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Abstract: This manuscript centers on creating various topologies utilizing different sorts of maximal
neighborhoods. The comparison of these topologies with the previous ones reveal that the earlier
topology is weaker than the current ones. The core properties of the proposed topologies are examined,
and the necessary conditions for achieving certain equivalences among them are outlined. Additionally,
this study provides a distinctive characterization of these topologies by pinpointing the coarsest and
largest one among all types, whereas previous methods were limited to characterizing only disjoint
pairs of sets. Thereafter, these topologies are utilized to evolve new approximations. One of the major
benefits of the current extension is that it adheres to all the properties of the original approximations
without the constraints or limitations imposed by earlier versions. The significance of this paper lies
not only in introducing new types of approximations based primarily on different kinds of topologies,
but also in the fact that these approximations maintain the monotonic property for any given relation,
enabling effective evaluation of uncertainty in the data. The monotonic property is crucial for various
applications, as it guarantees that the approximation process is logically coherent and robust in the
face of evolving information. The proposed models distinguish from their predecessors by their
ability to compare all types of the suggested approximations. Moreover, comparisons reveal that the
optimal approximations and accuracy are achieved with a specific type of generating topologies. The
results demonstrate that topological notions can be a potent technique for studying rough set models.
Furthermore, advanced topological features of approximate sets aid in finding rough measures, which
assists in identifying missing feature values. Afterward, a numerical example is presented to highlight
and emphasize the importance of the present results. Ultimately, the benefits of the followed manner
are scrutinized and also some of their limitations are pointed out.
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1. Introduction

A rough set [35,36] is fundamentally based on the observation that objects cannot be distinguished
with the available information. In essence, imperfect data leads to the indiscernibility of things. This
indiscernibility forms an approximation space composed of equivalence classes of indistinguishable
objects. Initially, a rough set was characterized by two approximation operators (lower and upper)
represented in equivalence classes. However, in practical situations, obtaining an equivalence relation
can be challenging due to the uncertainty and shortcomings of human knowledge. This challenge
served as motivation and encouragement to generalize and interpret rough sets (see [31, 33]).

Topology is inherently present in almost all branches of mathematics (see [26, 38]), establishing
it as a crucial unifying concept. Currently, ordinary topology is utilized in several areas of artificial
intelligence. Pawlak’s operators (lower and upper) are equivalent to topology’s operators (interior and
closure). So, numerous studies have explored topological space and rough sets. Among the most
prominent studies were the works undertaken by Skowron [40] and Wiweger [42]. The main benefit
of integrating topological spaces into this theory lies in their ability to diminish conceptual ambiguity.
This improvement enhances the certainty of knowledge and boosts the reliability of decision-making
methods. Consequently, employing topologies is a powerful method for clarifying and accurately
defining concepts. Some of the topological concepts that were applied to develop this theory were
nearly open sets [15,16,21] and ideals (see [17–20,22]). Therefore, the investigation of rough set theory
with topologies has emerged as a prominent and compelling research area, garnering considerable
interest from scholars (see [30, 37, 39, 46]).

Neighborhoods are essential to topological spaces and for addressing topological issues.
Consequently, they are employed to broaden topological rough sets by substituting equivalence
classes by neighborhoods in Pawlak’s operators (see [9, 19, 23–25]). It is the most influential tools for
examining the extension of rough sets. This trend emerged from the paper of Yao [43, 44]. He
established approximation spaces derived from four types of neighborhoods relative to an arbitrary
relation. Afterward, various types of neighborhoods have been applied to evolve lower and upper
approximations [4,5,28]. Later on, Abo-Tabl [1] developed approximations based on specific types of
neighborhoods which formed the basis of topology under limited conditions on relations. In [2, 3, 29],
approximations utilizing several topologies formed by eight kinds of neighborhoods were proposed.
Meanwhile, Dai et al. [12] exhibited a new neighborhood inspired by similarity relations. They
employed them to suggest three innovative types of approximations. In two types of approximations
presented by Dai et al. [12], they satisfied monotonicity, which was one difference from the work of
Abo-Tabl [1]. One of the limitations of these approximations is that some of Pawlak’s properties are
lost. Furthermore, similarity relations are not always applicable in various real-life situations which
hinders the broader application of this manner. Following this, the remaining seven kinds of maximal
neighborhoods were proposed in [7] and he utilized this system to propose new approximations.
These approximations achieved better accuracy measures compared to those of Dai et al. [12] in
certain kinds of maximal neighborhoods, but also some of Pawlak’s properties were not satisfied.
More recently, Taher et al. [41] utilized the maximal right neighborhoods and formed a topology.
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1.1. Motivation for the work

A major motivation for the proposed paper is the significant relationships between topological
techniques and rough sets. Recent progress in rough set has resulted in the emergence of topological
rough sets methods. This work analyzes rough sets from a topological perspective. The topological
notions can be a potent technique for studying rough set models. The advanced topological features
of approximate sets aid in finding rough measures, which assists in identifying missing feature values.
Hence, the topological concepts can serve as an effective approach for exploring rough set models.
This motivates us to employ different sorts of maximal neighborhoods as essential topological tools to
generate different topologies and then propose new approximations.

1.2. Contributions of the work

The contributions of this work are detailed as follows: The principal concepts and essential
properties are presented in Section 2. Section 3 concentrates on creating various topologies Tyx by
employing yx-neighborhoods. Relationships among these topologies are given and we determine the
smallest and the largest one among all possible maximal neighborhoods under any relation (see
Theorem 3.2, and Corollary 3.2). Although, the foregoing manner [2, 3, 29, 34, 45] and their
generalization by ideals [14, 17, 34] can only compare topologies confined to the distinct sets {r, l, i, u}
and {〈r〉, 〈l〉, 〈i〉, 〈u〉}. It is explained that Taher et al.’s topology [41] (Tyr ) in Theorem 2.3 is weaker
than the suggested topologies ∀x ∈ {〈r〉, i, 〈i〉} (see Proposition 3.1, Theorem 3.2, and Corollary 3.2).
Thereafter, conditions are established on the relation to derive some equivalences among the proposed
topologies. The findings show that the current manners and the prior ones in [2, 3, 29], Güler et
al. [14], and Yildirim [45] are independent when the relation is a binary relation. In Section 4, the
suggested topologies are employed to inspect new approximations. The fundamental properties of
these approximations are outlined and shown that they achieve all Pawlak’s properties without any
limitations as in [1, 4, 7, 12, 32]. Moreover, these approximations have the monotonic property under
any binary relation (see Proposition 4.3) which is in contrast to the previous ones [1, 4, 8, 12, 19]. The
monotonic property specifically addresses how these approximations behave as the information
available about the system changes. This means that as more data or knowledge is added to the
system, the lower approximation should remain the same or become more precise, and the upper
approximation should remain the same or become less inclusive, which guarantees that the
approximations remain stable. It is showed that the proposed approximations and the previous
ones [2, 3, 29, 34, 45] are independent, in the case of any binary relation. The purpose of Section 5, is
to compare yx-approximations, yx-accuracy values, y〈x〉-approximations, and y〈x〉-accuracy values (see
Theorem 5.1, and Corollary 5.3). These comparisons in particular are the most important thing that
distinguishes these approximations which were not possible in earlier methods [6, 34, 45]. Section 6
presents a numerical example to demonstrate the significance of employing yx-neighborhoods in the
current manner. Finally, Section 7 elaborates on the discussions, while Section 8 summarizes
the conclusions.
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2. Preliminaries

Definition 2.1. [2, 4, 5, 11, 28, 29] Take d as an arbitrary binary relation on a finite set W , ∅ and
r ∈ W. Then,

(i) hr(r) = {s ∈ W : (r, s) ∈ d},

(ii) hl(r) = {s ∈ W : (s, r) ∈ d},

(iii) hi(r) = hr(r) ∩ hl(r),

(iv) hu(r) = hr(r) ∪ hl(r),

(v) h〈r〉(r) =
⋂
r∈hr(s) hr(s),

(vi) h〈l〉(r) =
⋂
r∈hl(s) hl(s),

(vii) h〈i〉(r) = h〈r〉(r) ∩ h〈l〉(r),

(viii) h〈u〉(r) = h〈r〉(r) ∪ h〈l〉(r),

(ix) the triple (W, d,Hx) is known as an x-neighborhood space (for short, x-NS), where x ∈ {r, l, i, u,
〈r〉, 〈l〉, 〈i〉, 〈u〉}, and Hx is a mapping from W to P(W) which associates each r ∈ W with an
x-neighborhood.

