SAT  can be deduced as shown in Eq (4). 

3

3

11

.
NR SAT

n

ij
ji

E Z
==

=                                           (4) 

Referring to Eq (4), n   is the number of clause in 3NR SAT   and ijZ   denoted as the 

inconsistency of 3NR SAT . In this context, the inconsistency of 3NR SAT  can be derived by taking 

the negation of 3NR SAT  and then expand it using Eq (5) such that iq  is the negation of the literal 

in 3NR SAT . It is also crucial to emphasize that by taking the negation of 3NR SAT , the logical AND 

operation will signify the multiplication of literals within the clauses, while the logical OR operation 
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signifies the addition of clauses to other clauses. 

( )

( )

1
1 , if

2
.

1
1 , otherwise

2

i

i

q i

ij

q

S q

Z

S


− 

= 
 +


                                  (5) 

Note that, in reducing the logical inconsistency, the value of 
3NR SAT

E   reflects the count of 

unsatisfied clauses. If the number of unsatisfied clauses increases, the value of 
3NR SAT

E  will also 

increases. Therefore, the minimization of the cost function only obtained when 
3

0
NR SAT

E =  

indicates that all clauses in 3NR SAT   are satisfied. In this case, Exhaustive Search (ES) will be 

implemented to find a satisfied interpretation of 3NR SAT . ES is often referred to as the trial-and-error 

approach characterized by its comprehensive exploration of all possible combinations of subsets within 

a given set. The main motivation behind utilizing ES as a learning algorithm is it is easy to be 

implemented. Additionally, most researchers in the literature including recent works by [35–37] 

employed ES to assess the capabilities and the stability of newly proposed symbolic rule in DHNN. 

Thus, this makes ES a valuable and commonly used approach for evaluating and benchmarking the 

performance of novel symbolic rules in DHNN. Using the concept of generate and validate, this 

approach enumerates all potential solutions within the search space until it identifies the optimal 

solution. Therefore, ES will be employed to determine the maximum number of satisfied clauses as 

described in Eq (6) such that *

i
Q   referred to the clause of 3NR SAT   and NC is a total clause. A 

satisfied interpretation of *

i
Q  clause can be defined as in Eq (7).  

         
*

3 ( )

0

max ,
i

NC

NR SAT ES

i

f Q
=

 
=  

  
        (6) 

           
*

1, Satisfied
.

1, Unsatisfied
iQ


= 

−
                                 (7) 

In this context, ES plays a crucial role in locating a satisfied interpretation that optimizes the 

fitness function in Eq (6) which correspond to the minimization of the cost function. Then, by 

considering all connection of 3NR SAT , the Lyapunov energy function of DHNN can be written as 

outlined in Eq (8). 

                  
( ) ( )

3

3 2

1, 1, 1, 1, 1, 1
, , ,

1 1
.

3 2NR SAT

N N N N N N

i j k i j i iijijk
i j k i j i
i j j i k i i j j i
i k j k k j

H W S S S W S S W S
= = = = = =
    
  

= − − −               (8) 

Hence, the values of the corresponding synaptic weights ijW  , 
( )2

ijW   and 
( )3

ijkW   can be 

obtained  using the Wan Abdullah (WA) method through a direct comparison between the cost 

function presented in Eq (4) and the Lyapunov energy function of DHNN, as outlined in Eq (8) [11]. 

These resultant values can then be stored in a Content-Addressable Memory (CAM). This weight 

holds the properties of always being symmetrical ( )ij jiW W=  and there are no self-connections 
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among them. Hence, the anticipated global minimum energy can be achieved by substituting the 

synaptic weight values stored in CAM into Eq (8), by utilizing a satisfied interpretation. As an 

illustration, one such satisfied interpretation is provided below: 

                    
1 2 3 4 5 6 7 8 9

1.q q q q q q q q qS S S S S S S S S= = = = = = = = =              (9) 

By considering the neuron states as in Eq (9) into Eq (8), the expected global minimum energy of 

3NR SAT  is 
3

min 0.375
NR SAT

H = − . This value is defined as the lowest attainable energy state that the 

network can reach and will serve as a benchmark to evaluate the final energy value [38]. During the 

retrieval phase of DHNN, the synaptic weight values are used to update the local field of the network. 

When dealing with higher order neurons connections, the local field denoted as ih  can be defined as 

in Eq (10). 

                       
( ) ( )3 2

1, 1, 1

.
N N N

i j k j iijijk
j k j
j k k j

h W S S W S W
= = =
 

= + +                        (10) 

In this case, optimal synaptic weights acquired during the learning phase play a crucial role in 

ensuring that the network converges to optimal final neuron states during retrieval phase. Then, 

Hyperbolic Tangent Activation Function (HTAF), as detailed in Eq (11) serves as a squashing 

mechanism, transforming the values obtained in Eq (10) into bipolar states, typically either 1 or -1. 

Thus, the final neuron states, 
f

iS  are updated as demonstrated in Eq (12). 

                                   ( )tanh ,
i i

i i

h h

i h h

e e
h

e e

−

−

−
=

+
                           (11) 

                               
( )1, if tanh 0

.
1, otherwise

f i
i

h
S

 
= 

−
                        (12) 

Finally, final energy states were obtained using Eq (8). Then, the difference between the final 

energy and minimum energy will be evaluated based on Eq (13) as follows: 

               
3 3

min .
NR SAT NR SAT

H H Tol−                                  (13) 

If the difference between global minimum energy and final energy falls within the range defined 

by Tol such that 0.001Tol = , 3NR SAT  achieve global minima energy confirming it is successfully 

be embedded in DHNN. In this case, Tol  is set to a specific value as recommended by [35–37] to 

reduce the statistical errors within the solutions. The pseudocode of 3 ( )NR SAT ES   is presented in 

Algorithm 1, and the schematic diagram of DHNN is illustrated as in Figure 1. 

5. Multi-objective functions in the retrieval phase of DHNN  

We introduce a set of objective functions designed to ensure that the final neuron states obtained 
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are in their optimal configurations. Therefore, our aim of the first objective is to obtain diversified 

final neuron states. Now, one may wonder, why is diversity essential? To address this question, the 

need for diversified final neuron states arises from the necessity to create more dynamic induced logic. 

This involves introducing variations particularly in terms of negativity to effectively tackle real-life 

classification problems. Diverse solutions provide a wider range of responses, enhancing adaptability, 

and robustness in problem-solving scenarios. Second, it is crucial to ensure that all the diversified 

solutions generated are in a global state. 

Algorithm 1. Pseudo-code of the general process in DHNN 

1 Begin 

2 {Learning Phase: Exhaustive Search} 

3 Generate 3NR SAT  initial neuron states randomly; 

4 do 

5 Minimize cost function, 
3NR SAT

E ; 

6 while ( )NH   or maxif f=  do 

7 for 0i =  to 1N −  

8 for 1j i= +  to N  do 

9 Learn 3NR SAT ; 

10 if 1i if f+   then 

11 1 1i if f+ += ; 

12 else 

13 1i if f+ = ; 

14 end if 

15 end for 

16 end for 

17 end while 

18 do 

19 Calculate synaptic weight and store in CAM; 

20 Calculate expected global minimum energy, 
3

min

NR SAT
H ; 

21 {Retrieval Phase} 

22 Initialize random neuron states; 

23 do 

24 Calculate local field and update final neuron states using HTAF; 

25 Calculate final neuron energy, 
3NR SAT

H ; 

26 Verify global or local minimum energy; 

27 if 
3 3

min

NR SAT NR SAT
H H Tol−   then 

28 Global minimum energy; 

29 else 

30 Local minimum energy; 

31 End 
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Figure 1. Schematic diagram of NR3SAT in DHNN. 

Achieving global minima solutions signify that the proposed logic and algorithm are successfully 

implemented into the DHNN framework. Last, the third objective of this phase aims to ensure the 

lowest similarity index is obtained. Therefore, the novelty of this study lies in optimizing these three 

objectives: (i) Diversification in terms of negativity, (ii) attainment of a global minima solutions, and 

(iii) achieving a low similarity index. Mathematically, the proposed multi-objective functions can be 

generalized as follows: 

  ( ), , ,D ZF f f RT                                           (14) 

such that 

( )max ,DF f=                                           (15) 

( )max ,ZF f=                                           (16) 

( )min .F RT=                                           (17) 

To accomplish all these objectives, the implementation of a metaheuristic algorithm in the 

retrieval phase of DHNN is deemed essential. The upcoming section provides a comprehensive 

explanation of how the proposed metaheuristic algorithm can successfully fulfil all the objectives 
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outlined in Eqs (15)–(17). This algorithm plays a pivotal role in optimizing final neuron states, 

ensuring diversified and global solutions with low similarity indices, thus enhancing the overall 

performance and effectiveness of the DHNN framework. 

6. The proposed hybrid black hole algorithm in optimizing retrieval phase of DHNN  

In this section, we provide a comprehensive explanation of the optimization process in the 

retrieval phase of DHNN. To ensure the optimal utilization of synaptic weights during the retrieval 

phase, the Election Algorithm (EA) is employed during the learning phase to enhance the process of 

finding satisfied interpretation and consequently minimizing the cost function. EA is a valuable 

addition as it guarantees the achievement of optimal synaptic weights. Recent research by Abubakar 

& Danrimi [39], Roslan et al. [28], and Someetheram et al. [33] have demonstrated the effectiveness 

of EA as a learning algorithm to minimize the cost function within DHNN. The implementation of EA 

significantly enhances the convergence of the network towards minimizing the cost function. Then, an 

enhanced optimization algorithm called Hybrid Black Hole Algorithm (HBHA) will be employed to 

optimize the final neuron states. The primary goal was to ensure that the optimized final neuron states 

align with the proposed multi-objective function as discussed in the previous section. The HBHA 

process begins with the initialization of a population of stars, as outlined in Eq (18) as follows: 

( ) ( )1, if tanh 0
.

1, otherwise

f i
i i

h
Star S

 
= 

−
                                 (18) 

Referring to Eq (18), the variable 
f

iS  represent the final neuron states to be optimized where 

 1,
f

iS NN  and  1,iStar NT . In this context, NN referred to the total number of neurons defined 

and NT is referring to the number of trials declared in the process. These final neuron states were 

obtained by squashing the updated local field, ih   values using tangent hyperbolic function. 

Mathematically, the generalized initial star population, ( )f
i iP Star S 

 
 can be derived as in Eq (19). 

1 51 2 3 4

2 51 2 3 4

3 51 2 3 4

51 2 3 4

:

:

:

:

f f f f f f
NN

f f f f f f
NN

f f f f f f
NN

f f f f f f
NT NN

Star S S S S S S

Star S S S S S S

Star S S S S S S

Star S S S S S S

.                             (19) 

After establishing the initial population, the HBHA utilizes the first two objective functions 

defined in Eqs (15) and (16) which involve diversifying the final neuron states in terms of negativity 

and achieving global minima solutions. In this context, Df  refers to the diversity fitness of 3NR SAT  

while Zf   denotes the fitness value associated with the attainment of global solutions. The 

diversification of final neuron states is a critical objective. It involves ensuring that the states of 

neurons in the network exhibit a wide range of patterns and behaviors rather than being uniform or 

repetitive. To achieve this objective, diversification is defined as the variation in terms of negativity, 

primarily derived from clauses. In essence, it focuses on diversifying the states of the literals within 
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the clauses, which is pivotal for enhancing the diversity of the logical rules within the network. This can 

be done by setting the percentage of negativity, %m , that is needed and HBHA will be implemented to 

ensure the optimized final neuron states achieved at least %m of the clauses containing at least one 

negated state for each iStar . Thus, the diversity fitness can be declared as follows: 

( )*

1

,
i

n

D D i

i

f m f Q
=

 
=  

  
                                       (20) 

such that 

( ) ( )* , , 11, if
.

0, otherwise
i

f f f
i i i

D i

S S S
f Q

 
= 


                          (21) 

From the perspective of achieving global solutions, one alternative approach to determine whether 

the states are global or local is by computing the satisfied interpretation of each iStar . In this context, 

each iStar  is said to be global if the star can attain the maximum satisfied interpretation which is 

associated with the total number of clauses. The generalization of the fitness value associated with the 

attainment of a global solution can be defined in Eqs (22) and (23) as follows: 

( )*

1

,
i

n

Z Z i

i

f f Q
=

=                                 (22) 

such that 

( )* 1, if satisfied
.

0, otherwiseiZ if Q


= 


                             (23) 

By defining the fitness function within the HBHA, fitness values can be calculated for each iStar  

in the population. Subsequently, based on these fitness values, the iStar  with the highest fitness value 

which achieve both maximum diversity and global solution is selected as the Black Hole, 

( )fBH
i iStar S , while the remaining iStar  will be considered as normal stars. To enhance the 

exploration of the optimal solution within the search space, a global search operator called Star 

Replication is proposed in this research. This process draws inspiration from the cloning process in the 

Clonal Selection Algorithm, which is based on the natural processes of the immune system, explaining 

how the immune system generates antibodies to combat antigens. In the context of the HBHA, by 

replicating these stars, a balance is struck between exploring the solution space and exploiting 

promising solutions, a crucial aspect of effective optimization. The new population of stars after 

replicating those with the highest fitness can be formulated as follows: 

( )
( )

( )
( ), if

,
, otherwise

fR
fBH

i i
i ifN

i i
f

i i

Star S Star S
Star S

Star S




= 



                   (24) 

such that 
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( ) ( ) .
f fR

i ii in Star S P Star S   = 
   

                            (25) 

According to Eq (24), the ( )fBH
i iStar S  will be replicated to enhance the ability of HBHA to 

efficiently discover optimal solutions. The number of replicated star, ( )fR
i in Star S 

 
 can be 

determined based on Eq (25) such that   represent the replicating rate defined within the range of 0 

and 1. By considering the replicated stars denoted as ( )fR
i iStar S , the total number of population stars 

( )f
i iP Star S 

 
 will increase compared to the initial population of stars. In this new population, the 

( )fR
i iStar S  are treated like other normal stars, ( )f

i iStar S . After establishing the new population of 

stars, ( )fN
i iStar S , the strong gravitational pull of ( )fBH

i iStar S  causes all other stars to gradually 

move closer to the position of ( )fBH
i iStar S . Consequently, the positions of the stars are updated using 

Eq (26) as follows: 

( )( ) ( ) ( ) ( )1 .
f f f fBH

i i i ii i i iStar S t Star S Star S Star S  + = + −
 

               (26) 

Referring to Eq (26), ( )( )1
f

i iStar S t +  represents the updated positions of stars in the next 

iteration, where  is a random number defined within the range of 0 and 1. ( )f
i iStar S  and 

( )fBH
i iStar S  refer to the current positions of the stars and BH respectively. During this phase, the 

positions of ( )( )1
f

i iStar S t +  exist in continuous form. To convert these continuous values of star 

positions into bipolar values of 1 and -1, a transfer function is essential. This transfer function will 

determine the probability of changing the elements of the position. In this context, the Hyperbolic 

Tangent function is employed to modify the positions of the stars, as described in Eqs (27) and (28). 

