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Abstract: The generalized tempered stable (GTS) distribution is an optimal choice for modeling
disease propagation, as it effectively captures the heavy-tailed nature of such events. This attribute
is crucial for evaluating the impact of large-scale outbreaks and formulating effective public health
interventions. In our study, we introduce a comprehensive stochastic epidemic model that incorporates
various intervention strategies and utilizes Lévy jumps characterized by the GTS distribution. Notably,
our proposed stochastic system does not exhibit endemic or disease-free states, challenging the
conventional approach of assessing disease persistence or extinction based on asymptotic behavior.
To address this, we employed a novel stochastic analysis approach to demonstrate the potential for
disease eradication or continuation. We provide numerical examples to highlight the importance of
incorporating the GTS distribution in epidemiological modeling. These examples validate the accuracy
of our results and compare our model’s outcomes with those of a standard system using basic Lévy
jumps. The purposeful use of the GTS distribution accounts for the heavy-tailed nature of disease
incidence or vector abundance, enhancing the precision of models and predictions in epidemiology.
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1. Introduction and problematic

Utilizing mathematical modeling empowers stakeholders to simulate diverse scenarios, assess
potential outcomes, and gauge the effectiveness of various intervention measures. By incorporating
a range of variables such as transmission rates, population mobility, and healthcare capacity, these
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tools establish a comprehensive and dynamic framework for predicting the trajectory of epidemics [1].
The ongoing refinement and expansion of these models enhance their adaptability, allowing them to
effectively address emerging infectious threats. As our understanding of pathogens evolves and new
data becomes available, it is imperative to regularly update modeling and simulation frameworks to
ensure continued relevance and accuracy [2]. In the domains of human and animal health, these
analytical approaches function as navigational tools, guiding decision-makers through the intricacies
of epidemic scenarios. By exploring the intricate interplay of variables, including transmission
patterns, host susceptibility, and environmental factors, these approaches provide decision-makers
with a forward-looking perspective. This foresight is pivotal in formulating comprehensive strategies
encompassing surveillance, prevention, and containment measures [3]. As a result, the integration
of modeling and simulation methodologies stands as a cornerstone in the toolkit employed by
professionals in the field of epidemiology to effectively address and manage infectious outbreaks.
However, recognizing that each epidemic possesses unique biological features is crucial. Thus, the
adaptation of dynamical models describing the mechanisms of propagation becomes imperative to
address the specifics of each case [4]. This adaptive approach is essential for effectively navigating
real-world situations, acknowledging the diverse and nuanced nature of various epidemics [5].

Within the realm of biological modeling, “intervention measures” encompass the strategic
implementation of actions aimed at curbing the spread of disease. These measures, ranging from social
distancing and mask-wearing to contact tracing, isolation, quarantine, and hospitalization, constitute
common strategies employed in epidemic control [6, 7]. To simulate the ramifications of these
interventions, a compartmental model is often employed [8]. This model categorizes the population
into distinct compartments based on their infection status. Furthermore, it allows for the incorporation
of parameters that denote the efficacy of interventions, such as the reduction in transmission attributed
to social distancing or the effectiveness of a vaccine [9, 10]. The adjustment of these parameters
enables the simulation of diverse intervention strategies and their impacts on the progression of the
illness. Consequently, this modeling approach becomes a valuable tool for assessing and optimizing
the outcomes of various intervention scenarios, contributing to the refinement of public health strategies
and policies.

Building on this trajectory, our study introduces and scrutinizes an expanded version of the model
described in [11]. This novel iteration incorporates two critical additional hypotheses: demographic
variations and media intervention. The primary aim of the first enhancement is to bolster the model’s
descriptive capacity, enabling it to elucidate the dynamics of the ongoing pandemic over an extended
timeframe [12]. This is achieved by integrating natural birth and overall mortality rates, thereby
providing a more comprehensive understanding of population dynamics [13]. Concurrently, the second
enhancement examines the impact of media campaigns and the dissemination of daily reports through
various mass communication channels, including newspapers and social media [6]. Recognizing the
significant role of media interventions in shaping public perception and response to the pandemic, our
model seeks to capture the intricate interplay between information dissemination and the dynamics of
infectious spread. By incorporating these additional dimensions, our refined model aspires to offer a
more nuanced and realistic representation of the complex factors influencing the progression of the
pandemic over time [14]. The demographic variations account for the evolving population structure,
while media intervention addresses the influence of public awareness and behavior changes induced by
continuous information flow. Moreover, the inclusion of these supplementary hypotheses allows for a
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better assessment of intervention strategies and their long-term efficacy. This comprehensive approach
not only enhances the predictive power of the model but also provides valuable insights for public
health policy and decision-making.