Theorem 2.1. [2, 3, 29] Let (W, d,Hx) be an x-NS. Then, Thx = {U ⊆ W : hx(r) ⊆ U,∀r ∈ U} represents
a hx-topology onW.

Definition 2.2. [2, 3, 29] The hx-lower and hx-upper approximations of a set U are

dh
x
(U) = ∪{O ∈ T

h
x : O ⊆ U},

d
h

x(U) = ∩{V : V
′

∈ T
h
x : U ⊆ V}.

Definition 2.3. [7, 12] Take d as an arbitrary binary relation on a finite setW , ∅. Then the maximal
neighborhoods of r ∈ W are

(i) yr(r) =
⋃
r∈hr(s) hr(s),

(ii) yl(r) =
⋃
r∈hl(s) hl(s),

(iii) yi(r) = yr(r) ∩ yl(r),

(iv) yu(r) = yr(r) ∪ yl(r),

(v) y〈r〉(r) =
⋂
r∈yr(s) yr(s),

(vi) y〈l〉(r) =
⋂
r∈yl(s) yl(s),

(vii) y〈i〉(r) = y〈r〉(r) ∩ y〈l〉(r),

(viii) y〈u〉(r) = y〈r〉(r) ∪ y〈l〉(r).

Theorem 2.2. [7] Let (W, d,Hx) be an x-NS and r ∈ W. Then
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(i) y〈x〉(r) ⊆ yx(r), x ∈ {r, l, i, u},

(ii) yr(r) = yl(r) = yi(r) = yu(r) and y〈r〉(r) = y〈l〉(r) = y〈i〉(r) = y〈u〉(r), when d is symmetric,

(iii) yx(r) = y〈x〉(r),∀x ∈ {r, l, i, u}, when d is symmetric and transitive,

(iv) all types of yx(r) are equal, when d is equivalence.

Proposition 2.1. [7] Let (W, d1,H1x) and (W, d2,H2x) be two x-NSs. If d1 ⊆ d2, then y1x(r) ⊆ y2x(r),∀r ∈
W and x ∈ {r, l, i, u}.

Definition 2.4. [7, 12] Let (W, d,Hx) be an x-NS. Then yx∗-lower and yx∗-upper approximations of a
set U are

dyx
∗

(U) = {r ∈ W : yx(r) ⊆ U},

d
yx

∗ (U) = {r ∈ W : yx(r) ∩ U , ∅}.

Definition 2.5. [10, 12] Let (W, d,Hx) be an x-NS. Then yx∗∗-lower and yx∗∗-upper approximations of
a set U are

dyx
∗∗

(U) = ∪{yx(r) : yx(r) ⊆ U},

d
yx

∗∗(U) = [dyx
∗∗

(U
′

)]
′

.

Definition 2.6. [10,12] Let (W, d,Hx) be an x-NS. Then yx∗∗∗-lower and yx∗∗∗-upper approximations of
a set U are

d
yx

∗∗∗(U) = ∪{yx(r) : yx(r) ∩ U , ∅},

dyx
∗∗∗

(U) = [d
yx

∗∗∗(U
′

)]
′

.

Theorem 2.3. [41] Let (W, d,Hx) be an x-NS. Then, Tyr = {U ⊆ W : yr(r) ⊆ U,∀r ∈ U} represents a
yr-topology onW.

Definition 2.7. Take d as an arbitrary binary relation on a finite setW , ∅ and r ∈ W. Then the subset
neighborhoods of r ∈ W are

(i) Ir(r) = {s ∈ W : hr(r) ⊆ hr(s)} [13],

(ii) Il(r) = {s ∈ W : hl(r) ⊆ hl(s)} [8],

(iii) Ii(r) = Ir(r) ∩ Il(r) [8],

(iv) Iu(r) = Ir(r) ∪ Il(r) [8],

(v) I〈r〉(r) = {s ∈ W : h〈r〉(r) ⊆ h〈r〉(s)} [8],

(vi) I〈l〉(r) = {s ∈ W : h〈l〉(r) ⊆ h〈l〉(s)} [8],

(vii) I〈i〉(r) = I〈r〉(r) ∩ I〈l〉(r) [8],

(viii) I〈u〉(r) = I〈r〉(r) ∪ I〈l〉(r) [8].
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Lemma 2.1. [13] Let (W, d,Hx) be an x-NS and d be a reflexive relation. Then Ir(r) ⊆ yr(r),∀r ∈ W.

It is easy to prove the following lemma.

Lemma 2.2. Let (W, d,Hx) be an x-NS and d be a reflexive relation. Then
Ix(r) ⊆ yx(r),∀ x ∈ {l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉},∀ r ∈ W.

Theorem 2.4. [45] Let (W, d,Hx) be an x-NS. Then TIx = {U ⊆ W : Ix(r) ⊆ U,∀r ∈ U} constitutes a
topology onW.

Definition 2.8. [45] Let (W, d,Hx) be an x-NS. Then the Ix-lower approximation, Ix-upper
approximation, Ix-boundary, Ix-accuracy, and Ix-roughness of a set U ⊆ W are

dIx(U) = ∪{O ∈ TIx : O ⊆ U},

d
Ix(U) = ∩{V : V

′

∈ TIx : U ⊆ V},

PIx(U) = d
Ix(U) \ dIx(U),

CIx(U) =
|dIx (U)|

|d
Ix (U)|

, where U , ∅,

KIx(U) = 1 − CIx(U).

Definition 2.9. [6] Take d as an arbitrary binary relation on a finite set W , ∅ and r ∈ W. Then the
containment neighborhoods of r ∈ W are

(i) Br(r) = {s ∈ W : hr(s) ⊆ hr(r)},

(ii) Bl(r) = {s ∈ W : hl(s) ⊆ hl(r)},

(iii) Bi(r) = Br(r) ∩ Bl(r),

(iv) Bu(r) = Br(r) ∪ Bl(r),

(v) B〈r〉(r) = {s ∈ W : h〈r〉(s) ⊆ h〈r〉(r)},

(vi) B〈l〉(r) = {s ∈ W : h〈l〉(s) ⊆ h〈l〉(r)},

(vii) B〈i〉(r) = B〈r〉(r) ∩ B〈l〉(r),

(viii) B〈u〉(r) = B〈r〉(r) ∪ B〈l〉(r).

Lemma 2.3. [7] Let (W, d,Hx) be an x-NS and d be a reflexive relation. Then, ∀r ∈ W

(i) Bx(r) ⊆ hx(r),

(ii) Bx(r) ⊆ yx(r).

Theorem 2.5. [14] Let (W, d,Hx) be an x-NS. Then TBx = {U ⊆ W : Bx(r) ⊆ U,∀r ∈ U} constitutes a
topology onW.

Definition 2.10. [34] Let (W, d,Hx) be an x-NS. Then the Bx-lower and Bx-upper approximations of a
set U are

dBx(U) = ∪{O ∈ TBx : O ⊆ U},

d
Bx(U) = ∩{V : V

′

∈ TBx : U ⊆ V}.
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3. Topologies inspired by various sorts of maximal neighborhoods

This section is devoted to suggesting new manners for generating various topologies by
yx-neighborhoods. Additionally, the essential relationships among them are outlined. Moreover, the
fundamental differences between current and foregoing topologies are outlined.

The maximal right neighborhoods were proposed by Dai et al. [12], while the remaining seven
types of maximal neighborhoods were presented in [7]. Based on the fact that yx-neighborhoods have
properties that differ from other neighborhoods, for example, the property in the Theorem 2.2 [7]
distinguishes these neighborhoods while it is not verified in yx-neighborhoods, so it is necessary to
verify that they can create topology as in the following findings.

