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Abstract: Events or attributes occur at different ages or times but, in some circumstances, for effective
planning and policy formulation, the peak point, where the events or attributes has its peak value, is
of interest. Usually, the graphs depicting peak values are not symmetrical. In determining the peak
point(s) of events that occur over time, a set of αs of α-levels, chosen from an antisymmetric interval
(0, 1], was used on an ATD matrix. This was done to obtain an RTD matrix which was then aggregated
to obtain a CETD matrix. Most authors chose α without any condition. The problem associated with
this was that two different sets of α may not necessarily produce the same peak point for the same data
set. In this study, the condition to guarantee that the row which had the highest sum (the peak value)
in a CETD matrix was invariant, regardless of the set of α-levels, was established. To establish the
authenticity of this method, there were experiments conducted and numerical examples were given in
this paper.
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1. Introduction

The first introduction of the word matrix into the mathematics literature was by James Joseph
Sylvester, but Cayley was the first author of an expository article on the subject [1]. Since then, a
lot has been done on the study and use of matrices. It is also important to note that the notion of the
fuzzy set was introduced by Zadeh [2]. Thomason [3] was the first to introduce fuzziness into matrix
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theory. Since then, there have been diverse uses of fuzzy matrices (Ref. [3–7]). However, in this study,
average time-dependent (ATD), revised time-dependent (RTD), and combined effect time-dependent
(CETD) matrices will be used to determine the peak age at which some attributes occur, and it can
even be extended to analyzing transportation problems such as the peak time (peak point) of traffic and
some other problems where peak is of interest. While we provide some basic information, readers can
please refer to [8–10] for more information on ATD, RTD, and CETD matrices.

When an attribute (of multi-dimension) is observed over a period of time and the various frequencies
of occurrences of each dimension are recorded, these observations are grouped into intervals of times
according to the researcher’s interest. The matrix (or table) obtained by this procedure is called the
raw data (RD) matrix. The RD matrix is then transformed into an ATD matrix upon dividing each
entry in its row by the corresponding number of years in the time interval. An ATD matrix is a special
matrix which represents data that is uniform. In each column of the ATD matrix, the respective mean
and standard deviation of the data is found and is used to transform the ATD matrix into special fuzzy
matrices (RTD matrices) at different α-levels, using the formula

ei j =


−1, i f ai j ≤ µ j − αδ j,

0, i f ai j ∈ (µ j − αδ j, µ j + αδ j),
1, i f ai j ≥ µ j + αδ j,

(1.1)

where µ j is the mean of the entries in j-th column of the ATD matrix and δ j is their standard deviation.
The aggregation of RTD matrices at different α-levels produces a CETD matrix.

The CETD matrix is used, most times, to determine the peak value of the occurrence of events or
attributes over time. Many researchers have used these fuzzy matrices in the field of health, sociology,
and transportation, to mention just a few. In particular, [11–13] used the CETD matrix approach to
analyze the personality of individuals. Also, it was used in [14] to determine the maximum age group
affected by cardiovascular disease in some men. In [15], the CETD matrix was used to determine the
maximum age at which the problem of housemaid occurs. It has been used in [16] to study the peak age
when issues of divorce come up, and it was used in [17] to study the peak age when self-actualization
occurs. The CETD matrix has also been used to study traffic flow [18]. The CETD matrix is used in a
number of ways to analyze health related issues [19–22] and it was also used to analyze the effect of
computer use on the vision of women [23].

Since it is not certain for one α-level (just one RTD matrix) to give a precise result, all the authors
(Ref. [14–23]) choose three to four α-levels, from an antisymmetric interval (0, 1], and then aggregate
the results. This means three or more values of α leads to three or more RTD matrices. The sum of all
the RTD matrices form the CETD matrix. The highest row sum of the CETD matrix actually gives the
required peak value. As noted above, the determination of this peak value is done with the choice of
some values of α without any explanation on the criteria for the selection. No researcher, to the best
of our knowledge, has ever shown if choosing and applying another set of values for α will guarantee
the same peak point. It was opined that the values of the entries in the RTD matrix is determined
in some undisclosed special way [10]. Most authors choose α without any condition. The problem
associated with this is that two different sets of α may not necessarily produce the same peak point for
the same dataset. Our research indeed shows that some conditions should be applied in the choice of α
levels to preserve the point of the CETD matrix possessing the peak value. So, we have established the
condition which guarantees that the peak point (the class at which peak value occurs for an attribute)
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obtained in a CETD matrix is invariant.
The worry that one could have whether the row with the peak point for a set of chosen values for

α will be different for another set is eliminated as this paper established the condition to guarantee the
invariance of peak point(s).