It is worth noting that this function belongs to the group of V-shaped transfer functions and has been 

found to exhibit good performance compared to other transfer functions [40]. This function plays a 

crucial role in discretizing the positions of the stars, making them compatible with the requirements of 

the optimization algorithm. 

( )( ) ( )( )1 tanh 1 ,
f f

i i iStar S t S t+ = +                            (27) 

such that 

      ( )
( )( )if 11,

1 .
1, otherwise

f
i if

i

Star S t rand
S t

 + 
+ = 

−

                       (28) 

After updating the position of the stars, the fitness values will be computed. If 

( )( ) ( )1
f fBH

i ii iF Star S t F Star S   + 
   

, the ( )( )1
f

i iStar S t +  will be assigned as new 
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( )fBH
i iStar S  or else ( )fBH

i iStar S  remain unchanged. It is essential to highlight that as the stars 

move towards the BH, there is a possibility of crossing the event horizon. If a star crosses the event 

horizon, it will be absorbed by the BH and disappears. The radius of the event horizon denoted as R  

is defined as outlined in Eq (29). 

( )

( )
1

.

fBH
i i

NT
f

i i
i

F Star S
R

F Star S
=

 
 =

 
 

                                  (29) 

To ascertain whether the stars cross the event horizon or not, the distance between the star and 

BH denotes as D , is computed as described in Eq (30). 

( ) ( ).f fBH
i ii iD Star S Star S= −       (30) 

If D R , it indicates that the stars have crossed the event horizon and will disappear. In this 

case, new stars will be generated randomly to replace those that have crossed the event horizon. This 

process involves the exploitation of stars towards optimal solutions while simultaneously ensuring the 

continuous exploration of the search space, even as some stars may be absorbed by the BH during the 

optimization process. Then, the process in HBHA will be repeated until it meets the defined stopping 

criteria. This can be either when the process reaches the maximum specified number of generations or 

when the star population reaches the maximum fitness, as defined in Eqs (15) and (16). The optimize 

final neuron states can be generalized as follows: 

1 51 2 3 4

2 51 2 3 4

3 51 2 3 4

51 2 3 4

:

:

:

:

fa fa fa fa fa fa
NN

fa fa fa fa fa fa
NN

fa fa fa fa fa fa
NN

fa fa fa fa fa fa
NT NN

Star S S S S S S

Star S S S S S S

Star S S S S S S

Star S S S S S S

                      (31) 

Next, to fulfil the third objective function as in Eq (17), Rogers and Tanimoto similarity index 

( )RT  will be employed in this phase to measure the similarity of states before ( )f
iS  and after 

( )fa
iS optimization takes place for each string of iStar . This phase is essential to evaluate how HBHA 

helps to improve the current final neuron states. If there is high similarity between ( )f
iS  and ( )fa

iS , 

the implementation of HBHA in optimizing the retrieval phase of DHNN is considered unsuccessful 

since the optimized solutions are overfitted. The RT  value between the neuron of iStar  can be 

obtained by comparing the states before the optimization took place as in Eq (19) and states after the 

optimization took place as in Eq (31). By considering   as the similarity index coefficients for states 

before and after optimization took place, the formulation of RT can be generalized as in Eqs (32)– (37). 

( ), ,
f fa

i iS S =                                 (32) 



29835 

AIMS Mathematics  Volume 9, Issue 11, 29820–29882. 

( )
,

2

a d
RT

a d b c

+
=

+ + +
                                  (33) 

such that 

( )1, if 1 1
,

0, otherwise
a

 =
= 


                                        (34) 

( )1, if 1 1
,

0, otherwise
b

 = −
= 


                                  (35) 

( )1, if 1 1
,

0, otherwise
c

 = −
= 


                                       (36) 

( )1, if 1 1
.

0, otherwise
d

 = − −
= 


                                      (37) 

Referring to Eq (33), the lower value of RT   indicates high dissimilarity between the states 

before and after the optimization took place. Therefore, the optimized final neuron states will be 

considered as new final neuron states ( )nf
iS   of 3NR SAT   if the states after being optimized can 

successfully achieve all three multi objectives derived as in Eqs (15)–(17). This can be generalized as 

follows: 

( ), , .
nf

D ZiS Obj f f RT→                                      (38) 

The pseudocode of HBHA is presented in Algorithm 2. Additionally, the flowchart of the 

proposed HBHA can be summarized as in Figures 2 and Figure 3 illustrated the flowchart of the 

proposed model in optimizing the learning phase and retrieval phase of DHNN. 

7. Experimental framework 

In assessing the effectiveness of the proposed model, this section offers a comprehensive 

overview and discussion of the experimental setup. The first subsection explained the simulation 

platform employed in this study, followed by a detailed explanation of the parameter setup utilized in 

both the learning and retrieval phases of DHNN. Subsequently, an overview of the performance metrics 

considered throughout this study is presented. The final section outlines the baseline model used in the 

learning phase and the baseline algorithms employed during the retrieval phase. 

7.1. Simulation platform  

In this paper, all simulations were executed using the open-source software DEV C++ (version 

6.3) with Windows 10 operating system as a platform which equipped with an Intel Core i3 processor 

and 8GB of RAM. This deliberate choice was made to eliminate potential biases during both code 

execution and result recording. Consequently, the experiments were consistently performed using the 
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same compiler on the same computing device with identical processing power.  

7.2. Data simulation 

To assess the effectiveness of this proposed model, the simulated dataset utilized in this study was 

generated by randomly assigning bipolar values of 1 and -1, adhering to the logical structure of 

3NR SAT  . In this context, employing simulated data is a widespread practice for simulating and 

evaluating the performance of the proposed model, as demonstrated in the research conducted by 

[24,46,50,51]. 

7.3. Parameter setup 

The parameter setup employed throughout this study will be explained, focusing on both the 

learning and retrieval phases of DHNN, as detailed in the upcoming subsections. 

7.3.1. Parameter setup in the learning phase 

In assessing the efficiency of the proposed Negative Based Higher Order Systematic Logic in the 

framework of DHNN, the analysis involved conducting simulations using 69 distinct logical 

combinations (number of clauses) which corresponds to a total of 207 neurons. However, to facilitate 

comparison with prior research on systematic and non-systematic logic, the number of neurons (NN) 

will be within a defined range. Table 1 summarizes all the essential parameters for the configuration 

based on ES as the learning algorithm. 

Table 1. The parameters utilized in 3NR SAT . 

Setting Parameter Value 

Order of clauses Third order clauses 

Number of neurons, ( )NN  9 207NN   

Neuron combination, ( )C  100 [41] 

Number of trials, ( )NT  100 [42] 

Number of learning, ( )NH  100 [42] 

Tolerance value, (Tol) 0.001 [38] 

Activation function Hyperbolic tangent (HTAF) [8] 

Learning algorithm Exhaustive Search [15] 
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Algorithm 2. Pseudo-code of HBHA  

1 Begin 

2 {Retrieval Phase} Generate 3NR SAT  initial star population ( )f
i iP Star S 

 
; 

3 do 

4 while  1,
f

iS NN  and  1,iStar NT  do 

5 Calculate fitness value based and determine ( )fBH
i iStar S ; 

6 for  0,1 =  do 

7 ( ) ( )f fR
i ii in Star S P Star S   = 

   
; 

8 Update new population of star, ( )fN
i iStar S ; 

9 end for 

10 for ( )fN
i iStar S  do 

11 ( )( ) ( ) ( ) ( )1
f f f fBH

i i i ii i i iStar S t Star S Star S Star S  + = + −
 

; 

12 end for 

13 for ( )( )1
f

i iStar S t +  do 

14 Convert the star position into bipolar form; 

15 if ( )( ) ( )1
f fBH

i ii iF Star S t F Star S   + 
   

 then 

16 Assign ( )fBH
i iStar S  as new star; 

17 else 

18 Remain ( )fBH
i iStar S  as unchanged; 

19 end if 

20 end for 

21 for ( )1
f

iS t +  do 

22 Calculate R and D; 

23 if D R  then 

24 Generate new star randomly; 

25 else 

26 The star remains unchanged; 

27 end if 

28 end for 

29 end while 

30 End 
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Figure 2. Flowchart of proposed Hybrid Black Hole Algorithm. 
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Figure 3. Flowchart of overall process in optimizing learning and retrieval capabilities of DHNN. 
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7.3.2. Parameter setup in the retrieval phase 

To evaluate the effectiveness of HBHA to optimize the final neuron states retrieved by NR3SAT 

model, performance analysis will be conducted based on specific parameter setup. The parameters 

involved in the proposed model for simulated dataset are listed in Table 2. Additionally, detailed 

description of the parameters used in HBHA is presented in Table 3. Furthermore, Table 4 to Table 

11provided an overview of the parameters utilized in 10 baseline algorithms to assess their 

effectiveness compared to HBHA. 

Table 2. The parameters utilized in NR3SAT. 

Setting Parameter Value 

Minimum number of neurons, ( )NN  9  

Maximum number of neurons, ( )NN  108  

Neuron combination, ( )C  100 [41] 

Number of trials, ( )NT  100 [42] 

Number of learning, ( )NH  100 [42] 

Synaptic weight method WA method [11] 

Tolerance value, Tol 0.001  [38] 

Initialization of neuron states Random [35] 

Activation function HTAF [8] 

Learning algorithm Election algorithm [34] 

Table 3. Parameter settings of HBHA. 

Setting Parameter Value 

Operator Clone, Updating rule, Selection 

Cloning rate 0.7 

Updating rule Based on highest fitness 

Mutation Random 

Selection NT  

Number of generations 100 [16] 

Transfer function HTAF [8] 
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Table 4. Parameter settings of GA. 

Setting Parameter Value 

Operator Selection, Crossover and Mutation 

Number of generations 100 [16] 

Selection rate NT  

Crossover rate 1 [16] 

Mutation rate 1 [16] 

Table 5. Parameter settings of CSA. 

Setting Parameter Value 

Operator 
Cloning, Somatic Hypermutation and 

Selection 

Number of generations 100 [16] 

Clone rate 0.5 

Somatic Hypermutation rate 0.01 

Selection rate NT  

Table 6. Parameter settings of DEA. 

Setting Parameter Value 

Operator Mutation, Crossover, and Selection 

Number of DEA generations 100 [16] 

Mutation rate 0.5 

Crossover rate 0.5 

Table 7. Parameter settings of ABCJ [49], ABCK [19] and ABCS [35]. 

Setting Parameter Value 

Bitwise Operator 

ABCJ: XOR( ) , AND ( )  and OR( )  

ABCK: OR ( ) , XOR( )  and AND( )   

ABCS: NAND ( )  

Number of generations 10 

Number of Employed bees 5 

Number of Onlooker bees 5 

Number of Scout bees 5 
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Table 8. Parameter settings of EA. 

Setting Parameter Value 

Operator 
Positive advertisements, Negative 

advertisements, and Coalition 

Number of generations 100 [16] 

Number of candidates 120 [33] 

Number of parties 4 [34] 

Positive and negative advertisement rate 0.5 [43] 

Table 9. Parameter settings of SCA. 

Setting Parameter Value 

Operator Sine Updating rule or Cosine Updating rule 

Updating rule Based on highest fitness 

Range 2r   0, 2  

Range 3r   0, 2  

Range 4r   0,1 [44] 

Number of generations 100 [16] 

Transfer function Sigmoid function [44] 

Table 10. Parameter settings of WOA. 

Setting Parameter Value 

Operator 
Shrinking encircling updating rule and Spiral 

updating rule 

Shrinking encircling updating rule Based on Random /Best fitness 

Spiral updating rule Based on best fitness 

Range l   1,1−  [45] 

Number of generations 100 [16] 

Transfer function Sigmoid function [46] 

Table 11. Parameter settings of BHA. 

Setting Parameter Value 

Operator Updating Rule and Mutation 

Updating rule Based on highest fitness 

Mutation Random 

Number of generations 100 [16] 

Transfer function Hyperbolic tangent function [26] 
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7.4. Performance metrics 

The evaluation of the DHNN will concentrate on assessing the effectiveness of the proposed 

logical rule NR3SAT in comparison to other logical structures. In contrast, evaluating the performance 

of HBHA will primarily consider the ability of the proposed HBHA in achieving a multi-objective 

functions, which is generating varied and global solutions with low similarity index. Consequently, we 

categorize the performance metrics into two parts: 

(a) The evaluation of the efficiency of NR3SAT in DHNN will involve analyzing various 

performance metrics such as learning error, testing error, global minimum ratio, total neuron 

variation, and Jaccard similarity index. 

(b) The performance metrics used to assess the effectiveness of HBHA in optimizing the retrieved 

final neuron states will focus on achieving an optimal solution string. This will be evaluated in 

terms of diversified solutions, global minima solutions, string that achieve both diversified and 

global minima solutions, and similarity index analysis. 

7.4.1. Performance metrics in learning and retrieval phase 

Performance metrics assume a critical role in evaluating the effectiveness and quality of the 

network's performance, particularly in relation to the proposed model. In this context, these metrics 

will be applied to assess the performance of the proposed 3NR SAT   model, comparing it to the 

existing models. This extensive evaluation encompasses two crucial phases: The learning phase and 

the retrieval phase of DHNN. In the learning phase of DHNN, error analysis is conducted using Mean 

Absolute Percentage Error (MAPE). Inspired by Sathasivam et al. [34], we employ this metric to 

evaluate the efficiency and learning capabilities of ES in finding a satisfied interpretation of NR3SAT. 

Eq (39) provide the formulations for MAPE. Based on the Equations, NCf  represents the maximum 

fitness of satisfied clauses associated to NR3SAT and if  represent current fitness obtained. Ideally, 

all these metrics were employed to assess the efficiency of ES in finding maximum satisfaction of the 

proposed logical rule. 

1

100
.