Theorem 3.1. Let (W, d,Hx) be an x-NS. Then,

T
y
x = {U ⊆ W : yx(r) ⊆ U,∀r ∈ U},∀x ∈ {l, i, u, 〈r〉, 〈l〉, 〈i〉, 〈u〉}

represents an yx-topology onW.

Proof. (i) Clearly,W, ∅ ∈ Tyx .

(ii) Let Ui ∈ T
y
x (∀i ∈ I) and r ∈

⋃
i∈I Ui. Then, ∃i0 ∈ I such that r ∈ Ui0 .

⇒ yx(r) ⊆ Ui0 .

⇒ yx(r) ⊆
⋃

i∈I Ui, so
⋃

i∈I Ui ∈ T
y
x .

(iii) Let U1,U2 ∈ T
y
x , r ∈ U1 ∩ U2.

⇒ r ∈ U1 and r ∈ U2.

⇒ yx(r) ⊆ U1 and yx(r) ⊆ U2.

⇒ yx(r) ⊆ U1 ∩ U2.

⇒ U1 ∩ U2 ∈ T
y
x .

So, Tyx is an yx-topology onW. �

Definition 3.1. The triple system (W, d,Tyx ) is said to be an yx-topological space (for short, hxTS ), and
T
y
x is an yx-topology onW induced by Theorem 3.1.
U ⊆ W is known as an yx-open set if U ∈ Tyx , and an yx-closed set if U

′

∈ T
y
x . All yx-closed subsets

ofW are symbolized by Syx .

Definition 3.2. The yx-interior and yx-closure of a subsetU of an yxTS (W, d,Tyx ) are defined as follows.

Intyx (U) = ∪{O ∈ T
y
x : O ⊆ U}, and

Clyx (U) = ∩{V ∈ S
y
x : U ⊆ V}.

Proposition 3.1. Let (W, d,Hx) be an x-NS. Then
(1) Tyu ⊆ T

y
r and Tyu ⊆ T

y

l ,

(2) Tyr ⊆ T
y

i and Tyl ⊆ T
y

i ,

(3) Ty
〈u〉 ⊆ T

y

〈r〉 and Ty
〈u〉 ⊆ T

y

〈l〉,

(4) Ty
〈r〉 ⊆ T

y

〈i〉 and Ty
〈l〉 ⊆ T

y

〈i〉,
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Proof.
(1) Let U ∈ Tyu. Then, yu(r) ⊆ U ∀r ∈ U. Thus, (yr(r)∪ yl(r)) ⊆ U ∀r ∈ U. Hence, yr(r) ⊆ U ∀r ∈ U

and yl(r) ⊆ U ∀l ∈ U. Therefore, U ∈ Tyr and U ∈ Tyl . Hence, Tyu ⊆ T
y
r and Tyu ⊆ T

y

l . Similarly, (3) can
be proved.

(2) Let U ∈ Tyr . Then, yr(r) ⊆ U ∀r ∈ U. Thus, (yr(r)∩yl(r)) ⊆ U ∀r ∈ U. Hence, yr(i) ⊆ U ∀r ∈ U.
Therefore, U ∈ Tyi . Hence, Tyr ⊆ T

y

i . Similarly, (4) can be proved.

Corollary 3.1. Let (W, d,Hx) be a x-NS. Then
(1) Tyu ⊆ T

y
r ⊆ T

y

i ,

(2) Tyu ⊆ T
y

l ⊆ T
y

i ,

(3) Ty
〈u〉 ⊆ T

y

〈r〉 ⊆ T
y

〈i〉,

(4) Ty
〈u〉 ⊆ T

y

〈l〉 ⊆ T
y

〈i〉.

Theorem 3.2. Let (W, d,Hx) be an x-NS. Then Tyx ⊆ T
y

〈x〉
, x ∈ {r, l, i, u}.

Proof. Let U ∈ Tyr . Then yr(r) ⊆ U,∀r ∈ U. Thus y〈r〉(r) ⊆ U,∀r ∈ U by Theorem 2.2. Therefore,
U ∈ T

y

〈r〉. Hence, Tyr ⊆ T
y

〈r〉 and the other cases exhibit a similar pattern. �

Remark 3.1. The prior topology in Theorem 2.3 [41] is weaker than the present ones as manifested by
Proposition 3.1, Corollary 3.1, and Theorem 3.2, which show that Tyr ⊆ T

y

i , T
y
r ⊆ T

y

〈r〉, and Tyr ⊆ T
y

〈i〉.
Additionally, Example 3.1 interprets that Tyr  T

y

i , T
y
r ( T

y

〈r〉, and Tyr ( T
y

〈i〉. So, the current topologies
can be seen as a broader and an extension of the prior work [41].

The following corollary provides a distinctive characterization of yx-topology by pinpointing the
smallest and largest yx-topology among all types. The previous manner [2, 3, 29, 34, 45] lacks this
characterization and only discusses by disjoint pairs of sets {r, l, i, u} and {〈r〉, 〈l〉, 〈i〉, 〈u〉}.

Corollary 3.2. Let (W, d,Hx) be an x-NS. Then Tyu ⊆ T
y
x ⊆ T

y

〈i〉, x ∈ {r, l, i, 〈r〉, 〈l〉, 〈u〉}.

Example 3.1. Consider d = {(r, r), (s, f), (s, k), (f, k), (f, v), (k, r), (k, v), (v, s), (v, v)} as a relation onW =

{r, s, f, k, v}. Then, yx-neighborhoods ∀r ∈ W are introduced in Table 1.

Table 1. yx-neighborhoods.

r s f k v

hr {r} {f, k} {k, v} {r, v} {s, v}

hl {r, k} {v} {s} {s, f} {f, k, v}

yr {r, v} {s, v} {f, k} {f, k, v} {r, s, k, v}

yl {r, k} {s, f} {s, f, k, v} {r, f, k, v} {f, k, v}

yi {r} {s} {f, k} {f, k, v} {k, v}

yu {r, k, v} {s, f, v} {s, f, k, v} {r, f, k, v} W

y〈r〉 {r, v} {s, v} {f, k} {k} {v}

y〈l〉 {r, k} {s, f} {f} {k} {f, k, v}

y〈i〉 {r} {s} {f} {k} {v}

y〈u〉 {r, k, v} {s, f, v} {f, k} {k} {f, k, v}

Consequently,
(1) Tyr = {W, ∅},
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(2) Tyl = {W, ∅},

(3) Tyi = {W, ∅, {r}, {s}, {r, s}, {f, k, v}, {r, f, k, v}, {s, f, k, v}},

(4) Tyu = {W, ∅},

(5) Ty
〈r〉 = {W, ∅, {k}, {v}, {r, v}, {s, v}, {f, k}, {k, v}, {r, s, v}, {r, v, k}, {s, k, v}, {f, k, v}, {r, s, k, v}, {r, f, k, v},

{s, f, k, v}},

(6) Ty
〈l〉 = {W, ∅, {f}, {k}, {r, k}, {s, f}, {f, k}, {r, f, k}, {s, f, k}, {f, k, v}, {r, s, f, k}, {r, f, k, v}, {s, f, k, v}},

(7) Ty
〈i〉 = P(W),

(8) Ty
〈u〉 = {W, ∅, {k}, {f, k}, {f, k, v}, {r, f, k, v}, {s, f, k, v}}.

So,
(1) Tyi * T

y
r ,T

y

l ,T
y
u,

(2) Ty
〈i〉 * T

y

〈r〉,T
y

〈l〉,T
y

〈u〉,

(3) Ty
〈r〉 * T

y

〈u〉 and Ty
〈l〉 * T

y

〈u〉,

(4) Ty
〈r〉 * T

y
r ,

(5) Ty
〈l〉
* Ty

l
,

(6) Ty
〈u〉 * T

y
u,

(7) Ty
〈i〉 * T

y
x , x ∈ {r, l, i, 〈r〉, 〈l〉, 〈u〉}.

Example 3.2. Let d = {(r, r), (r, k), (s, r), (s, f), (f, f), (f, k), (k, r)} be a relation onW = {r, s, f, k}. Then,
(1) Tyr = {W, ∅, {s}, {r, f, k}},

(2) Tyl = {W, ∅},

(3) Tyu = {W, ∅}.