2. Useful definitions

This section gives basic definitions and/or information needed in the sequel.

Definition 2.1. ([24]) Partition P = {[x0, x1], [x1, x2], · · · , [xi−1, xi], · · · , [xn−1, xn]} of the interval [a, b]
is a finite-ordered set of points in IR such that a = x0 < x1 < x2 < · · · < xi−1 < xi < · · · < xn−1 < xn = b.

Definition 2.2. ([24]) The length of the subinterval Ii = [xi−1, xi] of a partition

P = {[x0, x1], [x1, x2], · · · , [xi−1, xi], · · · , [xn−1, xn]}

of the interval [a, b] is δxi = xi − xi−1.

Definition 2.3. A partition is said to be uniform if all its subintervals are of the same length, that is,

xi − xi−1 = α ∈ IR, ∀i ∈ [1, n],

where α is a real constant.

Remark 2.4. P = {[xi−1, xi]} is a collection of subintervals Ii = [xi−1, xi] (i = 1, 2, 3, · · · , n) of [a, b]
which are not disjoint but a partition is supposed to be a disjoint or nonoverlapping collection. Hence,
we will give another definition of partition of an interval [a, b] in Section 3.

3. Results

Definition 3.1. The set P = {[x0, x1], (x1, x2], (x2, x3], · · · , (xn−1, xn]}, which is a collection of finite-
ordered sets of points in IR (uniform subintervals of the interval I = [a, b]) such that a = x0 < x1 <

x2 < x3 < · · · < xn−1 < xn = b, is a partition of I.

Remark 3.2. Hence, we can look at {(xi−1, xi]}ni=1 as a uniform partition of the interval I = (x0, xn].
Also, note that the use of uniform partition ensures that αs are sufficiently far from each other so that
the multiplying effects are significant and uniform on the data collected. Otherwise, it will produce a
biased effect as will be seen in an example given later.

Remark 3.3. Let Is = (as, bs] ⊂ (0, 1] be a cell in the uniform partition {(xi−1, xi]}ni=1 of (0, 1], where
1 ≤ s ≤ n. Then,

(i)
⋃

Is = (0, 1],
(ii) It ∩ Il = ∅, if t , l, and

(iii) |bs − as| =constant for all s.

Example 3.4. (i) The set {(0, 0.25], (0.25, 0.50], (0.50, 0.75], (0.75, 1]} is a uniform partition of
(0, 1].
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(ii) The set

{(0, 0.125], (0.125, 0.25], (0.25, 0.375], (0.375, 0.50],
(0.50, 0.625], (0.625, 0.75], (0.75, 0.875], (0.875, 1]}

of subsets of (0, 1] is a uniform partition of it.

As noted above, all researchers who use the CETD matrix to find a peak point make choices of α in
the interval (0, 1] arbitrarily. We have found out that if a set of chosen α are interchanged with another
set, without any condition, the peak point in the CETD matrix is not always necessarily the same as
can be seen later in our example. We need to establish the condition on the choice of α which will
make the peak point invariant.

Remark 3.5. Besides, as shall be required to know later in a part of this work, in a row of a matrix,
if we have [1 − 1 1 0 − 1 − 1], the total number of 0 and/or −1 is 4 and the total number of
0 and/or 1 is 3. In this case, most entries are 0 and/or −1. On the other hand, if in a row we have
[1 1 1 0 − 1 − 1], the total number of 0 and/or −1 is 3 and the total number of 0 and/or 1 is 4, in
which case most entries are 0 and/or 1.

Theorem 3.6. Given an ATD matrix, if α1<α2<α3 < · · ·<αn are applied in the increasing order to
generate the RTD matrices Aαs such that αs ∈ (as, bs] (for 1 ≤ s ≤ n) and {(xi−1, xi]}ni=1 is a uniform
partition of (0, 1], then some ei j which were −1 and 1 become 0 and the total number of 0 and/or 1 in
the row with highest sum in the newer RTD matrix is more than the total number of -1 and/or 0.

Proof. For α1<α2<α3< · · ·<αn, (µ j −α1δ j, µ j +α1δ j) ⊂ (µ j −α2δ j, µ j +α2δ j) ⊂ (µ j −α3δ j, µ j +α3δ j) ⊂
· · · ⊂ (µ j −αnδ j, µ j +αnδ j). This implies that, for ai j ∈ (µ j −α1δ j, µ j +α1δ j), ei j = 0 for α1 RTD matrix
and also for other RTD matrices obtained by other αs since ai j ∈ (µ j−αsδ j, µ j +αsδ j). Furthermore, for
some ai j < (µ j−α1δ j, µ j +α1δ j), we now have such ai j ∈ (µ j−α2δ j, µ j +α2δ j) ⊂ (µ j−α3δ j, µ j +α3δ j) ⊂
· · · ⊂ (µ j − αnδ j, µ j + αnδ j) and their corresponding ei j which were, respectively, 1 and −1 in RTD
matrix Aα1 becoming 0 in RTD matrix Aα2 , Aα3 , Aα4 , · · · , Aαn , so that the total number of 0 and 1 in
RTD matrix Aαt , for 2 ≤ t ≤ n, have now increased and the total number of 0 and −1 have rather
decreased for αt. �

Remark 3.7. As the practice has commonly been with many authors, choosing most α from a
cell of the partition is not appropriate to guarantee the invariance of peak point. For an instance,
author choosing α = 0.06, 0.1, 0.25, 0.75 in a partition {(0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1]} is not
appropriate.

Theorem 3.8. The shape of the graph (not usually symmetrical) and the peak value of the CETD matrix
is NOT INVARIANT if most αs are chosen from a cell (as, bs] of the uniform partition {(xi−1, xi]}ni=0 of
(0, 1].

Proof. Let {(as, bs]} be a partition of (0, 1] and {αs}
n
s=1 be the α-levels chosen to generate the RTD

matrices Aαs = (es
i j), where 1 ≤ i ≤ m and 1 ≤ j ≤ w. Assume that most αs are chosen from a particular

cell (as, bs]. Let

B =

n∑
s=1

Aαs = (
n∑

s=1

es
i j) = (bi j) (3.1)
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be the CETD matrix resulting from addition of Aαs . Let k-th row have the highest sum PB in B. Then,
in each Aαs matrix, it is such that

w∑
j=1

es
k j ≥

w∑
j=1

es
i j ⇒ bk j ≥ bi j ⇒

w∑
j=1

bk j = PB ≥

w∑
j=1

bi j, i , k. (3.2)

Hence, either all or most es
k j ∈ Aαs are such that es

k j ≥ 0 and there are fewer es
k j < 0. In this case, in the

ATD matrix, most ak j are such that ak j>µ − αsδ and fewer ak j ≤ µ − αsδ. However, in the other rows
when i , k, most es

i j ∈ Aαs are such that es
i j = −1 and ek j ≥ 0 are fewer; hence, in the ATD matrix, most

ai j are such that ai j < µ − αsδ and fewer ai j ≥ µ − αsδ.
Suppose further that {αt}

n
t=1 are the α-levels chosen to generate the RTD matrices Aαt = (et

i j), where
1 ≤ i ≤ m and 1 ≤ j ≤ w. Also, suppose that most of the αt are chosen from a particular (at, bt] such
that (without loss of generality) at < bt < as < bs, in which case αt < αs. Then,

µ − αsδ < µ − αtδ < µ + αtδ < µ + αsδ. (3.3)

If the k-th row retains its peak value PB in the resulting CETD matrix

B =

n∑
t=1

Aαt = (
n∑

t=1

et
i j) = (bi j), (3.4)

then it should be that most et
k j ∈ Aαt are such that et

k j ≥ 0. Note that in the ATD matrix we could
now have some ak j such that µ − αs ≤ ak j < µ − αtδ, so that some more es

k j ∈ Aαs which were
nonnegative in the RTD matrix Aαs could now become negative in the RTD Aαt . Also, all such ak j such
that µ + αt < µ − αsδ ≤ ak j in RTD matrix Aαs retain the value 1 in the RTD matrix Aαt . Hence, et

k j ≥ 0
are now fewer in Aαt than in Aαs . So, we can have an ε ≥ 1 such that

PB =

w∑
j=1

bk j =

w∑
j=1

bk j − ε <

w∑
j=1

bk j = PB. (3.5)

This is a contradiction to the assumption that the CETD matrix B retains the peak value obtained in the
CETD matrix B. This inevitably distorts the shape of the graph obtained earlier. �

Theorem 3.9. Given an ATD matrix, if α1<α2<α3 · · ·<αn are applied in the increasing order to
generate the RTD matrices Aαs such that αs ∈ (as, bs] (for 1 ≤ s ≤ n) and {(xi−1, xi]}ni=0 is a uniform
partition of (0, 1], then the row with the highest sum in the resulting CETD matrix retains the maximum
sum for different set of αs.