NH
NC i

learn
ii

f f
MAPE

NH f=

−
=                                (39) 

In the retrieval phase, the performance metric will be employed to assess the quality of the retrieved 

final neuron states using Eq (40) [14]. Based on Eq (40), i   referred to the number of iterations 

throughout the process. According to Roslan et al. [42], this testing error can be used to evaluate the 

accuracy of the retrieved final neuron states. In this case, zero testing errors indicate global solutions. 

1

100
.test TS GS

i

MAPE N N


 =

= −                           (40) 

Additionally, drawing inspiration from the work of Kasihmuddin et al. [21] to ensure the stability 

of the retrieved final neuron states and the minimization of energy achieved, the performance will be 

assessed using Global Minima Ratio, GR  as outlined in Eq (41). Worth mentioning that the optimal 

value of GR  is when 1GR = , which indicates that the retrieved states achieved global minima energy 
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at the number of neurons.  

1

1
.G GS

i

R N


 =

=                                       (41) 

To comprehensively assess the quality of the final neuron states retrieved, an analysis of similarity 

index values and cumulative neuron variation will be conducted. Ideally, the similarity index analysis 

was used to measure the diversification of the states by comparing the final neuron states retrieved by 

the network with the benchmark states. In this context, the benchmark neuron state is defined as follows: 

max 1, if
.

1, if

i
i

i

q
S

q


= 

− 
                              (42) 

Referring to Eq (42), iq  and iq  defined as positive and negative literal respectively. Drawing 

inspiration from the work of Alway et al. [15] , the Jaccard similarity index as outlined in Eq (43) will 

be utilized to measure the similarity of the positive value in comparison to the benchmark states, as 

detailed in Eq (42). Table 12 presented all the parameters utilized in both learning and retrieval phase 

of DHNN and the list of parameters incorporated within the similarity index is presented in Table 13. 

.
a

Jaccard
a b c

=
+ +

                           (43) 

Table 12. List of parameters utilized in the experiment setup. 

Parameter Definition 

NH  Number of learning 

NC  Number of clauses 

NCf  Maximum fitness obtained based on NC 

if  Current fitness obtained 

TSN  Number of total solutions 

GSN  Number of Global minima solution 

  NT C  

3

min

NR SAT
H  Minimum energy of 3NR SAT  

3NR SAT
H  Final energy of 3NR SAT  

Table 13. List of parameters incorporated within the similarity index. 

Similarity index coefficient max
iS  

f
iS  

a  1 1 

b  1 −1 

c  −1 1 

d  −1 −1 
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Additionally, cumulative neuron variation often referred to as TV , is employed to assess the model's 

ability to explore diverse solutions across various regions within the search space. The TV  can be 

formulated as in Eqs (44) and (45) such that v  represents the total string of retrieved final neuron 

states while iK  function as a scoring mechanism to determine the count of distinct neuron states 

between the benchmark and retrieved final neuron states.  

0

,i

i

TV K


=

=                                   (44) 

such that 

max

max

1,
.

0,

f

i i

i f

i i

S S
K

S S

 


=
                               (45) 

7.4.2. Performance metrics in optimizing the retrieval phase of DHNN 

To evaluate the effectiveness of the proposed model, we will analyze how well the model 

optimizes the retrieval phase of DHNN to meet the objective functions. Our proposed HBHA aims to 

produce diverse and global solutions with low similarity indices, thereby enhancing overall 

performance and effectiveness of the DHNN framework. A key focus on implementing EA in the 

learning phase as EA contributes to achieving an optimal learning phase, which consequently leads to 

an optimal retrieval phase. By incorporating HBHA into the retrieval phase, we anticipate optimizing 

the final neuron states retrieved by the network. Therefore, various performance metrics will be 

introduced to assess the quality of the optimized final neuron states. The evaluation focuses on each 

string of final neuron states emphasizing the diversification of negativity, the attainment of global 

minima solutions and solutions with low similarity index. Regarding diversification, we focused on 

obtaining diversified solutions based on clauses. For instance, when the degree of negativity is set to 

%m , it signifies that the optimized final neuron states must contain at least %m  of the total number 

of clauses, each having at least one negative literal. In this context, the number of diversified solutions, 

DSN  can be defined using Eq (46) as follows with diversification rate of %m . 

( )
1

.
DS

f
DS i

i

N n NS


=

=                                      (46) 

In Eq (46), ( )DS

f
in NS   represents the number of solution strings that achieved the maximum 

predefined diversity rate while   denotes the total number of simulation sets to be executed, 

NT C =  . Note that   can also be referred to as the total number of solutions. The optimized final 

neuron will be evaluated based on each string according to Eq (47). 
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1 2 3 41

1 2 3 42

1 2 3 43
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f f f f f f
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f f f f f f
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NS S S S S S

NS S S S S S

NS S S S S S

NS S S S S S

=

=

=

=

                       (47) 

In the perspective of evaluating the solution string that attain a global solution, the number of 

solution strings that achieve global solutions, GSN  can be determined using Eq (48). The solution 

string 
GS

f
i

NS that achieves a global solution is defined in Eq (49), indicating the optimized final neuron 

states that successfully interprets the logical rule NR3SAT. 

( )
1

,
GS

f
GS i

i

N n NS


=

=                                      (48) 

such that 

1 2 3 41

1 2 3 42
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1 2 3 4
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f f f f f f
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f f f f f f
NN

f f f f f f
NN

f f f f f f
NNNT

NS S S S S S

NS S S S S S

NS S S S S S

NS S S S S S

=

=

=

=

                     (49) 

By evaluating the solution string that achieved DSN  and GSN , we can evaluate the solution 

string that achieved both maximum 
DS GS

f f
i i

NS NS , which is computed as in Eq (50). 

( )
1

.
DS GS

DG

i

f f
i iN n NS NS



=

=                                 (50) 

Thus, DGN  represents the number of solution strings that have met both objectives. Additionally, the 

global minimum ratio, GRN   for the total number of global solutions obtained by GSN   can be 

evaluated using Eq (51). 

1
.GR GS

i t

N N
NT C



=

=

                                  (51) 

In the perspective of attaining low similarity index, taking inspiration by the work of Zamri et al., 

[16] , this paper focusses on Rogers and Tanimoto similarity index, RT  to assess the quality of the 

optimize final neuron states. This is due to the ability of this metric to measure the similarity of the 

negative cases for each string of solutions between before and after optimization took place. In this 

context, the benchmark solutions are referring to the retrieved final neuron states before optimization 
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takes place which can be define as in the Eq (52) such that iq  and iq  referring to the positive and 

negative literals of NR3SAT. Moreover, the optimize final neurons state can be referred to as 
fa

iS . 

1,
.

1,

if
i

i

for q
S

for q


= 

− 
                                (52) 

Thus, the general comparison between the benchmark states and optimize final neuron states is 

presented as Eq (53) such that   is referring to the similarity index coefficients defined as in Table 

14. The formulation of RT  is given as in Eq (54). It is crucial to emphasize that when evaluating the 

quality of the optimized final neuron states, the effectiveness of the proposed algorithm is measured 

by its capability to yield low values of RT . Lower values of RT  in each comparison between string 

indicate that the optimized final neuron states differ from the benchmark states. Table 15 presented the 

list of symbols utilized in the experimental setup.  

( ), ,
f fa

i iS S =                                    (53) 

( )
.

2

a d
RT

a d b c

+
=

+ + +
                               (54) 

Table 14. List of parameters incorporated within the similarity index. 

Similarity index coefficient,   
f

iS  
fa

iS  

a  1 1 

b  1 1−  
c  1−  1 

d  1−  1−  

Table 15. List of symbols utilized in the experimental setup. 

Parameter Parameter’s Name 

DS

f
i

NS  Diversified solution string 

DSN  Number of diversified solutions 

GS

f
i

NS  Global minimum solution string 

GSN  Number of global solutions 

GRN  Ratio of global solutions 

DGN  Number of diversified and global solutions 

NT  Number of trials 

TSN  Number of total solutions 

f
iS  Benchmark final neuron state before the optimization 

fa
iS  Optimized final neuron state after the optimization 

RT  Rogers and Tanimoto similarity index 
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7.5. Baseline logical rules 

In the learning phase of DHNN, NR3SAT will be compared with several existing baseline models. 

Each of these baseline models is described as follows: 

(a) 3SAT [17]: 3SAT is a SAT formulation within the systematic SAT class, characterized by a 

restricted number of literals per clause. In this context, each clause consists of 3 literals. As 

described by Mansor et al. [17], 3SAT exhibits a higher probability of obtaining satisfied 

interpretation compared to other systematic SAT variants. Consequently, 3SAT has the potential 

to achieve an optimal learning phase, leading to a greater production of global minima solutions. 

(b) RANkSAT [14]: RANkSAT is a SAT formulation belonging to the non-systematic SAT class, which 

encompasses first order, second order and third order classes. Each class in RANkSAT is designed 

to have an equal representation. The performance for all logical combinations was evaluated and 

results showed that RANkSAT with a logical combination of ( )2,3k =  yield the most promising 

results compared to other combinations. Notably, the trend of RANkSAT for ( )2,3k = is more 

consistent in obtaining lower learning and testing errors. The finding emphasizes that higher order 

logical structure contributes to higher probability of achieving global solutions. 

(c) MAJ2SAT [15]: MAJ2SAT is another non-systematic SAT class which includes both second 

order and third order classes. In the study, Alway et al. [15] enhance the structure of the logical 

rule by introducing a bias of 2SAT clauses compared to 3SAT clauses. Simulated results 

signified MAJ2SAT successfully embedded in DHNN since the model can generate optimal 

final neuron states that achieve global minima energy. Notably, MAJ2SAT demonstrated its 

proficiency in retrieving accurate synaptic weights that play a crucial role in achieving global 

minima solutions. 

(d) GRANkSAT [41]: Gao et al. [41] contribute to explore innovative logical structures by 

proposing a novel and flexible higher-order logic called G – Type Random k Satisfiability 

(GRAN3SAT) in DHNN. This newly introduced logic stands out as both systematic and non-

systematic structure. GRAN3SAT consists of new random feature of first, second and third 

order clauses and the performance of GRAN3SAT was evaluated using order clauses, different 

proportions of positive and negative literals and different number of learning trials. Based on 

the findings, when considering GRAN3SAT with the highest proportion of 3SAT clauses, the 

learning process exhibited the lowest Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE). This observation supports the idea that implementing third-order clauses into 

GRAN3SAT decreases the learning errors. 

7.6. Baseline algorithms 

To evaluate the effectiveness of the proposed algorithm in optimizing the retrieved final neuron 

states, HBHA will be compared against several baseline algorithms. This includes Genetic Algorithm 

(GA) [12], Clonal Selection Algorithm (CSA) [47], Differential Evolution Algorithm (DEA) [48], 

Artificial Bee Colony Algorithm (ABCJ) [49], Artificial Bee Colony Algorithm (ABCK) [19], 

Artificial Bee Colony Algorithm (ABCS) [35], Election Algorithm (EA) [34], Sine Cosine Algorithm 

(SCA) [44], Whale Optimization Algorithm (WOA) [50], and Black Hole Algorithm (BHA) [26]. All 

these baseline algorithms can be categorized into four major categories including Evolutionary-based, 

Swarm intelligence-based, sociopolitical-based, and Natural phenomena-based, which can be 

presented in Figure 4. Each of these baseline algorithms is described as follows: 
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(a) GA [12]: The implementation of the GA in DHNN aims to enhance the learning phase and 

improve the accuracy of finding correct neuron states that can increase the probability of getting 

satisfied interpretation of 2SAT logical rule. By combining exploration and exploitation 

processes of the GA, GA helps in searching for an optimal neuron state with high fitness value. 

This incorporation reduces hamming distance and achieves a higher global minima ratio as 

compared to traditional exhaustive search methods. Thus, the performance of 2SAT in DHNN 

has been improved. 

(b) CSA [47]: Incorporating the CSA in this research aims to enhance the learning phase of DHNN. 

CSA, inspired by the natural immune system improves the learning mechanism of the DHNN 

through selection, cloning and somatic hypermutation. By implementing CSA into the model, 

it aims to optimize employee resource application approval processes by efficiently searching 

for an optimal induced logic. 

(c) DEA [48]: DEA involves three operators: mutation, crossover and selection. Mutation explores 

a wide range of potential solutions in the search space for global search. Crossover refines 

solutions locally near the target vector to exploit optimal results. The balance between 

exploration and exploitation is crucial for high-quality solutions in optimization problems. In 

this research, a novel binary differential evolution algorithm based on Taper-shaped transfer 

functions is proposed to address binary optimization problems that cannot be solved directly 

by traditional DE due to its reliance on real number operations for mutations. By employing 

transfer functions such as S-shaped, U-shaped or V-shaped curves, the binary form of DE can 

be attained efficiently. 

(d) ABCJ [49]: Jia et al. [49] introduced a new binary optimization algorithm that is based on the 

original ABC algorithm. The main process of this algorithm consists of three phases: Employed 

bees' phase, onlooker bees' phase, and scout bees' phase. Movement in these phases is done 

using bitwise operators. The proposed bitwise ABC algorithm has been compared to other 

binary algorithms using various benchmark functions. Additionally, this study also compared 

the proposed ABC with other variations of both the ABC and GA algorithms. Experimental 

results demonstrated that the proposed ABC achieves better accuracy in optimization as well 

as faster convergence speed when compared to other algorithms used in this research. 

(e) ABCK [19]: Kasihmuddin et al. [19] implemented a novel bitwise operator in the ABC algorithm 

to solve the 2SAT. The purpose of this implementation was to improve the learning phase of 

DHNN. By incorporating ABC as a searching technique with DHNN, they aimed to find a 

satisfied interpretation of 2SAT logic within an acceptable timeframe. Their goal was to compare 

the performance of solutions produced by DHNN with ABC, HNN2SAT-ABC against traditional 

learning algorithms, HNN2SAT-ES. The results show that HNN2SAT-ABC outperforms 

HNNSAT-ES in terms of global minima ratio, hamming distance and CPU time, suggesting that 

using ABC is a better alternative method for finding satisfied interpretation of 2SAT. 

(f) ABCS [35]: Sidik et al. [35] provided insights into the effectiveness of different bitwise logic 

gate operators and their compatibility with the ABC algorithm. They focused on controlling the 

distribution of negative literals by implementing the ABC algorithm in the logic phase. The 

study compares the performance of different logic gate operators in producing desired logical 

structures. The results showed that implementing the NAND operator with the ABC algorithm 

outperforms other operators in terms of generating negative literals. Choosing the correct logic 

gate operator enhances fitness and improves exploration and exploitation processes for finding 
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optimal solutions. Different operators have varying levels of success depending on specific 

ratios of negative literals. 