Thus,
(1) Tyr * T

y

l ,

(2) Tyr * T
y
u.

Example 3.3. Take d = {(r, r), (r, s), (r, k), (f, s), (f, f), (k, r), (k, f)} as a binary relation on
W = {r, s, f, k}. Then,

(1) Tyr = {W, ∅},

(2) Tyl = {W, ∅, {s}, {r, f, k}},

(3) Tyu = {W, ∅}.

Therefore,
(1) Tyl * T

y
r ,

(2) Tyl * T
y
u.

Remark 3.2. The current topology distinguishes that Tyr is not dual to Tyl (see Examples 3.2 and 3.3),
but Thr is dual to Thl as in [2, 3, 29].

Theorem 3.3. Let (W, d,Hx) be an x-NS. Then if d is

(i) symmetric, then Tyr = T
y

l = T
y

i = T
y
u and Ty

〈r〉 = T
y

〈l〉
= T

y

〈i〉 = T
y

〈u〉,

(ii) symmetric and transitive, then Tyx = T
h

〈x〉
,∀x ∈ {r, l, i, u},

(iii) an equivalence, then Tyr = T
h

l = T
y

i = T
y
u = T

y

〈r〉 = T
y

〈l〉
= T

y

〈i〉 = T
y

〈u〉.

Proof. (i) Let U ∈ Tyr . Then yr(r) ⊆ U,∀ r ∈ U.
⇔ yl(r) ⊆ U, yi(r) ⊆ U, yu(r) ⊆ U,∀ r ∈ U (by Theorem 2.2).
Hence, Tyr = T

y

l = T
y

i = T
h
u. By the same method, Ty

〈r〉 = T
y

〈l〉 = T
y

〈i〉 = T
y

〈u〉.
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(ii) Let U ∈ Tyr . Then yr(r) ⊆ U,∀ r ∈ U.
⇔ y〈r〉(r),∀ r ∈ U (by Theorem 2.2).
Hence, Tyr = T

y

〈r〉, and the remaining cases are similar.

(iii) The proof is straightforward, so we will omit it here.
�

Remark 3.3. Example 3.1 is interpreted that in Theorem 3.3 the
(1) Symmetric (i) is indispensable as Tyr , T

y

i .

(2) Symmetric and transitive (ii) are indispensable as Tyr , T
y

〈r〉.

(3) Equivalence in (iii) is indispensable as the types of topologies are not equal.

Proposition 3.2. Let (W, d1,H1x) and (W, d2,H2x) be two x-NSs and d1 ⊆ d2. Then, for x ∈ {r, l, i, u},
(1) Ty2x ⊆ T

y

1x,

(2) inty2x ⊆ inty1x,
(3) Cly1x ⊆ Cly2x.

Proof. To prove (1), let U ∈ Ty2r. Then y2r(r) ⊆ U,∀r ∈ U. Thus, y1r(r) ⊆ U,∀r ∈ U (by Proposition 2.1).
So, U ∈ Ty1r and hence Ty2r ⊆ T

y

1r. The remaining cases follow a similar pattern. �

Remark 3.4. Example 3.3 is elucidated that
(1) The topologies created by x-neighborhoods [2, 3, 29], Bx-neighborhoods [14], and

Ix-neighborhoods [45] are distinct from the topologies exhibited in this section as
T
h

l = {W, ∅, {r, k}, {f, k}, {r, f, k}},TIl = {W, ∅, {r}, {s}, {f}, {r, s}, {r, f}, {s, f}, {r, s, f}, {r, s, k}},TBl =

{W, ∅, {f}, {k}, {r, k}, {f, k}, {r, s, k}, {r, f, k}} , Tyl = {W, ∅, {s}, {r, f, k}}.
(2) The primary distinctions between the current manner and the previous ones [2, 3, 14, 29, 45]

are that Tyx ⊆ T
y

〈x〉
, x ∈ {r, l, i, u}, even though Thx, T

h

〈x〉
in [2, 3, 29], TBx , TB〈x〉 [14], and TIx , TI〈x〉 [45]

are incomparable.

Proposition 3.3. Let (W, d,Hx) be an x-NS and d be a reflexive relation. Then,
(1) Tyx ⊆ T

h
x,

(2) Tyx ⊆ TIx ,
(3) Tyx ⊆ TBx .

Proof. It is directly obtained from Lemmas 2.1–2.3. �

It is easy to add an example to show that the opposite of Proposition 3.3 does not always hold.

Remark 3.5. According to Example 3.3 and Remark 3.4, the proposed methods and the previous ones
in [2, 3, 29], Güler et al. [14], and Yildirim [45] are not dependent in the general case of a binary
relation. Furthermore, Proposition 3.3 shows that the topologies generated by the proposed method are
weaker than those presented in the previous works.

4. Approximate models from a topological perspective inspired by various sorts of maximal
neighborhoods

This section employs new rough models using Tyx -topologies obtained from yx-neighborhood
systems and outlines their fundamental properties.
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Definition 4.1. The yx-lower approximation dy
x

and yx-upper approximation d
y

x of a subset U of an yxTS
(W, d,Tyx ) are defined as follows.

dy
x
(U) = ∪{O ∈ T

y
x : O ⊆ U} = Intyx (U), and

d
y

x (U) = ∩{V ∈ S
y
x : U ⊆ V} = Clyx (U).

Proposition 4.1. Let U and Q be subsets of an yxTS (W, d,Tyx ). Then

(i) dy
x
(U) ⊆ U,

(ii) dy
x
(∅) = ∅,

(iii) dy
x
(W) = W,

(iv) If U ⊆ Q, then dy
x
(U) ⊆ dy

x
(Q),

(v) dy
x
(U ∩Q) = dy

x
(U) ∩ dy

x
(Q),

(vi) dy
x
(U

′

) = (d
y

x (U))
′

,

(vii) dy
x
(dy
x
(U)) = dy

x
(U).

Proof. (i)–(iii) are evident from Definition 4.1.

(iv) Let U ⊆ Q. Then ∪{O ∈ Tyx : O ⊆ U} ⊆ ∪{O ∈ Tyx : O ⊆ Q} and so dy
x
(U) ⊆ dy

x
(Q).

(v) dy
x
(U ∩ Q) ⊆ dy

x
(U) ∩ dy

x
(Q) by (iv), dy

x
(U) ⊆ U, and dy

x
(Q) ⊆ Q by (i). Therefore, dy

x
(U) ∩ dy

x
(Q) ⊆

U ∩ Q. So, dy
x
(dy
x
(U) ∩ dy

x
(Q)) ⊆ dy

x
(U ∩ Q). Then dy

x
(U) ∩ dy

x
(U)) ⊆ dy

x
(U ∩ Q). Thus dy

x
(U ∩ Q) =

dy
x
(U) ∩ dy

x
(Q).

(vi) Let r ∈ dy
x
(U

′

). Then, ∃O ∈ Tyx such that r ∈ O ⊆ U
′

, so O ∩ U = ∅. Therefore, r < d
y

x (U). Thus,
r ∈ (d

y

x (U))
′

. Let r ∈ (d
y

x (U))
′

. Then, r < d
y

x (U), and so, ∃U ∈ Tyx such that r ∈ O and O ∩ U = ∅.
So, r ∈ O ⊆ U

′

. Hence, r ∈ dy
x
(U

′

).

(vii) From (i), we get dy
x
(dy
x
(U)) ⊆ dy

x
(U). Conversely, let r ∈ dy

x
(U). Then, ∃O ∈ Tyx such that r ∈

O ⊆ U. Therefore, dy
x
(O) ⊆ dy

x
(U) (by (iv)). According to Definition 4.1, we have O = dy

x
(O), so

{r} ∈ dy
x
(O) ⊆ dy

x
(dy
x
(U)). Thus, dy

x
(U) ⊆ dy

x
(dy
x
(U)).

�

Corollary 4.1. Let U and Q be subsets of an yxTS (W, d,Tyx ). Then, dy
x
(U) ∪ dy

x
(Q) ⊆ dy

x
(U ∪Q).