Developing accurate and comprehensive mathematical models is a critical method for guiding
public health measures and interventions aimed at mitigating the spread of infectious diseases [15,16].
Compartmental models, such as the basic SIR (Susceptible-Infected-Recovered) model and its more
complex variants, including SIRS, SEIR, and SIQR, have long been used to understand the dynamics
of epidemics and pandemics [17–20]. These models categorize individuals into distinct compartments
based on their infection status and track the movement of individuals between these states over time.
For example, since the outbreak of COVID-19, a wide array of models has been developed to better
understand the virus’s transmission dynamics and to predict future trends [21,22]. Some early studies,
such as [23], employed a classical SIR model to analyze the spread of COVID-19, leveraging its
simplicity to provide quick insights into the disease’s basic transmission patterns. However, as the
pandemic evolved, it became clear that more refined models were necessary to capture the complex
and multifaceted nature of SARS-CoV-2 transmission. To address this complexity, several modified
versions of the SIR model were introduced to better reflect the unique characteristics of COVID-19.
For example, studies like [24] adapted the classical SIR framework by adding new parameters and
compartments, making it more suitable for understanding SARS-CoV-2 dynamics. One of the most
significant modifications was the transition to an SEIR (Susceptible-Exposed-Infected-Recovered)
model, which incorporates an additional compartment for “Exposed” individuals who are infected
but not yet infectious. This latency period is a crucial feature of COVID-19, as individuals often
go through a phase where they harbor the virus but do not immediately spread it to others. Kumar
et al. [25] employed this SEIR model to effectively describe the spread of COVID-19, taking into
account various transmission pathways and the role of environmental factors. Similarly, the authors
of [26] applied the SEIR model to study early-transmission variations during the initial stages of the
pandemic in Italy, highlighting the adaptability of the model to different epidemiological settings.
As the pandemic continued and more data became available, it became increasingly important to
model the progression of deaths alongside infection rates. In response to this need, the SEIR model
was further expanded to include a compartment for deceased individuals, resulting in the SEIRD
model. The addition of the “Deceased” (D) class allowed researchers to more accurately project the
number of deaths over time. The authors in [27] took this a step further by employing a fractional-
order formulation of the SEIRD model, adding more flexibility in simulating the complex temporal
dynamics of the epidemic. To generalize and extend the above works, in this paper, we consider
a more comprehensive model by incorporating the impact of media interventions and additional
specific compartments. Media interventions, such as public awareness campaigns and government
announcements, significantly affect public behavior and adherence to preventive measures, which in
turn influence the transmission dynamics of diseases. Our formulation incorporates these behavioral
shifts and their effect on disease spread, making the model more robust for analyzing early-stage
COVID-19 dynamics and other epidemics.

In order to establish a rigorous mathematical formulation of the model based on the preceding
assumptions, we designate the entire host population at time t as T (t). This population is categorized
into seven distinct classes representing susceptible (x1(t)), quarantined or isolated (x2(t)), exposed
(x3(t)), manifesting symptoms of contagion (x4(t)), asymptomatically infected (x5(t)), hospitalized
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(x6(t)), and recovered (x7(t)) individuals, each characterized by its respective density. The intricate
interactions among these classes are captured by a system of deterministic ordinary differential
equations, elucidating the dynamic relationships and transitions between the various compartments.
This mathematical framework provides a formal representation of the epidemiological processes,
enabling the quantitative analysis and simulation of the progression of the infectious disease within
the host population. The structured nature of the model facilitates a detailed examination of how
individuals move between different states over time, essential for understanding the dynamics of the
disease and informing public health strategies. Based on the work presented in [11], the encompassing
mathematical depiction associated with this framework is articulated as follows:

dx1

dt
= r + ex2 − x1 (mx4 + x5)

(
g1 − g2

x5

s + x5

)
− (u + w)x1,

dx2

dt
= wx1 − (u + e)x2,

dx3

dt
= x1 (mx4 + x5)

(
g1 − g2

x5

s + x5

)
− (u + v)x3,

dx4

dt
= (1 − p) vx3 − (u + f1 + q1 + h1) x4,

dx5

dt
= vpx3 − (u + f2 + q2 + h2) x5,

dx6

dt
= f1x4 + f2x5 − (u + h3 + q3) x6,

dx7

dt
= q1x4 + q2x5 + q3x6 − ux7.

(1.1)

Within this system, we make certain assumptions to better capture the nuances of the epidemic
dynamics. First, we consider exposed individuals x3(t) as non-infectious, representing them as carriers
with low-level virus presence, a choice substantiated by existing research [28]. Building upon studies
highlighted in [29,30], we assert in Eq (1.1) that vertical transmission from mother to fetus is negligible,
and we consider the enforcement of a generic lockdown policy. Consequently, the recruitment rate r
for the uninfected population is exclusively attributed to natural births. Moreover, we incorporate a
information-interaction function into our system to delineate the infection’s transmission dynamics.
We introduce g2 as the baseline contact rate pre-media intervention, subject to reduction described by
g2x5(s + x5)−1 when infective individuals are reported in the media. Here, g2 represents the reduction
interaction rate due to the presence of infection, and s is the saturation parameter, signifying the impact
of media alerts on the transmission rate. It is imperative to note that while media coverage can curtail
the strength of virus generation, it lacks the ability to entirely eliminate it. Thus, we posit g1 > g2 > 0.
From a logical perspective, individuals displaying symptoms of infection should manifest a higher rate
of contagion compared to those who are asymptomatic. This rationale justifies our representation of
the ratio between these rates as 0 < m < 1. Regarding the population under home confinement, we
introduce parameters w and e to signify the rates of isolation and release, respectively. The constant v
denotes the transition rate from the class of exposed individuals to the infected compartments x4 and x5,
with the likelihood of remaining asymptomatic being 1 − p. Furthermore, parameters f1 and f2 signify
the hospitalization rates of asymptomatic and symptomatic infectives, while q1, q2, and q3 represent the
recovery rates for classes xk(t), k = 4, 5, 6, respectively. Finally, constants u, h1, h2 and h3, respectively
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represent the normal mortality rate of each class and infection-related mortality rates of classes xk(t),
k = 4, 5, 6. The graphical representation in Figure 1 vividly captures the intricate interactions among
the various classes within system (1.1).
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Figure 1. Flowchart depicting the deterministic model proposed (1.1).