(g) EA [34]: Sathasivam et al. [34] investigated the use of EA to enhance the learning phase of a 

DHNN. The goal is to optimize the learning phase of DHNN by ensuring that the cost function 

of RAN2SAT converges to zero, indicating a satisfied interpretation of the logical rules. Due 

to low probability of finding satisfied interpretation for first order clauses, complexity of logic 

satisfiability increases significantly in DHNN. However, by employing EA, neuron states can 

be effectively flipped. The results demonstrated the accuracy and effectiveness of EA as a 

learning algorithm in DHNN for RAN2SAT with varying numbers of neurons compared to 

other algorithms such as Exhaustive Search and Genetic Algorithm. 

(h) SCA [44]: This research proposed two binary SCA, S-shape and V-shape, for medical feature 

selection. These algorithms convert continuous values into binary using transfer functions. The 

goal is to select effective feature subsets from medical data, improving classification accuracy 

while reducing the subset length. Experimental results showed that both binary SCAs 

outperform other algorithms in classifying medical datasets.  

(i) WOA [50]: Hussien et al. [50] proposed two binary versions of the WOA called bWOA-S and 

bWOA-V for feature selection problems. These versions use specific transfer functions, either S-

shaped or V-shaped, to convert continuous search space solutions into binary solutions. The 

objective of implementing WOA is to deal with feature selection problems by simplifying high-

dimensional datasets and improving classification accuracy through selecting relevant features 

while removing irrelevant and redundant data. Inspired by humpback whales' bubble-net feeding 

hunting technique, the classical WOA sets the current best candidate solution close to either the 

optimum or target prey while other whales update their position towards this best solution. 

(j) BHA [26]: Pashaei & Aydin [26] used binary version of BHA and decision tree algorithm to solve 

the feature selection and classification problem in biological data. BHA is an optimization 

technique inspired by black holes in outer space, where stars simulate their behavior. The best 

star with the best fitness value acts as the black hole, pulling other stars towards it like 

gravitational force in real space. The Binary Black Hole Algorithm (BBHA) is an extended 

version of the BHA that solves discrete problems, such as feature selection. BBHA applied binary 

structure to indicate which features belong in the final set. BBHA was tested on biological 

datasets and compared with other methods, showing superior performance in all metrics. 

 

Figure 4. The categories of baseline algorithms. 
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8. Results and discussion 

In this section, we focus on providing a comprehensive analysis of the performance of the 

proposed DHNN model, considering the selected performance metrics and all the parameters 

configured in both the learning and retrieval phases of DHNN. The analysis focused on the capabilities 

and efficiency of the proposed model in comparison to well-established baseline models. To elaborate 

further, the results and discussions are divided into two main parts. The first part will be focused on 

evaluating the performance and stability of DHNN in reducing the logical inconsistencies of NR3SAT 

compared to the existing models. This section focused on the results and discussions pertaining to the use 

of ES as the learning approach. The subsequent section will shift the focus to the efficiency of the proposed 

HBHA in optimizing the retrieval phase of DHNN when compared to existing baseline algorithms. 

8.1. Performance analysis of 3NR SAT  in the learning phase 

The performance analysis of the proposed NR3SAT logical rule in the framework of DHNN will 

be discussed based on several metrics. In the first subsection, we focus on the learning errors analysis 

followed by testing errors analysis and similarity index analysis. In the last subsection, we discuss non-

parametric statistical analysis. Moreover, in the second part of this section, we explain the results and 

findings based on optimizing the retrieval capabilities of DHNN. 

8.1.1. Learning error analysis 

To provide insight on the performance of DHNN by incorporating NR3SAT logical rule and ES 

as the learning approach in finding satisfied interpretation, the analysis was carried out using four 

essential metrics: Learning error, testing error, energy analysis, and similarity index. Table 16 

presented the learning errors obtained through learnMAPE  which also can be visualized as in Figure 

5. In general, the proposed NR3SAT can achieve the smallest learning errors compared to other 

existing models as observed in Table 16. The smallest errors produced by NR3SAT highlight the 

superiority of the proposed model in attaining a satisfied interpretation, leading to the minimization of 

the cost function. Besides this, when ES is used as the learning algorithm and the number of neurons 

increases, the learning error also tends to increase, as shown in all illustrated figure. These higher 

values of learnMAPE  indicate a high percentage of unsatisfied clauses. When ES fails to find the 

satisfied clauses, this causes the network to retrieve random synaptic weights to be stored in CAM 

This, in turn leads to a non-optimal learning phase. This phenomenon occurs because as the number 

of neurons increases, the probability of finding a satisfied interpretation becomes very low. This is 

because it becomes more challenging for the neurons to achieve zero-cost function. One of the main 

reasons contributing to this trend is the nature of ES which relies on a trial-and-error approach to find 

satisfied interpretation. As the problem complexity increases with a greater number of neurons, ES 

may struggle to find a satisfied interpretation due to the increase search space. However, NR3SAT 

consistently maintains the lowest errors when compared to existing logics. The logic that comes closest 

to achieving the lowest error is 3SAT. Based on the observation between NR3SAT and 3SAT, the 

restriction feature in NR3SAT with at least one negative literal in each clauses promotes a higher 

probability of obtaining a satisfied interpretation. Additionally, when comparing the errors obtained 

using NR3SAT and 3SAT, it becomes evident that the inclusion of all positive literals in 3SAT clauses 

can disrupt the process of finding satisfied interpretation leading to higher learnMAPE  errors.  
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In comparison with non-systematic logics, it is worth noting that the errors obtained when using 

non-systematic logics, which involved first order clauses RANkSAT ( )1,3k = , RANkSAT ( )1, 2,3k =

GRANkSAT ( )1,2,3k = , and GRANkSAT ( )1,3k = , were consistently higher than those obtained by 

systematic logics. Additionally, an observation from Table 16 revealed that as the number of neurons 

surpasses 90, these non-systematic logics demonstrate suboptimal performance. Notably, no errors are 

generated beyond a certain threshold of neurons, indicating the inability of non-systematic logics to 

identify satisfied interpretation. This finding highlighted the instability of these logical rules when 

compared to the systematic logics. This demonstrated that increasing number of first-order clauses 

significantly influences the process of finding a satisfied interpretation of the logical rule. This is 

because there is only one possibility to achieve a satisfied interpretation, which is either 1 or -1 [16]. 

This contrasts with second and third order clauses which have more combinations to make it satisfied. 

This observation is further supported by the results obtained using GRANkSAT. As evident in the 

learnMAPE  metric, the learning errors produced by GRANkSAT exhibit inconsistency compared to 

other logics. This inconsistency can be due to the flexibility of GRANkSAT, which can function as 

both systematic 3SAT and non-systematic SAT logic. It is noticeable that at certain neuron numbers, 

such as when NN falls within the range of 45 53NN   and 81 89NN  , the learnMAPE  errors 

experienced drastic decrease. This decrease in errors align with GRANkSAT transitioning into a 3SAT 

logic. The lowest errors observed when GRANkSAT behaves as a 3SAT logic indicate that at that point, 

GRANkSAT easily finds satisfied interpretation leading to lower errors. This observation indicated 

that higher-order logic increases the probability of achieving a satisfied interpretation. Therefore, it 

can be summarized that DHNN by incorporating NR3SAT logical rule exhibited the best learning 

capability across metrics in terms of its learning capability.  

 

Figure 5. learnMAPE  of NR3SAT with existing logic models. 
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8.1.2． Testing errors analysis 

During the retrieval phase of DHNN, conducting error analysis is crucial to assess the quality of 

the retrieved final neuron states. This is particularly important because as pointed out by Zamri et al. 

[16] , DHNN often generates repetitive final neuron states instead of producing new ones. To tackle 

this challenge, the assessment of the retrieved final neuron states was conducted from three critical 

perspectives: Testing error evaluation, the generation of global minima solutions, and the quality of 

the retrieved solution in comparison to benchmark states. Once NR3SAT has successfully found a 

satisfied interpretation resulting in 
3

0
NR SAT

E =  , the optimal synaptic weights are generated. 

Therefore, the conducted error analyses aim to examine how NR3SAT behaves based on the synaptic 

weights acquired during the learning phase specifically in terms of generating local or global minima 

solutions when compared to other existing baseline models. Graphical results of testMAPE  can be 

observed in Figure 6 with tabulated results as shown in Table 17. Indeed, these errors exhibit a strong 

correlation with the errors encountered during the learning phase. In simpler terms, when learning error 

increases due to the challenges in finding satisfied interpretation, this subsequently leads to an increase 

in testMAPE . Nonetheless, NR3SAT consistently managed to attain the lowest testing errors among 

all baseline models. This can be due to its high capability of finding satisfied interpretation in 

comparison to the other logics. Consequently, this underscores the ability of 3NR SAT  to generate a 

higher number of global solutions compared to existing logic models. 

Furthermore, a comparison between systematic and non-systematic logics revealed that 

systematic logics can achieve zero testMAPE  when 63NN  . Within this range, both NR3SAT and 

3SAT excel in finding satisfied interpretation leading to zero testing errors. On the other side, non-

systematic logics with lower-order logic of 1SAT such as RANkSAT ( )1,2,3k = , RANkSAT ( )1,3k = , 

GRANkSAT ( )1,2,3k =  and GRANkSAT ( )1,3k =  tend to generate higher testMAPE  compared to 

MAJ22SAT which does not include 1SAT. This can be due to the lower probability of obtaining 

satisfied interpretation in lower-order logics during the learning phase of DHNN as indicated by Karim 

et al. [14]. When dealing with higher-order logics like 2SAT or 3SAT, there are significantly more 

possible arrangements that can satisfy the clauses. In contrast, 1SAT can only be satisfied by values of 

1 or -1. Consequently, when these logics fail to obtain satisfied interpretation, non-optimal synaptic 

weights are generated resulting in higher errors. From a systematic logic perspective, NR3SAT begins 

to outperform 3SAT when 72NN  . The testMAPE  produced in this range are significantly lower 

when compared with 3SAT, despite both logics being of the same order. This superiority of NR3SAT 

can be due to its logical structure which incorporates more negative literals in a clause compared to 

existing 3SAT. The presence of these negativity biased clauses enhanced the process of obtaining 

satisfied interpretations, resulting in lower errors during the retrieval phase. 

As previously discussed, the ability to achieve low error values during the retrieval phase 

indicates the model's effectiveness in discovering a greater number of global minima solutions, thereby 

ensuring the convergence property of DHNN. This can be quantified through the retrieved energy 

represented as the ratio of global minima solutions, GR   as depicted in Figure 7 and Table 18. 

Generally, NR3SAT and baseline models featuring higher-order logics such as 3SAT, RANkSAT

( )2,3k =  , GRANkSAT ( )2,3k =  , and MAJ2SAT ( )2,3k =  , tend to attain their maximum global 

minima ratios when NN falls within the range of 9 to 18. This range signifies the successful 

implementation of the proposed SAT into DHNN. From another perspective, it can also be observed 
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that non-systematic models incorporating first order logics such as RANkSAT ( )1, 2,3k =  and 

RANkSAT ( )1,3k =  exhibit a notable decrease in their performance values as the number of neurons 

increases. This decline in performance can be due to the increased number of first-order clauses in 

these models. Essentially, the increased presence of first order clauses reduces the probability of these 

models achieving satisfied interpretations. This in turn complicates the process of minimizing logical 

inconsistencies. Consequently, the cost function minimization becomes unsuccessful, leading to the 

generation of non-optimal synaptic weights. In simpler terms, the inability to attain satisfied 

interpretation which leads to a zero-cost function results in incorrect synaptic weights and ultimately 

affecting the overall quality of the retrieved final neuron states. These findings are further supported 

by the performance of GRANkSAT ( )1,2,3k =   and GRANkSAT ( )1,3k =   in comparison to 

GRANkSAT ( )2,3k = . GRANkSAT ( )2,3k =  significantly outperforms the other two models, as it 

can achieve high GR  approaching 1 when the number of neurons falls within the range of 9 to 62. 

However, as the number of neurons increases, the inclusion of 1SAT in GRANkSAT ( )1,2,3k =  and 

GRANkSAT ( )1,3k =  disrupts the process of obtaining global solutions. Additionally, the flexibility 

of these models which can also be systematic 3SAT, demonstrated that when these models transition 

into systematic 3SAT (without first order logics), the global solution ratio increases dramatically. This 

results in fluctuations in the performance patterns of these models. 

Furthermore, a close comparison between the global minima ratios produced by NR3SAT and 3SAT 

can be observed in Figure 8. Notably, NR3SAT consistently achieves a maximum ratio of 1 up to 

80NN = , whereas in the case of 3SAT, the ratio of global minima solutions starts to decrease as NN 

exceeds 63. The significance of attaining global minima solutions is closely linked to the quality of the 

retrieved final neuron states which will be further explained in the context of the similarity index 

perspective. The question is, why is it so important to have global solutions? To address the importance of 

having global solutions, it is essential to understand that global solutions play a critical role in assessing the 

quality of the retrieved final neuron states. Without global solutions, the quality of the retrieved final neuron 

states remains uncertain. This connection between global solutions and the quality of final neuron states is 

particularly evident when examining the relationship between learning and testing errors. Thus, the quality 

of the retrieved final neuron states can be effectively evaluated using similarity index.  

 

Figure 6. testMAPE  of NR3SAT with existing logic models. 
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Figure 7. GR of NR3SAT with existing logic models. 

 

Figure 8. GR  of NR3SAT and 3SAT. 
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analyzed using two key metrics: the Jaccard value and Total Neuron Variation ( )TV . These metrics 

are utilized to compare NR3SAT with other baseline models, as illustrated in Figure 9 and Figure 10. 