Proof. Assume that an RTD matrix is obtained at level α1 and that the k-th row of the CETD matrix
has the maximum sum. Since, in such an RTD matrix, any row i , k in which ei j are mostly −1 cannot
have the maximum row sum, it certainly has its sum less or equal to each of the other rows in which
entries are not mostly −1. Hence, there are two possible cases of the row(s) with maximum sum(s)
in it:
Case 1. ek j = 1 for most or all entries in row k.
Then,

ak j ≥ µ j + α1δ j (3.6)
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for most or all the entries in row k over columns j in the ATD matrix Aα1 . If we choose α2 such that
α1 < α2, then the corresponding ak j in the ATD matrix is such that either

µ j + α1δ j ≤ ak j < µ j + α2δ j, (3.7)

in which case the corresponding ek j, which was 1 in the RTD matrix Aα1 is now 0 in the new RTD
matrix Aα2 , or

ak j ≥ µ j + α2δ j, (3.8)

in which case the corresponding ek j which was 1 in Aα1 , still remains 1 in the new RTD matrix Aα2 .
So, ek j is mostly 1 and 0 in the k-th row of the new RTD matrix Aα2 . Note that the inequalities (3.7)
and (3.8) hold for all αs leading to RTD matrices Aαs , for 2 ≤ s ≤ n. Let

n∑
s=1

(es
i j) = (bi j), (3.9)

be the component-wise sum of the entries of all the RTD matrices Aαs , where bi j is the entry in the new
CETD matrix obtained due to αs. Then, for bi j in the CETD matrix, we have the sum∑

j

bi j (3.10)

of the i-th row in the CETD matrix. Since most entries in row k of each of the RTD matrices are
mostly 0 and 1, by Theorems 3.6 and 3.8,∑

j

bk j ≥
∑

j

bi j, ∀i , k, (3.11)

in which case row k has the maximum sum in the CETD matrix.

Case 2. When most ek j are 0 and 1.
For ek j = 0,

ak j ∈ (µ j − α1δ j, µ j + α1δ j) ⊂ (µ j − α2δ j, µ j + α2δ j)

so that corresponding ek j = 0 remains the same in the new RTD matrix.
On the other hand, for ek j = 1, either

µ j + α1δ j ≤ ak j < µ j + α2δ j, (3.12)

in which case the corresponding ek j in the new RTD matrix becomes 0, or

ak j ≥ µ j + α2δ j>µ j + α1δ j, (3.13)

in which case the corresponding ek j in the new RTD matrix becomes 1 so that ek j is mostly 0 and 1
in the k-th row of the ATD matrices. Also, note that the inequalities (3.12) and (3.13) hold for all αs

leading to RTD matrices Aαs , for 2 ≤ s ≤ n. Hence, by Theorems 3.6 and 3.8,∑
j

bk j ≥
∑

j

bi j, ∀i , k. (3.14)

Thus, row k has the maximum sum in the CETD matrix. �
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4. Algorithm for computing CETD matrices

• Uniformly partition the interval (0, 1] into n cells {(xi−1, xi]}ni=1 for n ≥ 3;
• Choose equal number of αi from each cell (xi−1, xi] to have the set {αi}

n
i=1;

• Compute the RTD matrix with the {αi}
n
i=1;

• Find the CETD matrix as the sum of all the RTD matrices resulting from {αi}
n
i=1.

5. Illustrative examples

Example 5.1. In this example, three of the four α-levels are chosen close to each other in cell of the
uniform partition {(0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1]} to show that this produces a biased effect.
Different crimes are represented on the tables with Ci, i = 1, 2, 3, 4, 5, 6. Stealing = C1, Assault = C2,
Affray = C3, Abduction = C4, Burglary = C5, and Cheating = C6.

From Tables 1 and 2, we can obtain the RTD matrices for the set of αs as 0.06, 0.1, 0.25, and 0.75.

Table 1. The initial RD matrix of crime 5 × 6.

Years C1 C2 C3 C4 C5 C6

1994-1996 21 31 5 5 5 8
1997-2002 32 29 20 8 8 9
2003-2008 45 28 15 10 8 10
2009-2015 46 30 10 12 11 11
2015-2020 44 30 10 11 11 12

Table 2. The ATD matrix of crime 5 × 6.

Years C1 C2 C3 C4 C5 C6

1994-1996 7.00 10.33 1.67 1.67 1.67 2.67
1997-2002 5.33 4.83 3.33 1.33 1.33 1.5
2003-2008 7.5 4.67 2.50 1.67 1.33 1.67
2009-2015 7.67 5.00 1.67 2.00 1. 83 1.83
2015-2020 7.33 5.00 1.67 1.83 1.83 2.00

Average 6.97 5.97 2.17 1.70 1.60 1.93
S.D 0.95 2.44 0.74 0.25 0.25 0.45

The RTD matrix for α = 0.06 is
0 1 −1 −1 1 1
−1 −1 1 −1 −1 −1
1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1
1 −1 −1 1 1 1