Proof. It is directly obtained from (iv) of Proposition 4.1. �

Remark 4.1. In Example 3.1,

(i) dyi ({f}) = ∅ ⊂ {f},

(ii) dyi ({f}) = ∅ ⊂ {s} = d
y

i ({s}) but {f} * {s},

(iii) dyi ({v}) ∪ dyi ({r, s, f, k}) = {r, s} ⊂ W = d
y

i ({v} ∪ {r, s, f, k}).

Proposition 4.2. Let U and Q be subsets of an yxTS (W, d,Tyx ). Then
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(i) U ⊆ d
y

x (U),

(ii) d
y

x (∅) = ∅,

(iii) d
y

x (U) = U,

(iv) if U ⊆ Q, then d
y

x (U) ⊆ d
y

x (Q),

(v) d
y

x (U) ∪ d
y

x (Q) = d
y

x (U ∪Q),

(vi) d
y

x (U
′

) = (dy
x
(U))

′

,

(vii) d
y

x (d
y

x (U)) = d
y

x (U).

Proof. This is just as in the proof of Proposition 4.1. �

Corollary 4.2. Let U and Q be subsets of an yxTS (W, d,Tyx ). Then, d
y

x (U ∩Q) ⊆ d
y

x (U) ∩ d
y

x (Q).

Proof. It is directly derived from (iv) of Proposition 4.2. �

Remark 4.2. In Example 3.1,

(i) {r, k} ⊂ d
y

i ({r, k}) = {r, f, k, v},

(ii) d
y

i ({f}) = {f, k, v} ⊂ {r, f, k, v} = d
y

i ({r, k}), but {f} * {r, k},

(iii) d
y

i ({f} ∩ {k}) = ∅ ⊂ {f, k, v} = d
y

i ({f}) ∩ d
y

i ({k}).

It is evident from Propositions 4.1 and 4.2, and Corollaries 4.1 and 4.2 that the suggested
approximations adhere to all of Pawlak’s properties [35] without any constraints.

Definition 4.2. The yx-accuracy and yx-roughness of a set U in a (W, d,Hx) are

C
y
x (U) =

|d
y
x (U)|

|d
y

x (U)|
, where U , ∅,

K
y
x (U) = 1 − Cyx (U).

Definition 4.3. Let d1 ⊆ d2. Then, (W, d1,H1x), and (W, d2,H2x) have the monotonicity property of
accuracy (roughness) if Cy1x(U) ≥ Cy2x(U) (Ky1x(U) ≤ Ky2x(U)).

The following proposition ensures that the lower approximation, which represents the
definitively known elements, does not decrease as more data becomes available. Similarly, the upper
approximation, which includes all elements that could possibly be in the set, does not decrease either.
In essence, the monotonic property guarantees that the rough set approximations become more
precise or remain stable as additional information is incorporated, never becoming less accurate. This
characteristic is crucial for maintaining the reliability and consistency of the rough set analysis,
ensuring that the approximations provide a robust framework for understanding and interpreting data.

Proposition 4.3. Let (W, d1,H1x) and (W, d2,H2x) be two x-NSs and d1 ⊆ d2. Then, ∀x ∈ {r, l, i, u}
and U ⊆ W,

(1) d
y

1x(U) ⊆ d
y

2x(U),
(2) dy2x(U) ⊆ dy1x(U),
(3) Cy2x(U) ≤ Cy1x(U),
(4) Ky1x(U) ≤ Ky2x(U).
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Proof.
(1) Let d

y

1x(U) = Cly1x(U) ⊆ Cly2x(U) = d
y

2x(U) (by Proposition 3.2). Hence, d
y

1x(U) ⊆ d
y

2x(U),
(2) Let dy2x(U) = ∪{O ∈ T

y

2x : O ⊆ U} ⊆= ∪{O ∈ T
y

1x : O ⊆ U} = d
y

1x(U) (by Proposition 3.2).
Hence, dy2x(U) ⊆ dy1x(U),

(3)

C
y

2x(U) = |
d2
y

x
(U)|

d2
y

x (U)
|,

≤
|d1
y

x
(U)|

|d1
y

x (U)|
,

= C
y

1x(U).

(4) This proof is straightforward, so we will omit it here.

Definition 4.4. The yx-positive, yx-boundary, and yx-negative regions of a set U in an yxTS
(W, d,Tx) are

d
y
x

+(U) = dy
x
(U),

P
y
x (U) = d

y

x (U) \ dy
x
(U), and

d
y
x

−(U) = W \ d
y

x (U).

Proposition 4.4. Let (W, d1,H1x) and (W, d2,H2x) be two x-NSs and d1 ⊆ d2. Then, ∀x ∈ {r, l, i, u}
and U ⊆ W,

(i) Pyx1(U) ⊆ Pyx2(U),

(ii) dyx2
−(U) ⊆ dyx1

−(U).

Proof. (i) Let r ∈ Py1x(U). Then, r ∈ d1
y

x (U) \ d1y
x
(U). So, r ∈ d1

y

x (U) and r ∈ (d1y
x
(U))

′

. Thus, r ∈ d2
y

x (U)
and r ∈ (d2y

x
(U))

′

. Hence, r ∈ Py2x(U). Therefore, Py1x(U) ⊆ Py2x(U).

(ii) This is derived from Proposition 4.3.
�

Definition 4.5. A subset U of a (W, d,Hx) is called yx-exact if dy
x
(U) = d

y

x (U) = U. Otherwise, it is
known as an yx-rough set.

Proposition 4.5. A subset U of a (W, d,Hx) is yx-exact iff Pyx (U) = ∅.

Proof. Let U be an x-exact set. Then, Pyx (U) = d
y

x (U) \ d
y

x (U) = ∅. Conversely, Pyx (U) = ∅ implies that
d
y

x (U)\dy
x
(U) = ∅, so, d

y

x (U) ⊆ dy
x
(U). But dy

x
(U) ⊆ d

y

x (U). Thus, d
y

x (U) = dy
x
(U). Hence, U is yx-exact. �

Remark 4.3. These approximations count on a topology constructed from several types of maximal
neighborhoods, differing significantly from the manners that relied on topology formed by another
kind of neighborhood to create approximations [2, 3, 29, 34, 45]. Example 3.3 indicates that

(1) if U =
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• {r, k}, then dhl (U) = {r, k} * ∅ = d
y

l (U),

• {s, v}, then d
h

l (U) = {s, v} + W = d
y

l (U).

(2) if U = {s}, then

• dyl (U) = {s} * ∅ = d
h

l (U),

• d
y

l (U) = {s} + W = d
h

l (U).

(3) if U = {r}, then

• dIl(U) = {r} * ∅ = d
y

l (U),

• d
Il(U) = {r} + {r, f, k} = d

y

l (U).

(4) if U =

• {r, f, k}, then dyl (U) = {r, f, k} * {r, f} = dIl(U),

• {s}, then d
y

l (U) = {s} + {s, k} = d
Il(U).

(5) if U = {f}, then

• dBl(U) = {f} * ∅ = d
y

l (U),

• d
Bl(U) = {f} + {r, f, k} = d

y

l (U).

(6) if U =

• {s}, then dyl (U) = {s} * ∅ = dBl(U),

• {r, f, k}, then d
y

l (U) = {r, f, k} + W = d
Bl(U).

Proposition 4.6. Let (W, d,Hx) be an x-NS, U ⊆ W, and d be a reflexive relation. Then,
(1) dy

x
(U) ⊆ dh

x
(U),

(2) d
h

x(U) ⊆ d
y

x (U),
(3) dy

x
(U) ⊆ dIx(U),

(4) d
Ix(U) ⊆ d

y

x (U),
(5) dy

x
(U) ⊆ dBx(U),

(6) d
Bx(U) ⊆ d

y

x (U).

Proof. It is directly obtained from Proposition 3.3. �

It is simple to present an example showing that the Proposition’s reverse 4.6 is not always true.
Remark 4.4. According to

(i) Example 3.3, and Remark 4.3, in the general case of the relation, the suggested approximations and
the prior ones [2, 3, 29, 34, 45] are independent.

(ii) Proposition 4.6, in the instance of a reflexive relation, the previous rough set models [2,3,29,34,45]
are more accurate than the proposed methods.