Additionally, the tabulated data can also be presented in Table 19 and Table 20. In the context of 

Jaccard values, smaller values indicated high dissimilarity between the retrieved final neuron states 

and the benchmark states. Referring to Figure 9 and Table 19, a notable observation is that the majority 

of the baseline models achieved Jaccard values exceeding 0.550, while NR3SAT consistently obtained 

relatively low Jaccard values, falling below 0.5. These lower Jaccard values indicate that the final 

neuron states retrieved by NR3SAT exhibit a high degree of dissimilarity when compared to the 

benchmark states. This high dissimilarity signifies non-overfitting solutions. In contrast, overfitting 

occurs when all the retrieved final neuron states match the benchmark states precisely. It is crucial to 

emphasize that when addressing real-life datasets for classification problems, the presence of 

overfitting solutions can result in suboptimal logical rules representing the datasets. Consequently, this 

suboptimal logical rule may fail to precisely extract information and explain the strength of 

associations between variables. Furthermore, as mentioned by Guo et al. [8], the assessment of 

similarity index only for those solutions which achieved global solutions. When comparing systematic 

and non-systematic logics, the non-systematic logics failed to achieve Jaccard values for certain NN. 

This is because the generated solutions were trapped in local minima due to the non-optimal synaptic 

weights being used to update the local field. One of the main reasons why this contributes to non-

optimal synaptic weights is because of the nature of ES. ES, which operates based on a trial-and-error 

approach, faces limitations in finding a satisfied interpretation as the number of neurons increases, 

impacting the minimization of the cost function [33].  

Based on systematic logic, both 3SAT and NR3SAT generally obtain better Jaccard values 

compared to non-systematic logic. However, Table 19 reveals a significant difference in the values 

obtained, with NR3SAT outperforming 3SAT by consistently achieving lower Jaccard values. 

Additional feature of including at least one negative literal in NR3SAT has a substantial impact on the 

quality of the retrieved final neuron states. Consequently, this promotes more diversified final neuron 

states. Shifting the focus to the possible combination of 3SAT and NR3SAT, it becomes apparent that 

NR3SAT does not include all positive literals in a clause, such that ( )*
i i j kQ q q q    . This 

observation highlights the influence of the presence of this combination on the performance of 3SAT. 

The underlying reason for this is that there is no variation in terms of the individual contribution of 

synaptic weight for this combination, resulting in repetitive final neuron states. Consequently, these 

repetitive final neuron states exhibit high similarity with the benchmark states.  

On the other side, TV   values can be explained in terms of the efficiency of the models in 

exploring different solutions across various areas within the search space. TV can only be measured 

if the retrieved final neuron states satisfy Eq (13) [8]. As shown in Figure 10 and Table 20, the non-

systematic logics achieved highest TV when the number of neurons falls within the range of 35 to 62. 

In contrast, 3SAT and NR3SAT consistently achieve higher TV values up to 72NN  . However, 

considering all logics, NR3SAT generates the highest TV compared to all baseline models. This is 

due to the presence of more global minima solutions in NR3SAT, which indirectly leads to higher TV

values. These higher TV demonstrates the effectiveness of the proposed model in exploring different 

areas in the search space [16].  
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Figure 9. Jaccard value of NR3SAT with existing logic models. 

 

Figure 10. TV of NR3SAT with existing logic models. 
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trying out all possible solutions in the search space to obtain satisfied interpretations. Moreover, this 

approach introduces time constraints, leading to suboptimal optimization processes. Ideally, when an 

algorithm is implemented into DHNN, it should possess the ability to rapidly identify optimal solutions. 

Therefore, implementation of learning algorithms is crucial to enhance the process of finding satisfied 

interpretation which led to optimal synaptic weights. 

8.1.4. Non-parametric test 

A non-parametric test, specifically known as Friedman test was employed in this study to assess 

the significance of the proposed NR3SAT in comparison to other baseline models. The importance of 

this test lies in its ability to determine whether there is a statistically significant difference in the 

performance among the models under consideration. This analysis is crucial for drawing meaningful 

conclusions about the effectiveness of the proposed NR3SAT in the context of DHNN based on various 

performance metrics, when compared to other existing models. For clear illustration, the hypothesis 

can be declared as follows: 

0 :H  
There is no significant difference in the performance metrics between the proposed 

NR3SAT and other baseline models. 

1 :H  
There is a significant difference in the performance metrics between the proposed 

NR3SAT and other baseline models. 

In this study, the Statistical Package for the Social Sciences (SPSS) software was employed to 

conduct the Friedman test, and the results are presented in Table 21. Using a pre-defined significance 

level of 0.05, the null hypothesis will be rejected if the obtained p-value is less than 0.05. The 

observations from Table 21 clearly indicated that, for all performance metrics, the associated p-values 

were below 0.05. Consequently, all the null hypotheses are rejected, leading to the conclusion that a 

significant difference exists in the performance metrics between the proposed NR3SAT and other 

baseline models. Additionally, the mean rank of the models based on different performance metrics is 

provided in Table 22. In the context of learning errors, testing errors, and Jaccard values, lower values 

indicate good results. As for the global minima ratio and TV  values, the maximum values of 1 for 

global ratio and higher values of TV  indicate a positive impact on the overall performance.  
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Table 16. Tabulated learnMAPE  with the bold values indicates NR3SAT obtained the lowest learnMAPE   at NN  and * 

indicates that there is no value generated for the particular NN . The bracket indicates the ratio of improvement. 

NN NR3SAT 3SAT MAJ2SAT 
RANkSAT 

( )1,2,3k =  

RANkSAT 

( )1,3k =  

RANkSAT 

( )2,3k =  

GRANkSAT 

( )1,2,3k =  

GRANkSAT 

( )1,3k =  

GRANkSAT 

( )2,3k =  

9-17 13.100 14.167 (-0.075) 39.125 (-0.665) 71.631 (-0.817) 66.639 (-0.803) 23.252 (-0.437) 70.247 (-0.814) 84.992 (-0.846) 15.5 (-0.155) 

18-26 21.248 26.437 (-0.196) 68.867 (-0.691) 85.265 (-0.751) 90.223 (-0.764) 48.707 (-0.564) 78.463 (-0.729) 94.939 (-0.776) 38.993 (-0.455) 

27-35 33.366 39.586 (-0.157) 62.08 (-0.463) 95.961 (-0.652) 96.084 (-0.653) 65.87 (-0.493) 97.875 (-0.659) 97.656 (-0.658) 65.86 (-0.493) 

36-44 46.315 49.745 (-0.069) 81.272 (-0.43) 98.493 (-0.53) 98.83 (-0.531) 79.411 (-0.417) 98.909 (-0.532) 96.585 (-0.52) 79.991 (-0.421) 

45-53 57.203 62.726 (-0.088) 87.492 (-0.346) 98.794 (-0.421) 99.01 (-0.422) 88.666 (-0.355) 61.812 (-0.075) 60.256 (-0.051) 60.256 (-0.051) 

54-62 67.024 70.622 (-0.051) 94.842 (-0.293) 98.991 (-0.323) 99.01 (-0.323) 94.691 (-0.292) 98.947 (-0.323) 98.443 (-0.319) 91.722 (-0.269) 

63-71 73.548 76.524 (-0.039) 96.048 (-0.234) 99.01 (-0.257) 99.01 (-0.257) 96.23 (-0.236) 98.929 (-0.257) 99.01 (-0.257) 95.838 (-0.233) 

72-80 77.766 82.529 (-0.058) 98.276 (-0.209) 99.01 (-0.215) 99.01 (-0.215) 97.183 (-0.2) 99.01 (-0.215) 99.01 (-0.215) 98.388 (-0.21) 

81-89 84.977 87.987 (-0.034) 98.805 (-0.14) 99.01 (-0.142) * 98.556 (-0.138) 85.968 (-0.012) 85.968 (-0.012) 83.852 (0.013) 

90-98 88.069 88.119 (-0.001) 98.686 (-0.108) 99.01 (-0.111) * 98.636 (-0.107) 99.01 (-0.111) 99.01 (-0.111) 98.788 (-0.109) 

99-107 89.669 92.163 (-0.027) 98.999 (-0.094) * * 98.87 (-0.093) 99.01 (-0.094) 99.01 (-0.094) 98.469 (-0.089) 

108-116 91.121 93.593 (-0.026) 99.01 (-0.08) * * 98.986 (-0.079) 99.01 (-0.08) 99.01 (-0.08) 98.98 (-0.079) 

117-125 94.553 94.746 (-0.002) 99.01 (-0.045) * * 98.971 (-0.045) 99.01 (-0.045) 99.01 (-0.045) 98.985 (-0.045) 

126-134 95.591 96.29 (-0.007) 99.01 (-0.035) * * 98.52 (-0.03) 99.01 (-0.035) 99.01 (-0.035) 99.01 (-0.035) 

135-143 96.173 97.225 (-0.011) 99.01 (-0.029) * * 99.01 (-0.029) * * 99.01 (-0.029) 

144-152 98.190 98.626 (-0.004) 99.01 (-0.008) * * 99.01 (-0.008) * * 99.01 (-0.008) 

153-161 98.090 98.386 (-0.003) * * * 99.01 (-0.009) * * 99.01 (-0.009) 

162-170 97.764 98.581 (-0.008) * * * * * * 99.01 (-0.013) 

171-179 98.128 98.836 (-0.007) * * * * * * 99.01 (-0.009) 

180-188 98.900 98.987 (-0.001) * * * * * * * 

189-197 98.912 98.995 (-0.001) * * * * * * * 

198-206 98.909 98.923 (0) * * * * * * * 

207-215 98.877 98.957 (-0.001) * * * * * * * 

(+/=/-)  23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 

Min 13.1000 14.1667 39.1254 71.6310 66.6387 23.2515 61.8120 60.2562 15.5000 

Max 98.9124 98.9947 99.0098 99.0098 99.0098 99.0098 99.0098 99.0098 99.0098 

Avg 79.0214 80.9891 88.7214 94.5174 93.4770 87.2693 91.8006 93.7078 85.2463 
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Table 17. Tabulated testMAPE  with * indicates that there is no value generated for the particular NN  . The bold values 

indicates that the proposed NR3SAT obtained the lowest testing error compared to baseline logical rules at the particular NN . 

NN NR3SAT 3SAT MAJ2SAT 
RANkSAT 

( )1,2,3k =  

RANkSAT 

( )1,3k =  

RANkSAT 

( )2,3k =  

GRANkSAT 

( )1,2,3k =  

GRANkSAT 

( )1,3k =  

GRANkSAT 

( )2,3k =  

9-17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0000 

18-26 0.0000 0.0000 0.0000 0.0003 0.0019 0.0000 0.0000 0.0066 0.0000 

27-35 0.0000 0.0000 0.0000 0.0066 0.0076 0.0000 0.0090 0.0078 0.0001 

36-44 0.0000 0.0000 0.0002 0.0093 0.0096 0.0002 0.0095 0.0074 0.0001 

45-53 0.0000 0.0000 0.0015 0.0098 0.0098 0.0009 0.0000 0.0000 0.0000 

54-62 0.0000 0.0000 0.0057 0.0099 0.0100 0.0041 0.0098 0.0091 0.0035 

63-71 0.0000 0.0000 0.0073 0.0100 0.0100 0.0076 0.0099 0.0099 0.0065 

72-80 0.0000 0.0001 0.0080 0.0100 0.0100 0.0086 0.0100 0.0100 0.0084 

81-89 0.0006 0.0011 0.0097 0.0100 * 0.0093 0.0009 0.0009 0.0007 

90-98 0.0018 0.0025 0.0099 0.0100 * 0.0095 0.0100 0.0100 0.0097 

99-107 0.0027 0.0034 0.0099 * * 0.0098 0.0100 0.0100 0.0098 

108-116 0.0043 0.0052 0.0100 * * 0.0099 0.0100 0.0100 0.0099 

117-125 0.0061 0.0065 0.0100 * * 0.0098 0.0100 0.0100 0.0099 

126-134 0.0070 0.0071 0.0100 * * 0.0099 0.0100 0.0100 0.0100 

135-143 0.0074 0.0082 0.0100 * * 0.0100 * * 0.0100 

144-152 0.0084 0.0092 0.0100 * * 0.0100 * * 0.0100 

153-161 0.0089 0.0091 * * * 0.0100 * * 0.0100 

162-170 0.0089 0.0095 * * * * * * 0.0100 

171-179 0.0091 0.0097 * * * * * * 0.0100 

180-188 0.0095 0.0098 * * * * * * * 

189-197 0.0096 0.0099 * * * * * * * 

198-206 0.0097 0.0098 * * * * * * * 

207-215 0.0099 0.0099 * * * * * * * 

(+/=/-)  15/8/0 20/3/0 22/1/0 22/1/0 20/3/0 21/2/0 23/0/0 21/2/0 

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Max 0.0099 0.0099 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 

Avg 0.0045 0.0048 0.0064 0.0076 0.0074 0.0064 0.0071 0.0073 0.0062 
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Table 18. Tabulated GR with * indicates that there is no value generated for the particular NN . The bold values indicates 

that the proposed NR3SAT obtained the highest ratio compared to baseline logical rules at the particular NN . 

NN NR3SAT 3SAT MAJ2SAT 
RANkSAT 

( )1,2,3k =  

RANkSAT 

( )1,3k =  

RANkSAT 

( )2,3k =  

GRANkSAT 

( )1,2,3k =  

GRANkSAT 

( )1,3k =  

GRANkSAT 

( )2,3k =  

9-17 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9100 1.0000 

18-26 1.0000 1.0000 1.0000 0.9700 0.8100 1.0000 1.0000 0.3400 1.0000 

27-35 1.0000 1.0000 1.0000 0.3400 0.2400 1.0000 0.1000 0.2200 0.9900 

36-44 1.0000 1.0000 0.9800 0.0700 0.0400 0.9800 0.0473 0.2600 0.9900 

45-53 1.0000 1.0000 0.8500 0.0200 0.0200 0.9100 1.0000 1.0000 1.0000 

54-62 1.0000 1.0000 0.4309 0.0100 0.0007 0.5900 0.0200 0.0900 0.6500 

63-71 1.0000 1.0000 0.2700 0.0003 0.0000 0.2400 0.0112 0.0100 0.3500 

72-80 1.0000 0.9900 0.2003 0.0000 0.0000 0.1400 0.0008 0.0015 0.1600 

81-89 0.9400 0.8900 0.0300 0.0000 * 0.0700 0.9100 0.9100 0.9300 

90-98 0.8200 0.7500 0.0100 0.0000 * 0.0500 0.0000 0.0000 0.0300 

99-107 0.7300 0.6600 0.0100 * * 0.0201 0.0000 0.0000 0.0200 

108-116 0.5700 0.4800 0.0000 * * 0.0100 0.0000 0.0000 0.0110 

117-125 0.3900 0.3500 0.0000 * * 0.0200 0.0000 0.0000 0.0102 

126-134 0.3000 0.2900 0.0000 * * 0.0100 0.0000 0.0000 0.0003 

135-143 0.2600 0.1800 0.0000 * * 0.0000 * * 0.0000 

144-152 0.1600 0.0800 0.0000 * * 0.0000 * * 0.0000 

153-161 0.1100 0.0900 * * * 0.0000 * * 0.0000 

162-170 0.1100 0.0500 * * * * * * 0.0000 

171-179 0.0900 0.0300 * * * * * * 0.0000 

180-188 0.0500 0.0200 * * * * * * * 

189-197 0.0402 0.0100 * * * * * * * 

198-206 0.0300 0.0200 * * * * * * * 

207-215 0.0100 0.0101 * * * * * * * 

(+/=/-)  16/7/0 20/3/0 22/1/0 22/1/0 20/3/0 20/3/0 22/1/0 20/3/0 

Min 0.0100 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Avg 0.5483 0.5174 0.3613 0.2410 0.2638 0.3553 0.2921 0.2673 0.3759 
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Table 19. Tabulated Jaccard values with * indicates that there is no value generated for the particular .NN  The bold values 

indicates that the proposed NR3SAT obtained the lowest Jaccard values compared to all baseline logical rules at the particular 

NN .The bracket indicates the ratio of improvement with negative values indicate the proposed logic outperform the baseline 

logics in generating lower Jaccard value. 