1
−4
−2
0
2


. (5.1)
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The RTD matrix for α = 0.1 is
0 1 −1 −1 1 1
−1 −1 1 −1 −1 −1
1 −1 1 −1 −1 −1
1 −1 −1 1 1 −1
1 −1 −1 1 1 1




1
−4
−2
0
2


. (5.2)

The RTD matrix for α = 0.25 is
0 1 −1 0 1 1
−1 −1 1 −1 −1 −1
1 −1 1 0 −1 −1
1 −1 −1 1 1 0
1 −1 −1 1 1 0




2
−4
−1
1
1


. (5.3)

The RTD matrix for α = 0.75 is
0 1 0 0 0 1
−1 0 1 −1 −1 −1
0 0 0 0 −1 0
0 0 0 1 1 0
0 0 0 0 1 0




2
−3
−1
2
1


. (5.4)

The CETD matrix is given below
0 4 −3 −2 3 4
−4 −3 4 −4 −4 −4
3 −3 3 −2 −4 −3
3 −3 −3 4 4 2
3 −3 −3 3 4 2




6
−15
−6
3
6


. (5.5)

The graph depicting the peak value of CETD matrix for α = 0.06, 0.1, 0.25, 0.75 is in Figure 1.

Figure 1. The graph depicting the peak value of CETD matrix for α = 0.06, 0.1, 0.25, 0.75.
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Remark 5.2. It should be noted that, for the set of αs as 0.06, 0.1, 0.25, and 0.75, the column
matrix given beside each matrix is the row sum of the matrix. It should also be noted that the
effect of choosing most α-levels close to each other from a cell of the partition as pointed out in
Remark 3.7 is the reason why matrices (5.1) and (5.2) are the same. As a matter of fact, it is
not so much different from (5.3). In what follows, we will choose two different sets of α-level
(α = 0.2, 0.4, 0.6, 0.8 and α = 0.25, 0.45, 0.75, 0.9) so that αs in each set is from each cell of the
partition {(0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1]}.

For the set of α = 0.2, 0.4, 0.6, 0.8, the RTD matrix for α = 0.2 is
0 1 −1 0 1 1
−1 −1 1 −1 −1 −1
1 −1 1 0 −1 −1
1 −1 −1 1 1 −1
1 −1 −1 1 1 0




2
−4
−1
0
1


. (5.6)

The RTD matrix for α = 0.4 is
0 1 −1 0 0 1
−1 −1 1 −1 −1 −1
1 −1 1 0 −1 −1
1 0 −1 1 1 0
0 0 −1 1 1 0




1
−4
−1
2
1


. (5.7)

The RTD matrix for α = 0.6 is 
0 1 −1 0 0 1
−1 0 1 −1 −1 −1
0 0 0 0 −1 0
1 0 −1 1 1 0
0 0 −1 0 1 0




1
−3
−1
2
0


. (5.8)

The RTD matrix for α = 0.8 is 
0 1 0 0 0 1
−1 0 1 −1 −1 −1
0 0 0 0 −1 0
0 0 0 1 1 0
0 0 0 0 1 0




2
−3
−1
2
1


. (5.9)

The CETD matrix is given below
0 4 −3 0 1 4
−4 −2 4 −4 −4 −4
2 −2 2 0 −4 −2
3 −1 −3 4 4 −1
1 −1 −3 2 4 0




6
−14
−4
6
3


. (5.10)
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The graph depicting the peak value of CETD matrix for α = 0.2, 0.4, 0.6, 0.8 is in Figure 2.

Figure 2. The graph depicting the peak value of CETD matrix for α = 0.2, 0.4, 0.6, 0.8.

However, consider α = 0.25, 0.45, 0.75, 0.9, which has a similar spread as α = 0.2, 0.4, 0.6, 0.8. The
CETD matrix with the row sum for α = 0.25, 0.45, 0.75, 0.9 is given as

0 4 −2 0 1 4
−4 −2 4 −4 −4 −4
2 −2 1 0 −4 −2
2 −1 −2 4 4 0
1 −1 −2 2 4 0




7
−14
−5
7
4


. (5.11)

The graph depicting the peak value of the CETD matrix for α = 0.25, 0.45, 0.75, 0.9 is given in
Figure 3.

Figure 3. The graph depicting the peak value of CETD matrix for α = 0.25, 0.45, 0.75, 0.9.