The comparisons between the approximations using several types of maximal neighborhoods
directly in Definition 2.4 [7, 12], Definitions 2.5, and 2.6 [10, 12], and those using the topology
generated by these neighborhoods, as in the methods in this section, are studied in the
following findings.
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Proposition 4.7. Let (W, d,Hx) be an x-NS and U ⊆ W. Then,
(1) dy

x
(U) ⊆ dyx

∗
(U),

(2) d
yx

∗ (U) ⊆ d
y

x (U).

Proof. We prove (1) only, and (2) is in the same manner. Let r ∈ dy
x
(U). Then, ∃ O ∈ Tyx such that

r ∈ O ⊆ U. Thus, yx(r) ⊆ U. Hence, r ∈ dyx
∗

(U). �

Remark 4.5. It should be emphasized that although the prior approximations in Definition 2.4 [7, 12]
are better than the current ones, the suggested ones are characterized by fulfilling all of Pawlak’s
properties, whereas the previous manner lacked this capability and required imposing constraints on
the relations to achieve them which hinders applications. Additionally,

(i) Examples 3.2 and 3.3 clarify that Proposition 4.7’s converse is not always true.

(ii) Examples 3.1–3.3 confirm that the prior approximations in Definitions 2.5 and 2.6 [10,12], and the
present ones, are incomparable.

5. Relationships among various types of the proposed approximations

The intent of this section is to highlight some distinctive features of yx-approximations and yx-
accuracy measures. We explain and present the most important features that distinguish this method
from its predecessors [2, 3, 29, 34, 45].

Proposition 5.1. Let (W, d,Hx) be an x-NS and U ⊆ W. Then

(i) dyu(U) ⊆ dyr (U) ⊆ dyi (U),

(ii) dyu(U) ⊆ dyl (U) ⊆ dyi (U),

(iii) dy
〈u〉(U) ⊆ dy

〈r〉(U) ⊆ dy
〈i〉(U),

(iv) dy
〈u〉(U) ⊆ dy

〈l〉(U) ⊆ dy
〈i〉(U),

(v) d
y

i (U) ⊆ d
y

r (U) ⊆ d
y

u(U),

(vi) d
y

i (U) ⊆ d
y

l (U) ⊆ d
y

u(U),

(vii) d
y

〈i〉(U) ⊆ d
y

〈r〉(U) ⊆ d
y

〈u〉(U),

(viii) d
y

〈i〉(U) ⊆ d
y

〈l〉(U) ⊆ d
y

〈u〉(U).

Proof. To demonstrate (i) and (ii), let r ∈ dyu(U). Then there is Q ∈ Thu such that r ∈ Q ⊆ U. By
Proposition 3.1, we have Q ∈ Thr and Q ∈ Th

l
. Thus, r ∈ Intyr (U) = dyr (U) and r ∈ Inty

l
(U) = d

y

l
(U).

Hence, dyu(U) ⊆ dyr (U) and dyu(U) ⊆ dy
l
(U). Similarly, the relations dyr (U) ⊆ dyi (U) and dy

l
(U) ⊆ dyi (U) are

proved. By applying analogous manners, the other cases can be demonstrated. �

Corollary 5.1. Let (W, d,Hx) be an x-NS and U ⊆ W. Then

(i) Pyi (U) ⊆ Pyr (U) ⊆ Pyu(U),

(ii) Pyi (U) ⊆ Py
l
(U) ⊆ Pyu(U),
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(iii) Py
〈i〉(U) ⊆ Py

〈r〉(U) ⊆ Py
〈u〉(U),

(iv) Py
〈i〉(U) ⊆ Py

〈l〉
(U) ⊆ Py

〈u〉(U),

(v) Cyu(U) ≤ Cyr (U) ≤ Cyi (U),

(vi) Cyu(U) ≤ Cy
l
(U) ≤ Cyi (U),

(vii) Cy
〈u〉(U) ≤ Cy

〈r〉(U) ≤ Cy
〈i〉(U),

(viii) Cy
〈u〉(U) ≤ Cy

〈l〉
(U) ≤ Cy

〈i〉(U).

Proof. (v): dyu(U) ⊆ dyr (U) ⊆ dyi (U) and d
y

i (U) ⊆ d
y

r (U) ⊆ d
y

u(U) (by Proposition 5.1), so we get

| dyu(U) |≤| dyr (U) |≤| dyi (U) |, (5.1)

and
1

| d
y

u(U) |
≤

1

| d
y

r (U) |
≤

1

| d
y

i (U) |
. (5.2)

By (5.1) and (5.2), we get

|dyu(U)|

|d
y

u(U)|
≤
|dyr (U)|

|d
y

r (U)|
≤
|d
y

i (U)|

|d
y

i (U)|
which is equivalent to Cyu(U) ≤ Cyr (U) ≤ Cyi (U).

In a comparable manner, we establish the other cases. �

The current work stands out with its ability to compare yx-approximations and yx-accuracy values
with y〈x〉-approximations and y〈x〉-accuracy values, as shown in the following important findings. This
comparison is not present in previous methods [2, 3, 29, 34, 45].

Theorem 5.1. Let (W, d,Hx) be an x-NS and U ⊆ W. Then

(i) dyr (U) ⊆ dy
〈r〉(U),

(ii) dy
l
(U) ⊆ dy

〈l〉
(U),

(iii) dyi (U) ⊆ dy
〈i〉(U),

(iv) dyu(U) ⊆ dy
〈u〉(U),

(v) d
y

〈r〉(U) ⊆ d
y

r (U),

(vi) d
y

〈l〉(U) ⊆ d
y

l (U),

(vii) d
y

〈i〉(U) ⊆ dyi (U),

(viii) d
y

〈u〉(U) ⊆ d
y

u(U).

Proof. dyr (U) = ∪{O ∈ T
y
r : O ⊆ U} ⊆ ∪{O ∈ Ty

〈r〉 : O ⊆ U} = d
y

〈r〉(U) by Theorem 3.2. Hence,
dyr (U) ⊆ dy

〈r〉(U). In a comparable manner, we establish the other cases. �

Corollary 5.2. Let (W, d,Hx) be a x-NS and U ⊆ W. Then

(i) Py
〈r〉(U) ⊆ Pyr (U),
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(ii) Py
〈l〉

(U) ⊆ Pyl (U),

(iii) Py
〈i〉(U) ⊆ Pyi (U),

(iv) Py
〈u〉(U) ⊆ Pyu(U),

(v) Cyr (U) ≤ Cy
〈r〉(U),

(vi) Cy
l
(U) ≤ Cy

l
(U),

(vii) Cyi (U) ≤ Cy
〈i〉(U),

(viii) Cyu(U) ≤ Cy
〈u〉(U).

Corollary 5.3. Let (W, d,Hx) be an x-NS. Then, ∀x ∈ {r, l, i, 〈r〉, 〈l〉, 〈u〉},

(i) dyu(U) ⊆ dy
x
(U) ⊆ dy

〈i〉(U),

(ii) d
y

〈i〉(U) ⊆ d
y

x (U) ⊆ d
y

u(U),

(iii) Py
〈i〉(U) ⊆ Pyx (U) ⊆ Pyu(U),

(iv) Cyu(U) ≤ Cyx (U) ≤ Cy
〈i〉(U).

The computations presented in Tables 2 and 3 are computed by Example 3.1. These substantiate
the results established in Proposition 5.1, Theorem 5.1, and Corollaries 5.1–5.3.
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Proposition 5.2. Let (W, d,Hx) be an x-NS, U ⊆ W, and d be symmetric. Then,

(i) dyu(U) = dyr (U) = d
y

l
(U) = d

y

i (U) and d
y

u(U) = d
y

r (U) = d
y

l (U) = d
y

i (U),

(ii) dy
〈u〉(U) = d

y

〈r〉(U) = d
y

〈l〉
(U) = d

y

〈i〉(U) and d
y

〈u〉(U) = d
y

〈r〉(U) = d
y

〈l〉(U) = d
y

〈i〉(U).