NN NR3SAT 3SAT MAJ2SAT 
RANkSAT 

( )1,2,3k =  

RANkSAT 

( )1,3k =  

RANkSAT 

( )2,3k =  

GRANkSAT 

( )1,2,3k =  

GRANkSAT 

( )1,3k =  

GRANkSAT 

( )2,3k =  

9-17 0.489 0.543 (-0.1) 0.585 (-0.164) 0.611 (-0.2) 0.613 (-0.203) 0.567 (-0.137) 0.636 (-0.231) 0.685 (-0.287) 0.552 (-0.115) 

18-26 0.482 0.549 (-0.123) 0.584 (-0.174) 0.618 (-0.22) 0.625 (-0.23) 0.577 (-0.165) 0.588 (-0.181) 0.605 (-0.204) 0.572 (-0.158) 

27-35 0.482 0.553 (-0.127) 0.581 (-0.17) 0.617 (-0.218) 0.608 (-0.207) 0.578 (-0.165) 0.623 (-0.226) 0.59 (-0.182) 0.58 (-0.168) 

36-44 0.48 0.556 (-0.137) 0.585 (-0.181) 0.593 (-0.191) 0.674 (-0.289) 0.582 (-0.177) 0.599 (-0.199) 0.591 (-0.189) 0.586 (-0.182) 

45-53 0.479 0.554 (-0.136) 0.582 (-0.177) 0.63 (-0.239) 0.592 (-0.192) 0.578 (-0.171) 0.555 (-0.137) 0.554 (-0.136) 0.554 (-0.136) 

54-62 0.478 0.551 (-0.133) 0.573 (-0.167) 0.725 (-0.341) 0.643 (-0.257) 0.589 (-0.188) 0.653 (-0.269) 0.63 (-0.242) 0.566 (-0.156) 

63-71 0.477 0.551 (-0.134) 0.577 (-0.173) 0.511 (-0.068) * 0.574 (-0.17) 0.664 (-0.282) 0.475 (0.004) 0.584 (-0.183) 

72-80 0.476 0.544 (-0.125) 0.573 (-0.169) * * 0.551 (-0.136) 0.582 (-0.182) 0.642 (-0.259) 0.594 (-0.199) 

81-89 0.475 0.543 (-0.125) 0.589 (-0.193) * * 0.585 (-0.188) 0.544 (-0.126) 0.544 (-0.126) 0.543 (-0.125) 

90-98 0.475 0.539 (-0.119) 0.547 (-0.132) * * 0.553 (-0.14) * * 0.566 (-0.16) 

99-107 0.474 0.542 (-0.125) 0.577 (-0.179) * * 0.601 (-0.211) * * 0.561 (-0.154) 

108-116 0.476 0.54 (-0.119) * * * 0.538 (-0.116) * * 0.608 (-0.218) 

117-125 0.479 0.55 (-0.128) * * * 0.529 (-0.093) * * 0.572 (-0.161) 

126-134 0.471 0.545 (-0.136) * * * 0.486 (-0.032) * * 0.484 (-0.028) 

135-143 0.474 0.56 (-0.153) * * * * * * * 

144-152 0.478 0.557 (-0.142) * * * * * * * 

153-161 0.463 0.549 (-0.157) * * * * * * * 

162-170 0.481 0.548 (-0.122) * * * * * * * 

171-179 0.469 0.57 (-0.178) * * * * * * * 

180-188 0.496 0.534 (-0.07) * * * * * * * 

189-197 0.47 0.483 (-0.028) * * * * * * * 

198-206 0.476 0.586 (-0.188) * * * * * * * 

207-215 0.504 0.594 (-0.151) * * * * * * * 

(+/=/-)  23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 23/0/0 

Min 0.4632 0.4833 0.5475 0.5114 0.5924 0.4860 0.5436 0.4747 0.4841 

Max 0.5043 0.5939 0.5892 0.7251 0.6743 0.6012 0.6638 0.6855 0.6079 

Avg  0.4784 0.5496 0.5776 0.6150 0.6261 0.5634 0.6048 0.5908 0.5659 
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Table 20. Tabulated TV values with * indicates that there is no value generated for the particular .NN  The bold values 

indicates that the model able to obtain the highest TV compared to all logical rules at the particular NN . The bracket 

indicates the ratio of improvement with positive values indicate the proposed logic outperform the baseline logics in 

generating higher TV value. 

NN NR3SAT 3SAT MAJ2SAT 
RANkSAT 

( )1,2,3k =  

RANkSAT 

( )1,3k =  

RANkSAT 

( )2,3k =  

GRANkSAT 

( )1,2,3k =  

GRANkSAT 

( )1,3k =  

GRANkSAT 

( )2,3k =  

9-17 636 529 (0.2023) 1287 (-0.5058) 653 (-0.026) 533 (0.1932) 645 (-0.014) 539 (0.18) 284 (1.2394) 830 (-0.2337) 

18-26 2476 1866 (0.3269) 3699 (-0.3306) 1416 (0.7486) 955 (1.5927) 2477 (-0.0004) 2613 (-0.0524) 846 (1.9267) 1947 (0.2717) 

27-35 4894 3854 (0.2698) 4452 (0.0993) 1260 (2.8841) 568 (7.6162) 5213 (-0.0612) 349 (13.0229) 947 (4.1679) 5213 (-0.0612) 

36-44 6969 5766 (0.2086) 6941 (0.004) 561 (11.4225) 199 (34.0201) 7483 (-0.0687) 322 (20.6429) 1602 (3.3502) 7002 (-0.0047) 

45-53 8404 7488 (0.1223) 7157 (0.1742) 110 (75.4) 111 (74.7117) 7745 (0.0851) 7855 (0.0699) 7399 (0.1358) 7399 (0.1358) 

54-62 9160 8589 (0.0665) 4113 (1.2271) 64 (142.125) 4 (2289) 5391 (0.6991) 195 (45.9744) 667 (12.7331) 6262 (0.4628) 

63-71 9629 9338 (0.0312) 2658 (2.6226) 3 (3208.6667) * 2353 (3.0922) 106 (89.8396) 94 (101.4362) 3428 (1.8089) 

72-80 9866 9573 (0.0306) 1974 (3.998) * * 1398 (6.0572) 8 (1232.25) 14 (703.7143) 1566 (5.3001) 

81-89 9325 8780 (0.0621) 300 (30.0833) * * 700 (12.3214) 9034 (0.0322) 9034 (0.0322) 9155 (0.0186) 

90-98 8183 7445 (0.0991) 100 (80.83) * * 500 (15.366) * * 300 (26.2767) 

99-107 7298 6578 (0.1095) 100 (71.98) * * 200 (35.49) * * 200 (35.49) 

108-116 5696 4796 (0.1877) * * * 100 (55.96) * * 110 (50.7818) 

117-125 3900 3500 (0.1143) * * * 200 (18.5) * * 102 (37.2353) 

126-134 3000 2898 (0.0352) * * * 100 (29) * * 3 (999) 

135-143 2600 1800 (0.4444) * * * * * * * 

144-152 1600 800 (1) * * * * * * * 

153-161 1100 900 (0.2222) * * * * * * * 

162-170 1100 500 (1.2) * * * * * * * 

171-179 900 300 (2) * * * * * * * 

180-188 500 200 (1.5) * * * * * * * 

189-197 402 100 (3.02) * * * * * * * 

198-206 300 200 (0.5) * * * * * * * 

207-215 100 100 (0) * * * * * * * 

Min 100 100 0 3 4 100 0 14 0 

Max 9866 9573 7157 1416 955 7745 9034 9034 9155 

Avg 4263 3735 2049 581 395 2465 2102 2321 2290 
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Thus, it can be observed that the proposed NR3SAT achieved the lowest mean rank for 

learning errors, testing errors, and Jaccard values, indicating that this proposed model can generate 

the lowest errors and has high dissimilarity between the retrieved final neuron states and the 

benchmark states. On the other hand, the proposed NR3SAT attained the highest mean rank for 

global ratio and TV , indicating that NR3SAT attained more global solutions, and the model 

explored different solutions in various areas of the search space compared to other baseline models. 

Therefore, it can be concluded that the proposed NR3SAT has been successfully integrated into 

the DHNN framework, enhancing the overall performance of DHNN. 

Table 21. Friedman test between the proposed NR3SAT model and existing models. 

 learnMAPE  testMAPE  GR  Jaccard TV  

T 51.437 42.358 42.564 39.243 26.061 

p-value 82.1614 10−  61.1602 10−  61.0612 10−  64.4297 10−  0.001 

Conclusion Reject 0H  Reject 0H  Reject 0H  Reject 0H  Reject 0H  

Table 22. Mean rank values of NR3SAT and other baseline models with different 

performance metrics. 

 learnMAPE  testMAPE  GR  Jaccard TV  

NR3SAT 1.00 2.38 7.63 1.00 7.17 

3SAT 2.38 2.50 7.50 2.33 5.00 

MAJ2SAT 4.63 4.25 5.75 5.00 6.33 

RANkSAT 

( )1,2,3k =  
7.44 7.13 2.81 7.83 3.33 

RANkSAT 

( )1,3k =  
7.81 7.75 2.06 7.83 1.83 

RANkSAT 

( )2,3k =  
4.38 4.38 5.63 4.17 7.25 

GRANkSAT 

( )1,2,3k =   
6.94 6.13 4.00 7.33 4.33 

GRANkSAT 

( )1,3k =  
7.00 6.88 3.25 6.08 2.92 

GRANkSAT 

( )2,3k =   
3.44 3.63 6.38 3.42 6.83 
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8.2. Performance analysis of optimizing retrieval phase of 3NR SAT  

In optimizing the retrieval phase of DHNN, it is essential to ensure that all the retrieved final 

neurons state attained global minima solutions. Therefore, we implemented EA during the learning 

phase of DHNN to acknowledge all the limitations mentioned in the previous section. Researchers 

[28,33,39,51] employed EA as the learning algorithm to handle the task of SAT minimization 

within DHNN. By implementing this optimization algorithm, EA can significantly improve the 

converge of network towards minimizing the cost function while maintaining a high level of 

dissimilarity compared to the benchmark states. However, the diversification of the solutions 

particularly concerning negativity remains uncertain. Therefore, incorporating a degree of 

negativity in the final neuron states becomes imperative to boost DHNN's performance in 

classification tasks. To achieve this, HBHA was employed during the retrieval phase of DHNN to 

optimize the final neuron states. These optimized solutions aim to satisfy the multi-objective 

function outlined in Eqs (15)–(17), with a specific target of achieving negativity within each 

solution, 51 2 3 4:
f f f f f f

i NNStar S S S S S S  . This raises the question of to what extent 

HBHA can maximize negativity while ensuring the attainment of global solutions and maintaining 

low similarity indices. Therefore, the performance of HBHA in maximizing the degree of 

negativity within the solution states will be thoroughly evaluated. 

Figure 11illustrated the impact of optimizing the retrieval phase of DHNN through HBHA in 

achieving a degree of negativity in the solution states while preserving the attainment of global 

solutions in comparison to not optimizing the retrieved final neuron states. Several observations 

can be drawn from Figure 11. First, it is evident that the implementation of a metaheuristic 

algorithm significantly enhances the performance of DHNN in achieving maximum diversification 

while retaining the ability to obtain global solutions. As indicated by the black line representing 

the state "Before HBHA," without optimizing the retrieved final neuron states, the solutions 

obtained fail to achieve maximum diversity. With the implementation of HBHA, optimized final 

neuron states can achieved maximum diversity and achieve global solutions. Based on the findings 

presented in Figure 12, it can be concluded that HBHA performs optimally when the degree of 

negativity in a solution string is set to be at least 60%. However, when the number of neurons 

exceeds 81, HBHA struggles to ensure all solution strings can achieve maximum diversity and 

achieve global minima energy. To address this challenge, parameter tuning was conducted by 

specifically focusing on adjusting the rate of replicating the best solutions. HBHA with at least 60% 

negativity performs effectively when 0.7 =   ensuring that all optimized final neuron states 

achieve both diversity and global minima energy. Additionally, the performance of HBHA start to 

drop when degree of negativity is set to be at least 70% because of the limited solution space to 

obtained optimal solutions. Besides that, although all solution strings can achieve maximum 

diversity and reach global minima energy when m is in the range of 0.1 to 0.5 as shown in Figure 

11, the optimized states encounter overfitting issue. This occurs because when number of 

percentages is too low, there is a high tendency to obtain repetitive final neuron states due to the 

lack of variation in terms of negativity. 



29866 

AIMS Mathematics  Volume 9, Issue 11, 29820–29882. 

 

Figure 11. DGN of HBHA with different m. 

 

Figure 12. DGN of HBHA when m=0.5, m=0.6 and m=0.7.
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To assess the effectiveness of HBHA in achieving the desired at least 60% negativity in a 

solution, the performance of HBHA will be compared with 10 baseline algorithms. The evaluation 

will focus on achieving high diversity, attaining a high number of global solutions and obtaining 

solutions that exhibit both diversity and attained global solutions with low similarity indices. A 

performance comparison between HBHA and 10 other algorithms with a focus on diversity, DSN  

are provided as in Figure 13 and Table 23. In Figure 13, it is evident that several algorithms 

including ABCK, GA, ABCJ, ABCS and DEA fail to attain maximum DSN  when the negativity 

variation is set to be at least 60%.  