Remark 5.3. It can be seen from Figures 1 and 2 that the class having the peak values and the shapes
of the graphs obtained from the row sums of the CETD matrices using different set of αs are different.
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However, considering another set of αs, 0.25, 0.45, 0.75, 0.9, chosen similarly as α = 0.2, 0.4, 0.6, 0.8,
respectively, from the same cell, the class (which in some cases can be age-group) with the peak value
in Figure 3 is the same as the class with the peak value in Figure 2. As a matter of fact, the CETD
matrix (5.5) has its peaks at row 1 and row 5, but CETD matrix (5.10) has its peaks at row 1 and row 4
(i.e., a change also occurred in peak point). However, CETD matrix (5.11) has its peaks at row 1 and
row 4, and the graph (Figure 3) retains the same shape as the graph (Figure 2) of CETD matrix (5.10)
because they have relatively the same spread of αs.

Example 5.4. The attribute openness of the example in [11] will be used now. We apply our method
and show that the class having the peak value is invariant under our condition.

From Tables 3 and 4, we can obtain the RTD matrices for a set of αs as 0.2, 0.32, 0.57 and 0.8.

Table 3. Initial RD matrix for openness of order 7 × 6.

Age O1 O2 O3 O4 O5 O6

10-17 22 23 19 25 27 16
18-24 22 24 20 21 18 13
25-29 22 24 24 21 21 24
30-39 17 17 14 19 23 20
40-49 11 20 20 12 23 18
50-59 7 13 14 5 21 13
60-75 4 13 8 4 20 8

Table 4. The ATD matrix of openness of order 7 × 6.

Age O1 O2 O3 O4 O5 O6

10-17 2.75 2.88 2.38 3.13 3.38 2.00
18-24 3.14 3.43 2.86 3.00 2.57 1.86
25-29 4.40 4.80 4.80 4.20 4.20 4.80
30-39 1.70 1.70 1.40 1.90 2.30 2.00
40-49 1.10 2.00 2.00 1.20 2.30 1.80
50-59 0.70 1.30 1.40 0.50 2.10 1.30
60-75 0.25 0.81 0.50 0.25 1.25 0.50

Average 2.01 2.42 2.19 2.03 2.59 2.04
Standard Deviation 1.49 1.38 1.38 1.48 0.95 1.33

The RTD matrix for α = 0.2 is

1 1 0 1 1 0
1 1 1 1 0 0
1 1 1 1 1 1
−1 −1 −1 0 −1 0
−1 −1 0 −1 −1 0
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1





4
4
6
−4
−4
−6
−6


. (5.12)
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The RTD matrix for α = 0.32 is



1 1 0 1 1 0
1 1 1 1 0 0
1 1 1 1 1 1
0 −1 −1 0 0 0
−1 0 0 −1 0 0
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1





4
4
6
−2
−2
−6
−6


. (5.13)

The RTD matrix for α = 0.57 is



0 0 0 1 1 0
1 1 0 1 0 0
1 1 1 1 1 1
0 0 −1 0 0 0
−1 0 0 0 0 0
−1 −1 −1 −1 0 0
−1 −1 −1 −1 −1 −1





2
3
6
−1
−1
−4
−6


. (5.14)

The RTD matrix for α = 0.8 is



0 0 0 0 1 0
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 −1 0 −1 0 0
−1 −1 −1 −1 −1 −1





1
0
6
0
0
−3
−6


. (5.15)

The CETD matrix with the row sum is given below



2 2 0 3 4 0
3 3 2 3 0 0
4 4 4 4 4 4
−1 −2 −3 0 −1 0
−3 −1 0 −2 −1 0
−4 −4 −3 −4 −2 −2
−4 −4 −4 −4 −4 −4





11
11
24
−7
−7
−19
−24


. (5.16)

The graph depicting the peak value of CETD matrix for α = 0.2, 0.32, 0.57, 0.8 is in Figure 4.
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Figure 4. The graph depicting the peak value of CETD matrix for α = 0.2, 0.32, 0.57, 0.8.

If we choose another set of αs, say, 0.25, 0.45, 0.68, and 0.85, the RTD matrix for α = 0.25 is



1 1 0 1 1 0
1 1 1 1 0 0
1 1 1 1 1 1
0 −1 −1 0 −1 0
−1 −1 0 −1 −1 0
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1





4
4
6
−3
−4
−6
−6


. (5.17)

The RTD matrix for α = 0.45 is



1 0 0 1 1 0
1 1 1 1 0 0
1 1 1 1 1 1
0 −1 −1 0 0 0
−1 0 0 −1 0 0
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1





3
4
6
−2
−2
−6
−6


. (5.18)

The RTD matrix for α = 0.68 is



0 0 0 1 1 0
1 1 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 −1 0 −1 0 0
−1 −1 −1 −1 −1 −1





2
2
6
0
0
−3
−6


. (5.19)
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The RTD matrix for α = 0.85 is



0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 −1 0 0
−1 −1 −1 −1 −1 −1





0
0
6
0
0
−2
−6


. (5.20)

The CETD matrix with the row sum is given below



2 1 0 3 3 0
3 3 2 2 0 0
4 4 4 4 4 4
0 −2 −2 0 −1 0
−2 −1 0 −2 −1 0
−4 −3 −2 −4 −2 −2
−4 −4 −4 −4 −4 −4





9
10
24
−5
−6
−17
−24


. (5.21)

The graph depicting the peak value of CETD matrix for α = 0.25, 0.45, 0.68, 0.85 is in Figure 5.