Proof. dyu(U) = ∪{O ∈ T
y
u : O ⊆ U} = ∪{O ∈ T

y
r : O ⊆ U} = dyr (U), dyr (U) = ∪{O ∈ T

y
r : O ⊆ U} =

∪{O ∈ T
y

l
: O ⊆ U} = d

y

l
(U), and dy

l
(U) = ∪{O ∈ T

y

l
: O ⊆ U} = ∪{O ∈ T

y

i : O ⊆ U} = d
y

i (U) (by
Theorem 3.3). Hence, dyu(U) = dyr (U) = d

y

l
(U) = d

y

i (U). Similarly, the remaining cases are derived. �

Corollary 5.4. Let (W, d,Hx) be an x-NS, U ⊆ W, and d be symmetric. Then,

(i) Pyi (U) = P
y
r (U) = P

y

l (U) = P
y
u(U),

(ii) Py
〈i〉(U) = P

y

〈r〉(U) = P
y

〈l〉(U) = P
y

〈u〉(U),

(iii) Cyi (U) = C
y
r (U) = C

y

l (U) = C
y
u(U),

(iv) Cy
〈i〉(U) = C

y

〈r〉(U) = C
y

〈l〉(U) = C
y

〈u〉(U).

Proposition 5.3. Let (W, d,Hx) be an x-NS, U ⊆ W, and d be symmetric and transitive. Then,

(i) dyu(U) = dyr (U) = d
y

l
(U) = d

y

i (U) = d
y

〈u〉(U) = d
y

〈r〉(U) = d
y

〈l〉
(U) = d

y

〈i〉(U),

(ii) d
y

u(U) = d
y

r (U) = d
y

l (U) = d
y

i (U) = d
y

〈u〉(U) = d
y

〈r〉(U) = d
y

〈l〉(U) = d
y

〈i〉(U).

Proof. This is analogous to the proof of Proposition 5.2. �

Corollary 5.5. Let (W, d,Hx) be an x-NS, U ⊆ W, and d be symmetric and transitive. Then,

(i) Pyi (U) = P
y
r (U) = P

y

l (U) = P
y
u(U) = P

y

〈i〉(U) = P
y

〈r〉(U) = P
y

〈l〉(U) = P
y

〈u〉(U),

(ii) Cyi (U) = C
y
r (U) = C

y

l (U) = C
y
u(U) = C

y

〈i〉(U) = C
y

〈r〉(U) = C
y

〈l〉(U) = C
y

〈u〉(U).

Proposition 5.4. Let (W, d,Hx) be an x-NS, U ⊆ W, and d be equivalence. Then,

(i) dyu(U) = dyr (U) = d
y

l
(U) = d

y

i (U) = d
y

u(U) = d
y

r (U) = d
y

l (U) = d
y

i (U) = d
y

〈u〉(U) = d
y

〈r〉(U) = d
y

〈l〉
(U) =

d
y

〈i〉(U)) = d
y

〈u〉(U) = d
y

〈r〉(U) = d
y

〈l〉(U) = d
y

〈i〉(U),

(ii) Pyi (U) = P
y
r (U) = P

y

l
(U) = P

y
u(U) = P

y

〈i〉(U) = P
y

〈r〉(U) = P
y

〈l〉
(U) = P

y

〈u〉(U),

(iii) Cyi (U) = C
y
r (U) = C

y

l
(U) = C

y
u(U) = C

y

〈i〉(U) = C
y

〈r〉(U) = C
y

〈l〉
(U) = C

y

〈u〉(U).

Proof. This is comparable to the proof of Proposition 5.2. �

6. Numerical example

This section presents the data derived from six peopleW = {r1, r2, r3, r4, r5, r6} who go to the gym
four days a week with the aim of taking care of their health and enjoying physical fitness and strength.
Each of them performs differently from the other. Individuals’ performance is evaluated through four
levels: excellent, very good, good, and bad, as shown in Table 4. The levels are arranged in the
following order: excellent  very good  good  bad, where  signifies “greater than and not equal”.
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Table 4. Information system of people’s level for four days.

W Day 1 Day 2 Day 3 Day 4
r1 good bad excellent excellent
r2 very good good excellent bad
r3 very good good failed good
r4 excellent bad very good excellent
r5 very good bad very good excellent
r6 good good excellent bad

Two people are related by d, where: xdy iff person x has two days or more with levels exceeding
those of the corresponding days for person y. For example, r4dr3 because the person achieves a level
r4 in Day 1, Day 2, and Day 3, which surpasses the person’s level of r3 in these days. But, (r3, r3) < d
because the person r3 has only one day’s level greater than person r3. Hence,
d = {(r1, r3), (r2, r1), (r2, r4), (r2, r5), (r4, r2), (r4, r3), (r4, r6), (r5, r3), (r5, r6), (r6, r4)}.

So, hl-neighborhoods and yl-neighborhoods are obtained ∀r ∈ W :

hl(r1) = hl(r5) = {r2}, hl(r4) = {r2, r6},

hl(r2) = {r4}, hl(r6) = {r4, r5},

hl(r3) = {r1, r4, r5},

yl(r1) = yl(r4) = yl(r5) = {r1, r4, r5},

yl(r2) = yl(r6) = {r2, r6},

yl(r3) = ∅.

Additionally, the hr-neighborhood and yr-neighborhood are given ∀r ∈ W :

hr(r1) = {r3}, hr(r4) = {r2, r3, r6},

hr(r2) = {r1, r4, r5}, hr(r5) = {r3, r6},

hr(r3) = ∅, hr(r6) = {r4},

yr(r1) = yr(r4) = yr(r5) = {r1, r4, r5},

yr(r2) = yr(r3) = yr(r6) = {r2, r3, r6}.

Therefore,

(i) Th
l

= {∅,W, {r2, r4, r5, r6}, {r1, r2, r4, r5, r6}},

(ii) Thr = {∅,W, {r3}, {r1, r3}},

(iii) Th
〈r〉 = {∅,W, {r3}, {r4}, {r3, r4}, {r3, r6}, {r1, r4, r5}, {r2, r3, r6}, {r3, r4, r6}, {r1, r3, r4, r5}, {r2, r3, r4, r6},

{r1, r3, r4, r5, r6}},
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(iv) TIr = {∅,W, {r2}, {r4}, {r2, r4}, {r4, r5}, {r1, r4, r5}, {r2, r4, r5}, {r2, r4, r6}, {r1, r2, r4, r5}, {r2, r4, r5, r6},

{r1, r2, r4, r5, r6}},

(v) TBr = {∅,W, {r3}, {r1, r3}, {r1, r3, r6}, {r1, r3, r4, r6}, {r1, r3, r4, r5, r6}},

(vi) Ty
l

= T
y

〈l〉
= T

y

i = T
y

〈i〉 = {∅,W, {r3}, {r2, r6}, {r1, r4, r5}, {r2, r3, r6}, {r1, r3, r4, r5}, {r1, r2, r4, r5, r6}},

(vii) Tyr = T
y

〈r〉 = T
y
u = T

y

〈u〉 = {∅,W, {r1, r4, r5}, {r2, r3, r6}}.

Consequently,

(i) clearly, Tyr ( Tyi ,T
y

〈i〉, so the suggested topologies are superior than the prior topology in
Theorem 2.3 [41],

(ii) evidently, Tyx ⊆ T
y

〈x〉
, x ∈ {r, l, i, u}, and Tyu ⊆ T

y
x ⊆ T

y

〈i〉, x ∈ {r, l, i, 〈r〉, 〈l〉, 〈u〉}. These results confirm
the merit of the proposed topologies formed by yx-neighborhoods and this leads us to compare
yx-approximations, yx-accuracy values, y〈x〉-approximations, and y〈x〉-accuracy values (see
Theorem 5.1 and Corollary 5.3). These two types have not been compared in prior
manners [2, 3, 29, 34, 45], for instance, Thr , T

h

〈r〉,

(iii) the foregoing topologies created by x-neighborhoods [2, 3, 29], Bx-neighborhoods [14], and Ix-
neighborhoods [45] differ from the proposed ones, as Thr ,TIr , TBr , and Tyr are not comparable,

(iv) Th
l

is the dual of Thr , in spite of the fact that Ty
l

is not the dual of Tyr ,

(v) the relation is irreflexive as (r, r) < d, r ∈ W, not symmetry as (r3, r1) < d, but (r1, r3) ∈ d, and
also, not transitive as (r5, r4) < d. However, (r5, r6) ∈ d and (r6, r4) ∈ d. So, some of the prior
methods [1, 12, 32] cannot deal with these exampleS as they put restrictions on relations,

(vi) let d = d2 and d1 be another relation. xd1y iff person x has three days or more with levels exceeding
those of the corresponding days for person y. Thus, d1 = {(r2, r1)} ⊆ d2. Hence, Ty1r = P(W), if
U = {r2}, then

(1) in the prior manner in [45],

• d1
Ir (U) = W, d2

Ir (U) = {r2, r3, r6},

• d1Ir (U) = d2
Ir (U) = {r2},

• PIr1 (U) = W \ {r2} * {r3, r6} = P
Ir
2 (U),

• CIr2 (U) = 1
3 >

1
6 = C

Ir
1 (U),

• KIr1 (U) = 5
6 >

2
3 = K

Ir
2 (U).