One contributing factor to these findings is the lack of an efficient exploitation process in these 

algorithms. For example, in the case of GA, the mutation process is designed to enhance exploitation 

but it only selects one random chromosome out of 100 solution sets to mutate. Regarding the ABC 

algorithms, all three of them primarily focus on global search by introducing various bitwise 

operators to update the positions of employed bees. However, they lack an exploitation process to 

improve neighbourhood solutions, which ultimately results in low DSN   being obtained. Another 

issue related to the lower DSN   values for ABCK is the implementation of bitwise operations to 

update the employed bee solutions. In this scenario, the proposed bitwise operator results in more 1 

output compared to -1. This indirectly reduces the efficiency of ABC in producing more negative 

states compared to positive states. Other than that, an issue can also be observed in the DEA process, 

where there is an imbalance between the exploration and exploitation processes. The absence of an 

effective exploitation process in DEA leads to a lower DSN  of solutions obtained. 

In contrast, several algorithms demonstrated exceptional performance in achieving maximum 

DSN  as shown in Table 23. It is worth noting that SCA, EA, WOA and BHA exhibited an increase 

in DSN  and were able to achieve maximum DSN  as the number of neurons increases. However, 

when considering overall performance, HBHA and CSA stood out as the only algorithms that 

consistently achieved maximum diversity across all neuron numbers. One shared feature of these 

two algorithms was their capacity for duplicating solutions to boost the performance of the 

algorithms. In CSA, a cloning process was employed to clone the best solution using a predefined 

clone rate 0.5 based on the total number of populations. In the case of HBHA, solution replication 

was performed based on the top best solution obtained, utilizing a replication rate of 0.7. This 

highlights the effectiveness of the operator in improving global search capabilities, leading to their 

remarkable achievement of maximum diversity. From the perspective of global minima solutions, 

GRN the performance of all algorithms was evaluated to determine whether the solution converge 

to local or global solution while achieving maximum diversity. The result as presented in Table 24 

and Figure 14 reveal a notable trend such that BHA, SCA, WOA and EA experience a significant 

decline in performance when striving to achieve a maximum global solution. This contrasts with 

the performance trends depicted in Figure 13. This observation implies that while these algorithms 

are effective at attaining a high DSN , the solutions they produce may not necessarily be global since 

it led to unsatisfied interpretation. This is due to the updating rule concept in BHA, SCA and WOA 

where updates occur for each state of the solutions string. While this process enhances diversity, 

the alterations in each state disrupt the attainment of a satisfied interpretation, resulting in lower 

global solutions [26,44,50]. 
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Figure 13. DSN  of HBHA with baseline algorithm. Refer Table 23 for details. 
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absence of additional operators in these algorithms to enhance the exploration of global solutions. 

As highlighted by Karim et al. [51], EA, ABC and GA face limitations in optimizing the learning 

phase of DHNN to fulfil multi-objective functions due to constraints in improving local solutions. 

The findings also reveal that only HBHA and CSA possess the capability to achieve DGN  . 

However, the quality of the optimized final neuron states obtained by these algorithms remain 

uncertain. Figure 16 and Table 26 presents an evaluation of the quality of the optimized final 

neuron states obtained through various algorithms. During the retrieval phase of DHNN, the 

evaluation of the retrieved final neuron states involved a comparison with benchmark states. 

However, in optimizing the retrieved final neurons state, the assessment focuses on 

comparing the quality of the optimized final neuron states to their initial, unoptimized counterparts. 

The low values of RT indicate a significant dissimilarity between the states before and after 

optimization and the high values of RT indicate high similarity between before and after 

optimization took place. In this context, RT was chosen to assess the similarity within the solutions 

strings as this metric able to measure the similarity of negative cases [16]. Based on the results in 

Figure 16, ABCK demonstrated the worst performance. Regardless of the number of neurons, the 

similarity index RT consistently achieved the maximum value of 1. This indicates that there was 

no improvement in the quality of the final neuron states after optimization. The performance 

patterns of ABCJ and ABCS also show a significant increase in the similarity of the optimized 

final neuron states as the number of neurons increases. In contrast, when comparing HBHA with 

all the algorithms, it is evident that HBHA consistently achieved the lowest values of RT for most 

of the number of neurons, indicating that DHNN produced high-quality final neuron states through 

the HBHA optimization process. The quantitative performance of the proposed HBHA and other 

baseline algorithms is presented as in Table 27. Based on the findings, it can be concluded that 

HBHA was effectively implemented to optimize the retrieval phase of DHNN, successfully 

achieving all the objectives outlined in Eqs (15)–(17). The Friedman test is used to assess the 

significant difference between the proposed HBHA and other baseline algorithms in general for a 

specific metric. For clarity, the null hypothesis and the alternative hypothesis for the Friedman test 

are outlined as follows: 

0 :H  There is no significant difference in the performance metrics between the proposed 

HBHA and other baseline algorithms. 

1 :H  There is a significant difference in the performance metrics between the proposed 

HBHA and other baseline algorithms. 
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Figure 14. GRN of HBHA with baseline algorithm. Refer Table 24 for details comparison. 

 

Figure 15. DGN of HBHA and other baseline algorithms. Refer Table 25 for details 

comparison. 
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Table 23. Tabulated DSN  values of HBHA and baseline algorithms. The bracket indicates the ratio of improvement with * 

denotes there is no ratio of improvement since the baseline obtained zero value at that NN. 

NN HBHA BHA GA CSA DEA EA ABCJ ABCK ABCS SCA WOA 

9 10000 9992 (0.001) 10000 (0) 10000 (0) 10000 (0) 9616 (0.04) 10000 (0) 1718 (4.821) 10000 (0) 9572 (0.045) 9511 (0.051) 

18 10000 9999 (0) 8562 (0.168) 10000 (0) 9999 (0) 9469 (0.056) 10000 (0) 391 (24.575) 10000 (0) 9728 (0.028) 9607 (0.041) 

27 10000 10000 (0) 5458 (0.832) 10000 (0) 9951 (0.005) 9728 (0.028) 10000 (0) 141 (69.922) 9948 (0.005) 9827 (0.018) 9725 (0.028) 

36 10000 10000 (0) 2482 (3.029) 10000 (0) 9765 (0.024) 9849 (0.015) 9918 (0.008) 114 (86.719) 9562 (0.046) 9897 (0.01) 9881 (0.012) 

45 10000 10000 (0) 2852 (2.506) 10000 (0) 9905 (0.01) 9982 (0.002) 9052 (0.105) 70 (141.857) 8612 (0.161) 9986 (0.001) 9991 (0.001) 

54 10000 10000 (0) 1746 (4.727) 10000 (0) 9683 (0.033) 9991 (0.001) 6542 (0.529) 28 (356.143) 7071 (0.414) 9996 (0) 9993 (0.001) 

63 10000 9998 (0) 384 (25.042) 10000 (0) 9422 (0.061) 9995 (0.001) 3713 (1.693) 17 (587.235) 5929 (0.687) 9997 (0) 9993 (0.001) 

72 10000 9989 (0.001) 328 (29.488) 10000 (0) 8865 (0.128) 9997 (0) 1812 (4.519) 6 (1665.667) 4862 (1.057) 9996 (0) 9994 (0.001) 

81 10000 9983 (0.002) 74 (134.135) 10000 (0) 8059 (0.241) 9994 (0.001) 899 (10.124) 2 (4999) 3981 (1.512) 9999 (0) 9997 (0) 

90 10000 9991 (0.001) 223 (43.843) 10000 (0) 8475 (0.18) 10000 (0) 392 (24.51) 2 (4999) 3515 (1.845) 9999 (0) 10000 (0) 

99 10000 9990 (0.001) 96 (103.167) 10000 (0) 7507 (0.332) 10000 (0) 193 (50.814) 3 (3332.333) 3078 (2.249) 10000 (0) 10000 (0) 

108 10000 9976 (0.002) 0 (*) 10000 (0) 6099 (0.64) 10000 (0) 81 (122.457) 1 (9999) 2990 (2.345) 10000 (0) 10000 (0) 

(+/=/-)  8/4/0 11/1/0 0/12/0 11/1/0 9/3/0 9/3/0 12/0/0 10/2/0 10/2/0 9/3/0 

Min 10000 9976 0 10000 6099 9469 81 1 2990 9572 9511 

Max 10000 10000 10000 10000 10000 10000 10000 1718 10000 10000 10000 

Avg 10000 9993 2684 10000 8978 9885 5217 208 6629 9916 9891 
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Table 24. Tabulated GRN  values of HBHA and other baseline algorithms. The bracket indicates the ratio of improvement 

between proposed HBHA and baseline algorithms. 

NN HBHA BHA GA CSA DEA EA ABCJ ABCK ABCS SCA WOA 

9 1 0.756 (0.323) 0.796 (0.256) 1 (0) 1 (0) 0.465 (1.149) 1 (0) 1 (0) 1 (0) 0.676 (0.48) 0.668 (0.497) 

18 1 0.609 (0.642) 0.733 (0.365) 1 (0) 1 (0) 0.265 (2.772) 1 (0) 1 (0) 1 (0) 0.437 (1.289) 0.434 (1.304) 

27 1 0.469 (1.13) 0.753 (0.328) 1 (0) 1 (0) 0.176 (4.692) 1 (0) 1 (0) 1 (0) 0.31 (2.227) 0.261 (2.827) 

36 1 0.474 (1.111) 0.726 (0.378) 1 (0) 1 (0) 0.123 (7.163) 1 (0) 1 (0) 1 (0) 0.206 (3.845) 0.177 (4.643) 

45 1 0.539 (0.856) 0.761 (0.314) 1 (0) 1 (0) 0.088 (10.429) 1 (0) 1 (0) 1 (0) 0.138 (6.225) 0.12 (7.368) 

54 1 0.507 (0.973) 0.725 (0.38) 1 (0) 1 (0) 0.062 (15.129) 1 (0) 1 (0) 1 (0) 0.093 (9.707) 0.078 (11.903) 

63 1 0.441 (1.268) 0.759 (0.318) 1 (0) 1 (0) 0.042 (23.039) 1 (0) 1 (0) 1 (0) 0.059 (16.007) 0.045 (21.173) 

72 1 0.421 (1.378) 0.735 (0.361) 1 (0) 1 (0) 0.033 (29.488) 1 (0) 1 (0) 1 (0) 0.041 (23.691) 0.033 (29.675) 

81 1 0.407 (1.459) 0.711 (0.406) 1 (0) 1 (0) 0.021 (47.077) 1 (0) 1 (0) 1 (0) 0.027 (36.037) 0.023 (42.86) 

90 1 0.352 (1.844) 0.73 (0.37) 1 (0) 1 (0) 0.016 (61.112) 1 (0) 1 (0) 1 (0) 0.017 (56.804) 0.016 (60.728) 

99 1 0.375 (1.669) 0.71 (0.409) 1 (0) 1 (0) 0.011 (88.286) 1 (0) 1 (0) 1 (0) 0.012 (85.207) 0.01 (97.039) 

108 1 0.322 (2.11) 0.733 (0.364) 1 (0) 1 (0) 0.007 (134.135) 1 (0) 1 (0) 1 (0) 0.01 (103.167) 0.008 (128.87) 

(+/=/-)  12/0/0 12/0/0 0/12/0 0/12/0 12/0/0 0/12/0 0/12/0 0/12/0 12/0/0 12/0/0 

Min  1.000 0.322 0.710 1.000 1.000 0.007 1.000 1.000 1.000 0.010 0.008 

Max 1.000 0.756 0.796 1.000 1.000 0.465 1.000 1.000 1.000 0.676 0.668 

Avg  1.000 0.473 0.739 1.000 1.000 0.109 1.000 1.000 1.000 0.169 0.156 
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Table 25. Tabulated DGN  values of HBHA versus baseline algorithms. The bracket indicates the ratio of improvement with 

* denotes there is no ratio of improvement since the baseline obtained zero value at that NN. 

NN HBHA BHA GA CSA DEA EA ABCJ ABCK ABCS SCA WOA 

9 10000 
7554 

(0.3238) 

7959 

(0.2564) 

10000 

(0) 

10000 

(0) 

4427 

(1.2589) 
10000 (0) 

1718 

(4.8207) 
10000 (0) 

6474 

(0.5446) 

6331 

(0.5795) 

18 10000 
6090 

(0.642) 

6174 

(0.6197) 

10000 

(0) 

9999 

(0.0001) 

2558 

(2.9093) 
10000 (0) 

391 

(24.5754) 
10000 (0) 

4256 

(1.3496) 

4168 

(1.3992) 

27 10000 
4694 

(1.1304) 

4004 

(1.4975) 

10000 

(0) 

9951 

(0.0049) 
1720 (4.814) 10000 (0) 141 (69.922) 

9948 

(0.0052) 

3055 

(2.2733) 

2554 

(2.9154) 

36 10000 
4738 

(1.1106) 

1742 

(4.7405) 

10000 

(0) 

9765 

(0.0241) 

1202 

(7.3195) 

9918 

(0.0083) 

114 

(86.7193) 

9562 

(0.0458) 

2049 

(3.8804) 

1749 

(4.7176) 

45 10000 
5389 

(0.8556) 

2043 

(3.8948) 

10000 

(0) 

9905 

(0.0096) 

874 

(10.4416) 

9052 

(0.1047) 

70 

(141.8571) 

8612 

(0.1612) 

1381 

(6.2411) 

1193 

(7.3822) 

54 10000 
5069 

(0.9728) 

1245 

(7.0321) 

10000 

(0) 

9683 

(0.0327) 
620 (15.129) 

6542 

(0.5286) 

28 

(356.1429) 

7071 

(0.4142) 
932 (9.7296) 

774 

(11.9199) 

63 10000 
4408 

(1.2686) 

240 

(40.6667) 

10000 

(0) 

9422 

(0.0613) 

416 

(23.0385) 

3713 

(1.6932) 

17 

(587.2353) 

5929 

(0.6866) 

588 

(16.0068) 

451 

(21.1729) 

72 10000 
4194 

(1.3844) 

226 

(43.2478) 

10000 

(0) 

8865 

(0.128) 

328 

(29.4878) 

1812 

(4.5188) 

6 

(1665.6667) 

4862 

(1.0568) 

405 

(23.6914) 

326 

(29.6748) 

81 10000 
4049 

(1.4697) 

41 

(242.9024) 

10000 

(0) 

8059 

(0.2408) 

208 

(47.0769) 

899 

(10.1235) 
2 (4999) 

3981 

(1.5119) 
270 (36.037) 

228 

(42.8596) 

90 10000 
3507 

(1.8514) 

133 

(74.188) 

10000 

(0) 

8475 

(0.1799) 

161 

(61.1118) 

392 

(24.5102) 
2 (4999) 3515 (1.845) 

173 

(56.8035) 

162 

(60.7284) 

99 10000 
3737 

(1.6759) 

61 

(162.9344) 

10000 

(0) 

7507 

(0.3321) 

112 

(88.2857) 

193 

(50.8135) 

3 

(3332.3333) 

3078 

(2.2489) 

116 

(85.2069) 

102 

(97.0392) 

108 10000 
3202 

(2.123) 
0 (*) 

10000 

(0) 

6099 

(0.6396) 

74 

(134.1351) 

81 

(122.4568) 
1 (9999) 

2990 

(2.3445) 

96 

(103.1667) 

77 

(128.8701) 

(+/=/-)  12/0/0 12/0/0 0/12/0 11/1/0 12/0/0 9/3/0 12/0/0 10/2/0 12/0/0 12/0/0 

Min 10000 3202 0 10000 6099 74 81 1 2990 96 77 

Max 10000 7554 7959 10000 10000 4427 10000 1718 10000 6474 6331 

Avg 10000 4719 1989 10000 8978 1058 5217 208 6629 1650 1510 
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Table 26. Tabulated RT  values for HBHA versus baseline algorithms. The bracket indicates the ratio of improvement, and 

the negative ratio implies the proposed HBHA outperform baseline algorithms. The bold values indicate that the proposed 

HBHA obtained the lowest RT  values compared to other baseline algorithms. 