In a deterministic framework, the general epidemic model mentioned above displays two significant
constraints, as delineated below:

• Restriction 1: While Gaussian noise is effective for modeling minor fluctuations, it falls short
in simulating substantial and abrupt changes, particularly those induced by natural events like
volcanoes and earthquakes, which can drastically affect populations [31]. These catastrophic
events can significantly influence the transmission of human diseases, forcing people to relocate
and gather in unsanitary conditions with inadequate sanitation facilities, thus increasing the risk
of disease resurgence [32]. The inadequacy of Gaussian noise in capturing the sudden and
discontinuous nature of these disaster events is clear [33]. Therefore, in scenarios involving
substantial and abrupt environmental changes, a more robust modeling approach is necessary.
This approach should more accurately reflect the profound and immediate impacts of natural
disasters on population dynamics and disease transmission [34–36].
• Restriction 2: Considering epidemic models with jumps associated with standard measures

reveals limitations in capturing phenomena with heavy tails (see [37, 38]). Introducing the
GTS distribution into a jump-incorporated epidemic model offers a more realistic portrayal of
the stochastic nature of disease transmission. The GTS distribution, known for its flexibility,
accommodates various degrees of tail heaviness, making it particularly beneficial for modeling
epidemic dynamics marked by occasional extreme events or jumps [39]. Epidemic models often
encounter rare yet impactful events that can induce sudden and substantial changes in disease
dynamics, such as super-spreader gatherings, abrupt policy interventions, or unforeseen shifts
in population behavior. Leveraging the GTS distribution allows for the modeling of these
jump sizes, facilitating more accurate simulations of their influence on the epidemic. The
GTS distribution is particularly effective in capturing the heterogeneity in disease transmission
rates among individuals within an epidemic. In many epidemic scenarios, some individuals
contribute more significantly to the spread of the disease than others due to varying factors
such as contact rates or susceptibility. The GTS distribution is well-suited for modeling this
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variability because it aligns with a power-law distribution, which is known for its ability to
represent extreme events and heavy-tailed phenomena where a small number of individuals
account for a large proportion of the transmission. By incorporating the GTS distribution into
epidemic models, researchers can account for both the stochastic nature of disease spread and the
differences in transmission rates among individuals. This approach allows for a more nuanced
and comprehensive understanding of how disease dynamics unfold, reflecting the real-world
complexity of epidemic spread. Specifically, it helps model the influence of highly infectious
individuals, often termed super-spreaders, and how their interactions disproportionately affect
the overall transmission dynamics. The inclusion of the GTS distribution not only enhances
the accuracy of simulations but also improves the effectiveness of public health strategies. By
providing a more detailed and realistic representation of epidemic behavior, it helps in better
predicting the spread of the disease, evaluating the impact of interventions, and devising more
targeted and effective public health responses. This advancement ensures that models more
accurately reflect the variability and complexity of real-world epidemic scenarios, leading to more
informed decision-making and improved outcomes in managing disease outbreaks [40].

Considering the preceding discussion, the primary innovations in this paper involve the extension
of previously established findings to a novel, well-defined stochastic model that is both mathematically
rigorous and biologically plausible. This model addresses the constraints denoted as Restrictions 1 − 2
across a broad spectrum of human diseases. To the best of our knowledge, this marks the inaugural
attempt to present an epidemic model that tackles both of these limitations simultaneously. Practically
speaking, this method better mirrors real-world situations, given that the discrete factors affecting the
dynamics may vary among different sub-populations. Hence, the system at hand is presented by the
following interconnected perturbed formulation:

dx1 =

(
r −
(

g1 − g2
x5

s + x5

)
x1 (mx4 + x5) + ex2 − (u + w)x1

)
dt + `1x1 dL1(t)

+

∫
R7\{0}

z1(ξ)x1(t−)Z̃1(dt, dξ),

dx2 = (wx1 − (u + e)x2) dt + `2x2 dL2(t) +

∫
R7\{0}

z2(ξ)x2(t−)Z̃2(dt, dξ),

dx3 =

((
g1 − g2

x5

s + x5

)
x1 (mx4 + x5) − (u + v)x3

)
dt + `3x3 dL3(t) +

∫
R7\{0}

z3(ξ)x3(t−)Z̃3(dt, dξ),

dx4 = ((1 − p) vx3 − (u + f1 + q1 + h1) x4) dt + `4x4 dL4(t) +

∫
R7\{0}

z4(ξ)x4(t−)Z̃4(dt, dξ),

dx5 = (vpx3 − (u + f2 + q2 + h2) x5) dt + `5x5 dL5(t) +

∫
R7\{0}

z5(ξ)x5(t−)Z̃5(dt, dξ),

dx6 = ( f1x4 + f2x5 − (u + h3 + q3) x6) dt + `6x6 dL6(t) +

∫
R7\{0}

z6(ξ)x6(t−)Z̃6(dt, dξ),

dx7 = (q1x4 + q2x5 + q3x6 − ux7) dt + `7x7 dL7(t) +

∫
R7\{0}

z7(ξ)x7(t−)Z̃7(dt, dξ).