(2)in the present manner,

• d1
y

r (U) = {r2} ⊆ {r2, r3, r6} = d2
y

r (U),
• d2yr (U) = ∅ ⊆ {r2} = d1

y

r
(U),

• Py1r(U) = ∅ ⊆ {r1, r4, r5} = P
y

2r(U),
• Cy2r(U) = 0 < 1 = C

y

1r(U),
• Ky1r(U) = 0 < 1 = K

y

2r(U).
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Accordingly, the computations show that the present technique is monotonic as it relies on
yx-neighborhoods. Whereas, the prior manner in [45] is not monotonic as it depended on
Ix-neighborhoods. Additionally, it is easy to show that Abo Tabl’s technique [1], Allam et al.’s
method [4], Al-shami’s approach [6], Dai et al.’s manner [12] (the second type), Hosny’s
proposal [19] (third type), and Kandil et al.’s methodology [27] are also not monotonic. The
monotonic property is a key concept that ensures the consistency and predictability of the
approximation process as more information about a system becomes available. It dictates that
the operators of approximations should not decrease when additional information is added.
Specifically, the lower approximation should remain the same or become more accurate, while
the upper approximation should stay the same or become more restrictive. This property
guarantees that rough set approximations are stable and reliable, enhancing the analysis and
interpretation of data. For example, introducing more attributes or data into a rough set model
should improve or at least maintain the accuracy of set approximations, never diminish it.

7. Discussions: Benefits and limitations

The strengths and weaknesses of the current models relative to the last ones are assessed in
this section.

• Benefits

(i) The topology discussed in Theorem 2.3 [41] is coarser than the suggested topologies, as
evidenced by Proposition 3.1, Corollary 3.1, and Theorem 3.2, which indicate that Tyr ⊆ T

y

i ,
T
y
r ⊆ T

y

〈r〉, and Tyr ⊆ T
y

〈i〉. Furthermore, Example 3.1 demonstrates that Tyr  T
y

i , Tyr ( T
y

〈r〉,
and Tyr ( Ty

〈i〉. Therefore, the proposed topologies represent a more comprehensive
extension of the previous work [41].

(ii) The proposed topologies are compared, leading to the identification of the largest one Tyu and
the weakest one Ty

〈i〉 among all of them under any relation. This provides a distinctive
depiction of these topologies, even though Thx, T

h

〈x〉
in [2, 3, 29], TBx , TB

〈x〉
in [14], and TIx ,

TI
〈x〉
, x ∈ {r, l, i, u}, in [14] are incomparable under an arbitrary relation. This distinction leads

us to compare yx-approximations, yx-accuracy values, y〈x〉-approximations, and y〈x〉-accuracy
values. Meanwhile, this capability is lacking in earlier methods [19, 27]. For instance, two
kinds of neighborhoods (approximations and accuracy) created from x-NS (hx, h〈x〉) and
basic-neighborhoods (Bx,B〈x〉) are not comparable under an arbitrary relation. Example 3.3
confirms this matter, hl(k) = {r} *,+ {k} = h〈l〉(k) and Bl(r) = {r, k} *,+ {r, s} = B〈l〉(r).

(iii) The current results do not necessitate that Tyr represent the dual of Tyl (see Examples 3.2
and 3.3), while it was proven that Thr is the dual of Thl as in [2, 3, 29].

(iv) The current technique achieves all of Pawlak’s properties without any restrictions. It
permits us to tackle a range of practical problems using any relation, while Pawlak’s
manner [35,36] necessitates an equivalence relation, Abo Tabl’s technique [1], Allam et al.’s
manner [4], Al-shami’s approach [7], and Marei’s method [32] need a reflexive relation, and
Dai et al.’s methodology [12] requires a similarity relation which hinders applications.

(v) The proposed technique has the monotonic property. This property specifically examines how
these approximations respond to changes in the information available about the system. In
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other words, as additional data or knowledge is incorporated, the lower approximation should
either remain unchanged or become more precise, while the upper approximation should
either stay the same or become more restrictive. This ensures that the approximations remain
stable. Meanwhile, this property may be either lost or retained under stringent conditions in
some earlier methods [1, 4, 6, 8, 12].

(vi) The current approach is more effective for handling large samples because it relies
exclusively on the union of x-neighborhoods. This is particularly important as it allows us to
make more accurate decisions for problems where these cases provide the appropriate
framework, such as infectious diseases such as COVID-19, where the spread of infection is
relative to the size of the sample.

• Limitations

(i) The present proposal is generally not comparable with the prior approaches [2,3,29,34,45] if
the relation is not reflexive. Additionally, the foregoing approximations [2, 3, 29, 34, 45] are
better than the present technique under a reflexive relation (refer to Propositions 3.3 and 4.6).

(ii) Taher et al.’s topology [41] (Tyr ) in Theorem 2.3 is better than the proposed topologies ∀x = u.

(iii) Some of the previous methods did not require as many calculations as the current one, as our
method relies solely on the union of x-neighborhoods.

8. Conclusions

A rough set is a significant approach for tackling problems related to vagueness and uncertainty
in knowledge. The recent advancement of rough sets has given rise to topological rough set
approaches. Topology has numerous real-life applications as it is vital for knowledge extraction. One
of the significant contributions of this study was its effort to connect rough sets with topology,
revealing the topological structures embedded within these approximations. This interdisciplinary
approach paves the way for more in-depth investigations into topology within the context of rough
sets, highlighting the crucial role these approximations play in defining topological structures. Since
neighborhoods are fundamental to topological spaces and crucial for solving topological problems,
we were motivated to incorporate them into rough sets. Therefore, this paper presented new methods
for articulating the fundamental concepts of rough sets in terms of topologies inspired by the union of
x-neighborhoods. In light of utilizing the neighborhoods in rough sets, we had extended rough set
concepts by incorporating neighborhoods, as demonstrated in this study. This paper focused on
creating various topologies using different types of maximal neighborhoods. Their properties were
scrutinized and we used illustrative counterexamples to clarify the results. One of the most important
features of this article was that it enabled us to know the smallest and largest topologies among all
types, which was not possible in the prior manners [2, 3, 29, 34, 45]. Comparing these topologies with
the previous one in Theorem 2.3 [41] demonstrated that the earlier topology was not as robust as the
current ones when x ∈ {〈r〉, i, 〈i〉}. These topologies were used to propose new approximations.
Comparisons among them were studied and in this context, we confirmed that the optimal results
were achieved with 〈i〉. Additionally, all types of the proposed approximations were compared.
Meanwhile, this comparison was absent in earlier methods [2, 3, 29, 34, 45]. These approximations
preserved the main characteristics of Pawlak without restriction as in [1,4,12,32]. Moreover, they had
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the monotonic property, where in contrast, this merit may either be missed or kept with limitation as
in [19, 27]. Furthermore, to enhance the robustness and clarity of the current work, a numerical
example had been proposed to elucidate the core concepts of the results. This study wrapped up with
an overview of the main strengths and weaknesses of the current method.

An exciting avenue for future research will involve

• Using ideals to develop the present manner.
• Introducing near open sets based on the current results.
• Broadening the current study to rough multisets.
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