Figure 5. The graph depicting the peak value of CETD matrix for α = 0.25, 0.45, 0.68, 0.85.

Remark 5.5. It can be seen that Figures 4 and 5 have the same shape and peak points because the
spread of α is the same. In what follows, we will like to show that, even when the age groups are
refined, the class(es) having the peak vale(s) in the refinement is/are invariant under our condition.

Example 5.6. Tables 5 and 6 in this example are, respectively, the refinements of Tables 1 and 2.
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Table 5. The initial RD matrix of crime of order 7 × 6.

Years C1 C2 C3 C4 C5 C6

1994-1996 21 31 5 5 5 8
1997-2002 32 29 20 8 8 9
2003-2005 19 19 8 4 4 6
2006-2008 26 9 7 6 4 4
2009-2011 22 18 4 5 6 5
2012-2015 30 14 6 7 6 6
2016-2020 38 28 10 10 9 12

Table 6. The ATD matrix of crime of order 7 × 6.

Years C1 C2 C3 C4 C5 C6

1994-1996 7.00 10.33 1.67 1.67 1.67 2.67
1997-2002 5.33 4.83 3.33 1.33 1.33 1.5
2003-2005 6.33 6.33 2.67 1.33 1.33 2.00
2006-2008 8.67 3.00 2.33 2.00 1.33 1.33
2009-2011 7.33 6.00 1.33 1.67 2.00 1.67
2012-2015 7.50 3.50 1.50 1.75 1.50 1.50
2016-2020 7.60 5.60 2.00 2.00 1.80 2.40

Average 7.11 5.66 2.12 1.68 1.57 1.87
S.D 1.05 2.41 0.71 0.28 0.27 0.51

From Tables 5 and 6, we can obtain the RTD matrices for the set of αs as 0.2, 0.4, 0.7, and 0.8.
The RTD matrix for α = 0.2 is

0 1 −1 0 1 1
−1 −1 1 −1 −1 −1
−1 1 1 −1 −1 1
1 −1 1 1 −1 −1
1 0 −1 0 1 −1
1 −1 −1 1 −1 −1
1 0 0 1 1 1





2
−4
0
0
0
−2
4


. (5.22)

The RTD matrix for α = 0.4 is

0 1 −1 0 0 1
−1 0 1 −1 −1 −1
−1 0 1 −1 −1 0
1 −1 0 1 −1 −1
0 0 −1 0 1 0
0 −1 −1 0 0 −1
1 0 0 1 1 1





1
−3
−2
−1
0
−3
4


. (5.23)
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The RTD matrix for α = 0.7 is

0 1 0 0 0 1
−1 0 1 −1 −1 −1
−1 0 1 −1 −1 0
1 −1 0 1 −1 −1
0 0 −1 0 1 0
0 −1 −1 0 0 −1
0 0 0 1 1 1





2
−3
−2
−1
0
−3
3


. (5.24)

The RTD matrix for α = 0.8 is

0 1 0 0 0 1
−1 0 1 −1 −1 0
0 0 0 −1 −1 0
1 −1 0 1 −1 −1
0 0 −1 0 1 0
0 −1 −1 0 0 0
0 0 0 1 1 1





2
−2
−2
−1
0
−2
3


. (5.25)

The CETD matrix with the row sum is given below



0 4 −2 0 1 4
−4 −1 4 −4 −4 −3
−3 1 3 −4 −4 1
4 −4 1 4 −4 −4
1 0 −4 0 4 −1
1 −4 −4 1 −1 −3
2 0 0 4 4 4





7
−12
−6
−3
0
−10
14


. (5.26)

The graph depicting the peak value of CETD matrix for α = 0.2, 0.4, 0.7, 0.8 is in Figure 6.