(1.2)
In this framework, L j ( j = 1, · · · , 7) represents seven mutually independent Brownian motions, each
with a strength parameter ` j > 0 ( j = 1, · · · , 7). These processes are defined on

(
Ω,FΩ, (FΩ,t)t>0,P

)
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which satisfies the usual conditions for a stochastic basis. Here, x j(t−) ( j = 1, · · · , 7) indicates the
left-hand limits of the processes of x j(t) ( j = 1, · · · , 7). Additionally, Z j ( j = 1, · · · , 7) independent
Poisson random measures, each associated with a finite Lévy measure Q j ( j = 1, · · · , 7) defined on a
measurable set R7 \ {0}. These measures are given by

Q j(A) =

∫
R7\{0}

∫ ∞
0

1A(tx)αt−α−1e−tdtRL(dx), A ∈ B(R7 \ {0}), (1.3)

where 1 is the indicator function, α ∈ (0, 2), and RL is the Rosiński measure defined on R7 \ {0} with
RL(0) = 0 and satisfying, ∫

R7\{0}

(
||x||2 ∧ ||x||α

)
Rk(dx) < ∞, α ∈ (0, 2).

The compensated Poisson random measures Z̃ j ( j = 1, · · · , 7) are defined as: Z̃k(dt, dξ) = Zk(dt, dξ)−
Qk(dξ)dt, and zk : R7 \ {0} → R are the jump size functions, assumed to be continuous on R7 \ {0}.

In this paper, we consider a GTS distribution by taking a new Lévy measure Q0 defined as follows:

Q0(ds) = e−hsQk(ds).

Let α− ∈ (0, 2), α+ ∈ (0, 2), β− > 0, β+ > 0, σ− > 0 and σ+ > 0, then

Qk(ds) =
β−
|s|1+α−

e−σ−s1(s<0)︸                 ︷︷                 ︸
for negative jumps

+
β+

|s|1+α+
e−σ+s1(s>0)︸                 ︷︷                 ︸

for positive jumps

. (1.4)

The tempered stable distribution associated with the measure defined in (1.4) is a general framework
of some well-known special cases presented in the literature:

• By picking out α+ = α− = 0 and β+ = β−, we get the variance Gamma distribution exhibited
in [38].
• By selecting α+ = α−, we get the KoBoL distribution discussed in [39].
• By choosing α+ = α− = 0, we get the bilateral Gamma distribution explained in [40].
• By picking α+ = α− and σ+ = σ−, we get the infinitely divisible distribution linked to a truncated

Lévy flight introduced in [41].
• By choosing α+ = α− and β+ = β−, we get the CGMY-distribution presented in [42].

The key advantage of this paper lies in presenting a comprehensive framework that offers a more
intricate modeling perspective compared to existing works. A distinguishing feature of our approach
is the incorporation of the GTS distribution, which introduces a novel methodology requiring deeper
analytical assumptions and careful consideration in numerical simulations. This is especially critical
in capturing the severe environmental fluctuations that are often oversimplified in traditional models.
From a technical standpoint, our stochastic system diverges from conventional epidemic models, which
typically exhibit well-defined endemic or disease-free states. In classical epidemiological models,
these states represent stable conditions where a disease either persists at a constant level (endemic) or
is completely eradicated (disease-free). These equilibrium points provide researchers with a framework
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for predicting the long-term behavior of the disease by examining how the system behaves in proximity
to these stable states. However, our model challenges this paradigm by introducing a perturbed system
where clear-cut stable states do not exist. This absence of distinct endemic or disease-free conditions
leads to a more complex and dynamic interpretation of disease transmission. The disease does not
settle into predictable long-term behaviors, making it impossible to categorize the outcomes as simple
persistence or eradication. Instead, the model reflects the reality of fluctuating, unpredictable patterns
of disease spread driven by stochastic forces, such as environmental variability or behavioral changes
in the population.

The structure of this paper unfolds in the following manner: In Section 2, we introduce the vectorial
representation of our stochastic model, accompanied by a generic compilation of notations and
hypotheses. Employing analytical analysis, we verify the well-posedness of our model and establish
sufficient conditions for both the extinction and persistence of the infection. Section 3 represents
the realm of numerical simulations, providing a crucial validation of our results. Additionally, we
emphasize the influence of GTS distribution on the dynamics of our model. The paper culminates with
concluding remarks and a glimpse into potential future perspectives.

2. Theoretical results

This section is dedicated to the examination of an adapted version of the general model, as
articulated by the stochastic differential system denoted in (1.2). In order to streamline our discourse
and facilitate clarity in notation moving forward, we present the initial-value system linked to (1.2) in
the following standardized format:

dimension:7×1︷ ︸︸ ︷
dS (t) =

dimension:7×1︷          ︸︸          ︷
D1 (S (t)) dt +

dimension:7×7︷      ︸︸      ︷
D2 (S (t))

dimension:7×1︷ ︸︸ ︷
dL(t) +

dimension:7×7︷         ︸︸         ︷
D3
(
S (t−)

) dimension:7×1︷         ︸︸         ︷
dZ̃(dt, dξ),

P
(

S (0) ∈ R7
+

)
= 1,

(2.1)

where

• S (t) =
(

xi(t)
)

i∈{1,...,7} =
(

x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t)
)
,

• D1 (S (t)) =
(
Di (S (t))

)
i∈{1,...,7} =



r −
(

g1 − g2
x5

s + x5

)
x1 (mx4 + x5) + ex2 − (u + w)x1

wx1 − (u + e)x2(
g1 − g2

x5

s + x5

)
x1 (mx4 + x5) − (u + v)x3

(1 − p) vx3 − (u + f1 + q1 + h1) x4

vpx3 − (u + f2 + q2 + h2) x5

f1x4 + f2x5 − (u + h3 + q3) x6

q1x4 + q2x5 + q3x6 − ux7


,

• D2 (S (t)) = diag
(
(`iS i(t))i∈{1,...,7}

)
=

`1S 1(t) · · · 0
...