NN HBHA BHA GA CSA DEA EA ABCJ ABCK ABCS SCA WOA 

9 0.104 

0.185 

(-0.436) 

0.469  

(-0.778) 

0.315  

(-0.669) 

0.329  

(-0.683) 

0.323  

(-0.677) 

0.41  

(-0.745) 

1  

(-0.896) 

0.147  

(-0.289) 

0.331  

(-0.685) 

0.342  

(-0.695) 

18 0.114 

0.179  

(-0.366) 

0.578  

(-0.803) 

0.322  

(-0.647) 

0.337  

(-0.663) 

0.336  

(-0.662) 

0.342  

(-0.668) 

1  

(-0.886) 

0.083 

(0.372) 

0.331  

(-0.656) 

0.349  

(-0.674) 

27 0.111 

0.179  

(-0.383) 

0.622  

(-0.822) 

0.333  

(-0.668) 

0.342  

(-0.676) 

0.336  

(-0.671) 

0.325  

(-0.659) 

1  

(-0.889) 

0.09  

(0.231) 

0.331  

(-0.665) 

0.345  

(-0.679) 

36 0.095 

0.139  

(-0.318) 

0.656  

(-0.856) 

0.334  

(-0.716) 

0.354  

(-0.732) 

0.335  

(-0.717) 

0.321  

(-0.704) 

1  

(-0.905) 

0.106  

(-0.11) 

0.329  

(-0.712) 

0.341  

(-0.722) 

45 0.089 

0.106  

(-0.159) 

0.674 

 (-0.867) 

0.338  

(-0.736) 

0.346  

(-0.742) 

0.334  

(-0.732) 

0.358  

(-0.75) 

1  

(-0.911) 

0.147  

(-0.393) 

0.331  

(-0.73) 

0.34  

(-0.737) 

54 0.085 

0.1 

(-0.149) 

0.683  

(-0.875) 

0.346  

(-0.754) 

0.358  

(-0.762) 

0.333 

(-0.744) 

0.494  

(-0.827) 

1  

(-0.915) 

0.23  

(-0.629) 

0.331  

(-0.743) 

0.341  

(-0.75) 

63 0.085 

0.096  

(-0.112) 

0.698  

(-0.878) 

0.349  

(-0.755) 

0.372  

(-0.77) 

0.334  

(-0.744) 

0.674  

(-0.873) 

1  

(-0.915) 

0.295  

(-0.711) 

0.33  

(-0.741) 

0.339  

(-0.748) 

72 0.081 

0.094  

(-0.135) 

0.699  

(-0.884) 

0.357 

(-0.773) 

0.403  

(-0.799) 

0.333  

(-0.756) 

0.824  

(-0.902) 

1  

(-0.919) 

0.376  

(-0.784) 

0.33  

(-0.755) 

0.335  

(-0.758) 

81 0.081 

0.092 

(-0.124) 

0.71  

(-0.886) 

0.363  

(-0.778) 

0.453  

(-0.822) 

0.334  

(-0.758) 

0.909  

(-0.911) 

1  

(-0.919) 

0.453  

(-0.822) 

0.33  

(-0.756) 

0.334  

(-0.759) 

90 0.078 

0.091 

(-0.144) 

0.722  

(-0.892) 

0.371  

(-0.79) 

0.435  

(-0.821) 

0.333  

(-0.766) 

0.959  

(-0.919) 

1  

(-0.922) 

0.495  

(-0.843) 

0.331  

(-0.765) 

0.334  

(-0.767) 

99 0.075 

0.092  

(-0.183) 

0.716  

(-0.895) 

0.378  

(-0.801) 

0.498  

(-0.849) 

0.334  

(-0.774) 

0.979  

(-0.923) 

1  

(-0.925) 

0.542  

(-0.861) 

0.33  

(-0.772) 

0.335  

(-0.775) 

108 0.076 

0.09  

(-0.165) 

0.723  

(-0.896) 

0.386  

(-0.805) 

0.589  

(-0.872) 

0.333  

(-0.773) 

0.991  

(-0.924) 

1  

(-0.924) 

0.55  

(-0.863) 

0.33  

(-0.771) 

0.332  

(-0.773) 

(+/=/-)  12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 10/2/0 12/0/0 12/0/0 

Min 0.075 0.090 0.469 0.315 0.329 0.323 0.321 1.000 0.083 0.329 0.332 

Avg 0.090 0.120 0.662 0.349 0.401 0.333 0.632 1.000 0.293 0.331 0.339 

Max 0.114 0.185 0.723 0.386 0.589 0.336 0.991 1.000 0.550 0.331 0.349 
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Figure 16. RT values of HBHA with baseline algorithm. 

Table 27. Overall performance of HBHA and baseline algorithms. 

Parameter DSN
 GRN

 DGN
 RT 

HBHA 

(Proposed model) 
✓ 

 

✓ 

 

✓ 

 

✓ 

GA     

CSA ✓ ✓ ✓  

DEA  ✓   

ABCJ  ✓   

ABCK  ✓   

ABCS  ✓   

EA ✓    

SCA ✓    

WOA ✓    

BHA ✓    

The Friedman test results are presented in Table 28. Based on the results, the p-value for all 

performance metrics is less than 0.05. Since 0.000 0.05 , we can reject the null hypothesis. Thus, it 

can be concluded that there is a significant difference in the performance metrics between the proposed 

HBHA and other baseline algorithms. Furthermore, Table 29 presents the mean rank of the algorithms 

across various performance metrics. In the context of maximizing the diversity and global solutions of 

the optimized final neuron state, higher values indicate the algorithms' capacity to generate maximum 

diversity and achieve global solutions. Notably, HBHA and CSA stand out with the highest mean rank 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 9 18 27 36 45 54 63 72 81 90 99 108

R
T

NN

HBHA BHA GA CSA

DEA EA ABCJ ABCK

ABCS SCA WOA



29876 

AIMS Mathematics  Volume 9, Issue 11, 29820–29882. 

in this regard. Given their strong performance in maximizing these metrics, it is evident that both 

algorithms also exhibit the lowest mean rank in terms of error rate when seeking maximum diversified 

solutions and maximum attainment of global solutions. However, concerning the similarity index, 

HBHA secures the lowest rank of 1.17 compared to other baseline algorithms, underscoring its 

efficiency in producing optimized solutions with high dissimilarity compared to benchmark states. 

Table 28. Friedman Test of various performance metrics. 

Performance Metrics p-value Conclusion 

DSN  133.3421 10−  Reject 0H  

GRN  215.9879 10−  Reject 0H  

DGN  197.3346 10−  Reject 0H  

RT  
177.0067 10−  Reject 0H  

Table 29. Mean rank values of HBHA and other baseline algorithms with different 

performance metrics. 

 DSN  GRN  DGN  RT  

HBHA 9.71 8.50 10.25 1.17 

BHA 7.50 4.00 6.58 2.33 

GA 2.46 5.00 3.42 9.58 

CSA 9.71 8.50 10.25 5.83 

DEA 5.50 8.50 8.67 7.67 

EA 6.54 1.17 2.67 5.08 

ABCJ 5.04 8.50 7.29 8.50 

ABCK 1.08 8.50 1.08 11.00 

ABCS 4.83 8.50 7.71 4.33 

SCA 7.08 3.00 4.67 4.08 

WOA 6.54 1.83 3.42 6.42 

8.3. Impact analysis of 3NR SAT  

So far, the sections have demonstrated the overall performance of the proposed model focusing 

on the implementation of SAT in DHNN and the optimization of the retrieval phase of DHNN. This 

section discusses the impact of the proposed work on the overall performance of DHNN. Ideally, 

NR3SAT was formulated to address the limitation exits in the existing 3SAT. Both SAT are focusing 

on higher order systematic logic. The main difference between the existing 3SAT and the proposed 

NR3SAT lies in the appearance of negative literals within the clauses. In 3SAT, the appearance of 

positive and negative literals is random, often resulting in more positive literals compared to negative 

ones. In fact, this issue was supported by the finding of Abdeen et al. [36] which highlighted that the 

occurrence of negative literals for SAT is exceptionally infrequent. Neglecting the role of these 

negative literals not only limits the expressiveness of the logical structure but also inhibits the 

exploration of undiscovered solutions. Consequently, when this logic is embedded into DHNN, the 

network tends to produce repetitive final neuron states, leading to overfitting solutions. In other words, 
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there is a high similarity between the retrieved states and the benchmark states. However, controlling 

the appearance of negative literals within NR3SAT clauses has impacted the overall performance of 

DHNN. This is supported by the learning errors shown in Figure 5 and Figure 6. Controlling the 

appearance of negative literals in NR3SAT increases the chances of obtaining satisfied interpretation, 

resulting in more global solutions. Additionally, NR3SAT produces high dissimilarity between the 

retrieved states and the benchmark states, as shown in Figure 9. Therefore, the formulation of NR3SAT 

is significant for enhancing DHNN's performance in obtaining global solutions and avoiding overfitting. 

Next, to ensure this intelligent model can classify and extract knowledge, optimizing the retrieval 

capabilities of DHNN is crucial. One might wonder why it is necessary to propose multi-objective 

functions in the retrieval phase. The answer lies in the potential use of this model in logic mining. In 

this context, the final neuron states retrieved will be converted in the form of induced logic [52]. This 

logic will have the capability to classify and extract knowledge. Unlike other classification approaches 

that only indicate the model's accuracy, this induced logic can extract patterns and relationships, 

explaining the reasoning behind the value obtained. Therefore, it is vital to ensure the network can 

retrieve high-quality induced logic to enhance interpretability in explaining these relationships. It is 

worth noting that existing works focus solely on obtaining global solutions but there is a high risk of 

all solutions being global but overfitted. How does this overfitting issue affect induced logic? 

Overfitting may cause the network to retrieve the same pattern of induced logic. In other words, this 

will reduce the interpretability issue. Therefore, it is essential to consider these multi-objective 

functions in the retrieval phase to ensure that the network can retrieve high quality final neuron states 

which will be beneficial in doing logic mining. 

9. Conclusions 

The primary objective of optimizing the DHNN model is to enhance its applicability in solving 

real-life classification problems. We introduce a new logical rule called NR3SAT to be embedded into 

the DHNN framework. The motivation behind proposing NR3SAT is to address the limitations of 

existing 3SAT models. The 3SAT model, which operates with randomized positive and negative 

activated neuron connections, raises concerns about the interpretability of DHNN. Moreover, the final 

neuron states retrieved by the 3SAT model tends to be overfitted due to the lack of variations compared 

to benchmark states in terms of negativity. The implementation of NR3SAT into DHNN results in 

improved performance. We found that this implementation leads to the lowest learning and testing 

errors and enables the model to attain more global minima solutions compared to existing baseline 

models. Additionally, the quality of the retrieved final neuron states is enhanced as evidenced by the 

lowest Jaccard similarity index values, indicating high dissimilarity compared to benchmark states. 

In addressing the variation of negativity in the retrieved final neuron states, the study proposes a 

multi-objectives function during the optimization of the retrieval phase of DHNN. The goal is to 

achieve final neurons states with maximum diversity, maximum global solutions and the lowest RT 

values. To optimize the retrieval phase, the study introduces the Hybrid Black Hole Algorithm (HBHA). 

The results indicate that HBHA performs optimally when the degree of negativity in a solution is 

configured to achieve the desired proportion of clauses containing at least one negative state. The 

results also demonstrate that HBHA achieves maximum diversity for all numbers of neurons with all 

optimized solutions are global and attain the lowest similarity index. 

The study opens opportunities for future research to explore the efficacy of the model in the 
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context of non-systematic logics, involving higher-order logical structures such as RAN3SAT [14], 

GRAN3SAT [41], and MAJ2SAT [15]. In the context of the proposed structure of SAT, researchers 

may explore the impact of controlling the appearance of negative literals in a clause without 

considering all positive literals in perspective of non-systematic logics [8,28]. Additionally, researchers 

may focus on achieving diversified solutions by considering the overall literals rather than clauses. 

Besides this, to assess the efficiency of this proposed model, researchers may extend this work from 

the perspective of logic mining in solving real- life classification problems. This is due to the limitation 

of the logic mining model, which does not consider on optimizing both learning and retrieval phase in 

enhancing the performance in addressing classification problems [29,47,53]. Additionally, from 

another perspective, the success of the proposed Hybrid Black Hole Algorithm in addressing multi-

objective functions within the DHNN framework can be extended to other neural networks such as 

Cohen-Grossberg Neural Networks and to different problems such as parameter estimation within 

neural networks by making appropriate adjustments and modifications [54,55].  
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