Figure 6. The graph depicting the peak value of CETD matrix for α = 0.2, 0.4, 0.7, 0.8.
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If we choose another set of αs, say, 0.1, 0.3, 0.6, and 0.78, the RTD matrix for α = 0.1 is

−1 1 −1 0 1 1
−1 −1 1 −1 −1 −1
−1 1 1 −1 −1 1
1 −1 1 1 −1 −1
1 1 −1 0 1 −1
1 −1 −1 1 −1 −1
1 0 −1 1 1 1





1
−4
0
0
1
−2
3


. (5.27)

The RTD matrix for α = 0.3 is

0 1 −1 0 0 1
−1 −1 1 −1 −1 −1
−1 0 1 −1 −1 0
1 −1 1 1 −1 −1
0 0 −1 0 1 −1
1 −1 −1 0 0 −1
1 0 0 1 1 1





2
−4
−2
0
−1
−2
4


. (5.28)

The RTD matrix for α = 0.6 is

0 1 −1 0 0 1
−1 0 1 −1 −1 −1
−1 0 1 −1 −1 0
1 −1 0 1 −1 −1
0 0 −1 0 1 0
0 −1 −1 0 0 −1
0 0 0 1 1 1





1
−3
−2
−1
0
−3
3


. (5.29)

The RTD matrix for α = 0.78 is

0 1 0 0 0 1
−1 0 1 −1 −1 0
0 0 0 −1 −1 0
1 −1 0 1 −1 −1
0 0 −1 0 1 0
0 −1 −1 0 0 0
0 0 0 1 1 1





2
−2
−2
−1
0
−2
3


. (5.30)

The CETD matrix with the row sum is given below

−1 4 −3 0 2 4
−4 −2 4 −4 −4 −3
−3 1 3 −4 −4 1
4 −4 2 4 −4 −4
1 1 −4 0 4 −2
2 −4 −4 1 −1 −3
2 0 −1 4 4 4





6
−13
−6
−2
0
−9
13


. (5.31)
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The graph depicting the peak value of CETD matrix for α = 0.1, 0.3, 0.6, 0.78 is in Figure 7.

Figure 7. The graph depicting the peak value of CETD matrix for α = 0.1, 0.3, 0.6, 0.78.

Remark 5.7. It can be seen that Figures 6 and 7 have the same shape and pick points becuse the spread
of α is the same.

6. Discussion of findings

In Example 2, we have used our data to construct the RD matrix (Table 1) and the ATD matrix
(Table 2). Considering the uniform partition {(0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1]} and choosing
α-levels 0.06, 0.1, 0.25, 0.75, it is obvious that 0.06, 0.1, 0.25 are from the cell (0, 0.25] of the partition.
This CETD has its highest row sums in rows 1 and 5. These classes (or rows) depicting the peak
values are not guaranteed when another set of α-levels are arbitrarily chosen as in the case of
α = 0.2, 0.4, 0.6, 0.8, where the CETD matrix has its highest row sum in rows 1 and 4. Hence, the
experiment does not guarantee consistency in the class depicting peak values for arbitrary choice of
α-levels. Meanwhile, still using the same tables, considering the levels α = 0.2, 0.4, 0.6, 0.8, where
at most one α-level was chosen from each cell of the partition, the class depicting peak values are in
rows 1 and 4 of the CETD matrix. When another set of α-levels are chosen such that only at most one
α-level is chosen from each cell of the partition as in the case of α = 0.25, 0.45, 0.75, 0.9, the CETD
matrix also has the groups depicting peak values in rows 1 and 4. Comparing Figures 1–3, it can be
concluded that Figures 2 and 3 have maintained the same classes for their peak values.

Repeating this method for an existing example, using Tables 3 and 4 and two different sets of α-
levels, chosen according to our rule, namely, α = 0.2, 0.32, 0.57, 0.8 and α = 0.25, 0.45, 0.68, 0.85, it
can be seen in Figures 4 and 5 that these sets of α-levels maintain peak values within the same age
group. Besides, when Tables 1 and 2 are refined, the two sets of α-levels chosen according to our rule,
namely, α = 0.1, 0.3, 0.6, 0.78 and α = 0.2, 0.4, 0.7, 0.8, maintain the peak at the same age group.

7. Conclusions

This paper has established the condition which guarantees that the peak point in a CETD matrix is
not affected by the changes in the set {αs}. Hence, given that the interval (0, 1] has a uniform partition
into n cells, the set of n α-levels should be chosen such that, at most, one α-level in the set is chosen
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from each cell of the partition. If the experiment is repeated for as many sets of α-levels as preferred,
the class depicting the peak value will not change.

8. Area of further research

In the next research, rather than devote much time and computational rigor to finding RTD matrices
for different α, it is worth investigating if there is a single algorithm that excuses the steps of using
different α to obtain RTD matrices. Also, it will be more appropriate to develop algorithms to obtain
RTD matrices whose entries are truly in the range [0, 1] and not merely {−1, 0, 1}. This idea can now be
used in analyzing behaviors and characteristics which are age or time dependent in military personnel,
agriculture, and logistics management, just to mention a few.
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