. . .
...

0 · · · `7S 7(t)

 ,

• L(t) = (L1(t), L2(t), · · · , L7(t)) ,
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• D3 (S (t)) = diag
((

zi(ξ)S i(t−)
)

i∈{1,...,7}

)
=

z1(ξ)S 1(t−) · · · 0
...

. . .
...

0 · · · z7(ξ)S 7(t−)

 ,

• Z̃(dt, dξ) =

(∫ t

0

∫
R7\{0}

Z̃1(dt, dξ),
∫ t

0

∫
R7\{0}

Z̃2(dt, dξ), · · · ,
∫ t

0

∫
R7\{0}

Z̃7(dt, dξ)
)
.

To ensure simplicity and streamline mathematical computations, we will consistently use the following
notations and definitions throughout this paper. This deliberate choice aims to facilitate concise
mathematical expressions and enhance clarity in our presentation.

• χ1 := max
k∈{1,··· ,7}

{∫
R7\{0}

z2
k(ξ)Qk(dξ)

}
.

• χ2 := max
k∈{1,··· ,7}

{∫
R7\{0}

{
− ln (1 + zk(ξ)) + zk(ξ)

}
Qk(dξ)

}
.

• χ3 := max
k∈{1,··· ,7}

{
`2

k

}
.

• χ4(ξ) := max
k∈{1,··· ,7}

{
zk(ξ)

}
= zk∗(ξ), where k∗ denotes the index for which the maximum is attained.

• χ5(ξ) := min
k∈{1,··· ,7}

{
zk(ξ)

}
= zk(ξ), where k denotes the index for which the minimum is attained.

• χ6(ξ) := (1 + χ4(ξ))v
− v × χ4(ξ) − 1.

• χ7(ξ) := (1 + χ5(ξ))v
− v × χ5(ξ) − 1.

• χ8(ξ) := max {χ6(ξ), χ7(ξ)}.

• χ9 :=
∫
R7\{0}

χ8(ξ)1{χ6(ξ)≥χ7(ξ)}Qk∗(dξ) +

∫
R7\{0}

χ8(ξ)1{χ7(ξ)>χ6(ξ)}Qk(dξ).

Furthermore, to ensure both mathematical rigor and biological coherence in the proposed model, we
introduce the following technical assumptions. These assumptions are essential for maintaining the
integrity of the model, aligning it with both mathematical principles and biological accuracy.

• Assumption 1. zk(ξ) + 1 are positive, ∀k ∈ {1, · · · , 7} and max
k∈{1,2}

χk < ∞.

• Assumption 2. ∃v > 2 such that χ10 = r − 0.5(v − 1)χ3 − v−1χ9 > 0.

Remark 2.1. To fully appreciate the importance of Assumption 2, we refer the reader to [43,
Lemma 2.5]. In their work, the authors provide crucial insights that underpin the primary outcomes
of our study. The general findings detailed in [43, Lemma 2.5] are instrumental in supporting and
validating the key results derived from our investigation.

Remark 2.2. In the context of this section, we proceed under the assumption that both Assumptions 1
and 2 are upheld.

For the well-posedness of the generic model (2.1), we present the following theorem.

Theorem 2.1. For any started data S (0) in the positive real seven-dimensional space (R7
+), there is a

single solution S (t) to (2.1) for t > 0. In addition, this single solution will persist within R7
+ with a

probability of one. In other words, if the initial state S (0) belongs to R7
+, then S (t) ∈ R7

+ holds for all
t > 0 almost surely (abbreviated as a.s.).

Proof. Let S (t) =
(

xk(t)
)

k∈{1,··· ,7} =
(

x1(t), x2(t), x3(t), x4(t), x5(t), x6(t), x7(t)
)
. In system (2.1), the

associated coefficients exhibit continuous differentiability within their respective domains of definition,
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satisfying the local Lipschitz criterion. Consequently, for any given initial solution S (0) in the positive
real seven-dimensional space (R7

+), there exists a unique maximal local solution S (t) defined for t in
the interval (0, γe) , where γe represents the explosion time [44]. Our objective at this juncture is to
establish the global nature of this solution; specifically, to demonstrate that γe = ∞ almost surely. For
this objective, consider a sufficiently large natural number β0 ∈ N such that S (0) ∈ [β−1

0 , β0]. For each
integer β > β0, define the stopping time γk as follows:

γk = inf
{

t ∈ (0, γe) | min
k∈{1,··· ,7}

xk(t) 6 β−1 or max
k∈{1,··· ,7}

xk(t) > β
}
. (2.2)

Define γ∞ as the limit of γβ as β approaches infinity. It is evident that the sequence
(
γβ
)
β>β0

is
monotonically increasing. Therefore, the limit of γk as k tends to infinity is equivalent to the supremum
of γβ for β > β0. By applying the theory presented in [45], which states that the supremum of a
sequence of stopping times is itself a stopping time, we conclude that γ∞ is also a stopping time.
Utilizing the convention inf ∅ = ∞ throughout this paper, it is straightforward to assert that γ∞ 6 γe

almost surely. Therefore, establishing γe = ∞ almost surely directly hinges on demonstrating that
γ∞ = ∞ almost surely. This is precisely the objective we are poised to achieve to conclude the proof.
Suppose that the statement γ∞ = ∞ almost surely is false. This implies the existence of D > 0 such
that P (γ∞ 6 D) > 0. Hence, there exists x > 0 such that

P
(
γβ 6 D

)
> x, ∀β > β0. (2.3)

Examine the C2 function F defined for s = (x1, · · · , x7) ∈ R7
+ as follows:

F (s) =
(

x1 − q − q ln
(
q−1x1

))
+

7∑
k=2

(xk − 1 − ln (xk)).

In this context, q represents a positive constant that will be carefully chosen at a later stage. Utilizing
the multi-dimensional Ito’s formula for F(S (t)), we derive expressions valid for all β > β0 and t ∈(
0, γβ

)
:

dF
(

S (t)
)

= LF
(

S (t)
)

dt + (x1(t) − q) `1 dL1(t)

+ (x2(t) − 1) `2 dL2(t) + (x3(t) − 1) `3 dL3(t) + (x4(t) − 1) `4 dL4(t)
+ (x5(t) − 1) `5 dL5(t) + (x6(t) − 1) `6 dL6(t) + (x7(t) − 1) `7 dL7(t) + W(t),

where

LF
(
S
)

=
(
1 − q−1x1

)
×

(
r + ex2 −

(
g1 − g2

x5

s + x5

)
x1 (mx4 + x5) − (u + w)x1

)
+
(
1 − x2

−1
)
× (wx1 − (u + e)x2) +

(
1 − x3

−1
)
×

((
g1 − g2

x5

s + x5

)
x1 (mx4 + x5) − (u + v)x3

)
+
(
1 − x4

−1
)
× ((1 − p) vx3 − (u + f1 + q1 + h1) x4) +

(
1 − x5

−1
)
× (vpx3− (u + f2 + q2 + h2) x5)

+
(
1 − x6

−1
)
× ( f1x4 + f2x5 − (u + h3 + q3) x6) +

(
1 − x7

−1
)
× (q1x4 + q2x5 + q3x6 − ux7)
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+ 0.5
(
q`2

1 + `2
2 + `2

3 + `2
4 + `2

5 + `2
6 + `2

7

)
+ q
∫
R7\{0}

(z1(ξ) − ln (1 + z1(ξ))) Q1(dξ)

+

7∑
k=2

∫
R7\{0}

(zk(ξ) − ln (1 + zk(ξ))) Qk(dξ),

and

W(t) =

∫
R7\{0}

(
z1(ξ)x1(t−)) − q ln (1 + z1(ξ))

)
Z̃1(dt, dξ)

+

7∑
k=2

∫
R7\{0}

(
zk(ξ)xk(t−)) − ln (1 + zk(ξ))

)
Z̃k(dt, dξ).

So,

LF
(
S
)

= r − u (x1 + x2 + x3 + x4 + x5 + x6 + x7) − h1x4 − h2x5 − h3x6

+

(
−

qr
x1

+ ag1 (mx4 + x5) − qg2
x5 (mx4 + x5)

s + x5
− q

ex2

x1
+ q(u + w)

)
+

(
−w

x1

x2
+ (u + e)

)
+

(
−

(
g1 − g2

x5

s + x5

)
x1

x3
(mx4 + x5) + (u + v)

)
+

(
− (1 − p) v

x3

x4
+ (u + f1 + q1 + h1)

)
+

(
−vp

x3

x5
+ (u + f2 + q2 + h2)

)
+

(
− f2

x5

x6
− f1

x4

x6
+ (u + q3 + h3)

)
+

(
−q3

x6

x7
− q2

x5

x7
− q1

x4

x7
+ u
)

+ 0.5
(
q`2

1 + `2
2 + `2

3 + `2
4 + `2

5 + `2
6 + `2

7

)
+ q
∫
R7\{0}

(z1(ξ) − ln (1 + z1(ξ))) Q1(dξ) +

7∑
k=2

∫
R7\{0}

(zk(ξ) − ln (1 + zk(ξ))) Qk(dξ).

Henceforth,

LF
(
S
)
6
(

r + 6u + e + v + f1 + q1 + h1 + f2 + q2 + h2 + h3 + q3 + q(u + w)

+ 0.5
(
q`2

1 + `2
2 + `2

3 + `2
4 + `2

5 + `2
6 + `2

7

) )
− u(x1 + x2 + x3 + x7) − mg1

(
u + h1

mg1
− q
)

x4

− g1

(
u + h2

g1
− q
)

x5 + 7χ2.

Selecting q as 0.5 min
{

u + h1

mg1
,

u + h2

g1

}
ensures that the coefficients of x4 and x5 become negative;

thus,

LF (S ) 6 r + 6u + e + v + f1 + q1 + h1 + f2 + q2 + h2 + h3 + q3 + a(w + u) + 7χ2 +0.5

(
q`2

1 +

7∑
i=2

`2
i

)
,O.

Therefore, for every β > β0 and t ∈
(
0, γβ

)
, we obtain

dF
(
S (t)

)
6 O dt + (x1(t) − q) `1 dL1(t) + (x2(t) − 1) `2 dL2(t) + (x3(t) − 1) `3 dL3(t)
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+ (x4(t) − 1) `4 dL4(t) + (x5(t) − 1) `5 dL5(t) + (x6(t) − 1) `6 dL6(t)
+ (x7(t) − 1) `7 dL7(t) + W(t).

Then,
E
(
F(S (D ∧ γβ)

)
6 F(S (0)) + OE (γk ∧ T ) 6 V(X(0)) + OT. (2.4)

Given that F(ε) ≥ 0 holds for all ε > 0, then

E
(
F(S (D ∧ γβ)

)
= E

(
F(S (D ∧ γβ) × 1{γβ6D}

)
+ E

(
F(S (t ∧ γβ) × 1{γβ>D}

)
> E

(
F(S (γβ) × 1{γβ6D}

)
.

(2.5)
Observe that for any ω ∈ Ω that verifies γβ(ω) 6 D, there exists a component of F

(
S (γβ)

)
equal to

either β or β−1; thus,

E
(
F(S (γβ) × 1{γβ6D}

)
>P
(
γβ 6 D

) (
β − q − q ln

(
βq−1

))
∧
(
β−1 − q − q ln

(
β−1q−1

))
∧ (β − 1 − ln (β))

∧
(
β−1 − 1 − ln

(
β−1
))
. (2.6)

We deduce that

F (S (0)) + OD > x
(
β − q − q ln

(
βq−1

))
∧
(
β−1 − q − q ln

(
β−1q−1

))
∧ (β − 1 − ln (β)) ∧

(
β−1 − 1 − ln

(
β−1
))
.

Allowing β to approach infinity results in the contradiction F (S (0)) + OD = ∞, thereby concluding
the proof. �

2.1. Stochastic eradication of a generic model (2.1)

In this subsection, we present the sufficient condition for the exponential extinction of the disease.

Theorem 2.2. Let us employ the notation S (t) to represent the solution trajectory of the dynamical
system defined by (2.1). This solution initiates from a specified initial condition denoted as S (0) ∈ R7

+.

If 1
6 min(`2

3, `
2
4, `

2
5) > g1x?1 − u − χ̃, with x?1 =

r(e + u)
u(w + u + e)

and

χ̃ = max
(∫
R7\{0}

χ̃3(ξ)Q3(dξ),
∫
R7\{0}

χ̃4(ξ)Q4(dξ),
∫
R7\{0}

χ̃5(ξ)Q5(dξ)
)
,

where 
χ̃3(ξ) = ln

(
1 + z3(ξ)

)
1{z3(ξ)>0} − z3(ξ)1{z3(ξ)≤0},

χ̃4(ξ) = ln
(
1 + z4(ξ)

)
1{z4(ξ)>0} − z4(ξ)1{z4(ξ)≤0},

χ̃5(ξ) = ln
(
1 + z5(ξ)

)
1{z5(ξ)>0} − z5(ξ)1{z5(ξ)≤0},

then

P

(
lim sup

t→∞

1
t

ln
(

x3(t) + x4(t) + x5(t)
)
6 g1x?1 − u −

1
6

min(`2
3, `

2
4, `

2
5) − χ̃ < 0

)
= 1.

This signifies that the disease is anticipated to undergo exponential decay with a certainty of one in
terms of probability.
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Proof. By harnessing Itô’s formula alongside the dynamics delineated in the system (2.1), we obtain
the following expression:

d ln (x3 + x4 + x5)

=

(
1

x3 + x4 + x5

((
g1 − g2

x5

s + x5

)
x1 (mx4 + x5) − ( f1 + q1 + h1) x4 − ( f2 + q2 + h2) x5

)
− u

−

5∑
k=3

`2
k x2

k

2 (x3 + x4 + x5)2

 dt +

5∑
k=3

∫
R7\{0}

(
ln
(

1 +
zk(ξ)xk

x3 + x4 + x5

)
−

zk(ξ)xk

x3 + x4 + x5

)
Qk(dξ)dt

+
1

x3 + x4 + x5

(
5∑

k=3

`kxk dLk(t)

)
+

5∑
k=3

∫
R7\{0}

ln
(

1 +
zk(ξ)xk

x3 + x4 + x5

)
Z̃k(dt, dξ).

Subsequently

d ln (x3 + x4 + x5) 6
((

g1 − g2
x5

s + x5

)
x1 − u − 2−1 min(`2

3, `
2
4, `

2
5) ×

x2
3 + x2

4 + x2
5

(x3 + x4 + x5)2

)
dt

+

5∑
k=3

∫
R7\{0}

(
ln
(

1 +
zk(ξ)xk

x3 + x4 + x5

)
−

zk(ξ)xk

x3 + x4 + x5

)
Qk(dξ)dt

+

5∑
k=3

`k
xk

x3 + x4 + x5
dLk(t) +

5∑
k=3

∫
R7\{0}

ln
(

1 +
zk(ξ)xk

x3 + x4 + x5

)
Z̃k(dt, dξ).

By applying the renowned Cauchy-Schwarz inequality, we can confidently affirm that

5∑
k=3

x2
k >

1
3

(
5∑

k=3

xk

)2

.

Based on the inherent properties of the GTS measure, it follows that

5∑
k=3

∫
R7\{0}

(
ln
(

1 +
zk(ξ)xk

x3 + x4 + x5

)
−

zk(ξ)xk

x3 + x4 + x5

)
Qk(dξ)

≤ max
(∫
R7\{0}

χ̃3(ξ)Q3(dξ),
∫
R7\{0}

χ̃4(ξ)Q4(dξ),
∫
R7\{0}

χ̃5(ξ)Q5(dξ)
)

︸                                                                                     ︷︷                                                                                     ︸
≡χ̃

,

where 
χ̃3(ξ) = −z3(ξ)1{z3(ξ)≤0} + ln

(
1 + z3(ξ)

)
1{z3(ξ)>0},

χ̃4(ξ) = −z4(ξ)1{z4(ξ)≤0} + ln
(
1 + z4(ξ)

)
1{z4(ξ)>0},

χ̃5(ξ) = −z5(ξ)1{z5(ξ)≤0} + ln
(
1 + z5(ξ)

)
1{z5(ξ)>0}.
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As a result, we obtain

d ln (x3 + x4 + x5) 6
(

g1x1 − u −
1
6

min(`2
3, `

2
4, `

2
5) − χ̃

)
dt +

5∑
k=3

`k
xk

x3 + x4 + x5
dLk(t)

+

5∑
k=3

∫
R7\{0}

ln (1 + zk(ξ)) Z̃k(dt, dξ). (2.7)

By integrating Eq (2.7) over the interval from 0 to t and subsequently dividing both sides by t, we
arrive at the following expression:

1
t

ln (x3(t) + x4(t) + x5(t)) 6
1
t

ln (x3(0) + x4(0) + x5(0)) +
g1

t

∫ t

0
x1(s)ds − u −

1
6

min(`2
3, `

2
4, `

2
5) − χ̃

+

5∑
k=3

`k

t

∫ t

0

xk(s)
x3(s) + x4(s) + x5(s)

dLk(s)

+

5∑
k=3

1
t

∫ t

0

∫
R7\{0}

ln (1 + zk(ξ)) Z̃k(ds, dξ). (2.8)

Conversely, the initial equation in (2.1) yields the following information:

x1(t) − x1(0) = rt + e
∫ t

0
x2(s) ds −

∫ t

0
x1(s)

(
x5(s) + mx4(s)

)(
g1 − g2

x5(s)
s + x5(s)

)
ds

− (w + u)
∫ t

0
x1(s) ds + `1

∫ t

0
x1(s) dL1(s) +

∫
R7\{0}

z1(ξ)x1(t)Z̃1(ds, dξ)

6 rt + e
∫ t

0
x2(s) ds − (w + u)

∫ t

0
x1(s) ds + `1

∫ t

0
x1(s) dL1(s)

+

∫
R7\{0}

z1(ξ)x1(t)Z̃1(ds, dξ).

Then,

1
t

∫ t

0
x1(s) ds 6

1
w + u

(
r +

e
t

∫ t

0
x2(s) ds +

x1(0)
t

+
`1

t

∫ t

0
x1(s) dL1(s)

+
1
t

∫ t

0

∫
R7\{0}

z1(ξ)x1(s)Z̃1(ds, dξ)
)
. (2.9)

Furthermore, the second equation in (2.1) provides additional insights:

x2(t) − x2(0) = w
∫ t

0
x1(s) ds − (u + e)

∫ t

0
x2 ds + `2

∫ t

0
x2(s) dL2(s) +

∫ t

0

∫
R7\{0}

z2(ξ)x2(s)Z̃2(ds, dξ).

This observation underscores that

1
t

∫ t

0
x2(s) ds
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=
1

e + u

(
x2(0) − x2(t)

t
+

w
t

∫ t

0
x1(s) ds +

`2

t

∫ t

0
x2(s) dL2(s) +

1
t

∫ t

0

∫
R7\{0}

z2(ξ)x2(s)Z̃2(ds, dξ)
)

6
x2(0)

t(e + u)
+

w
t(e + u)

∫ t

0
x1(s) +

`2

t(e + u)

∫ t

0
x2(s) dL2(s) +

1
t(e + u)

∫ t

0

∫
R7\{0}

z2(ξ)x2(s)Z̃2(ds, dξ).

(2.10)

Integrating (2.9) with (2.10) leads to

1
t

∫ t

0
x1(s)6

1
w + u

(
r + r

(
x2(0)

(e + u) t
+

w
t(e + u)

∫ t

0
x1(s) +

`2

t(e + u)

∫ t

0
x2(s) dL2(s)

+
1

t(e + u)

∫ t

0

∫
R7\{0}

z2(ξ)x2(s)Z̃2(ds, dξ)
)

+
x1(0)

t
+
`1

t

∫ t

0
x1(s) dL1(s)

+
1
t

∫ t

0

∫
R7\{0}

z1(ξ)x1(s)Z̃1(ds, dξ).

Henceforth,

1
t

∫ t

0
x1(s) 6

r(e + u)
u(w + u + e)

+
r

u(w + u + e)
x2(0)

t
+

e + u
u(w + u + e)

x1(0)
t

+
r`2

u(w + u + e)
×

1
t

∫ t

0
x2(s) dL2(s)

+
`1(e + u)

u(w + u + e)
×

1
t

∫ t

0
x1(s) dL1(s) +

r
u(w + u + e)

∫ t

0

∫
R7\{0}

z2(ξ)x2(s)Z̃2(ds, dξ)

+
(e + u)

u(w + u + e)

∫ t

0

∫
R7\{0}

z1(ξ)x1(s)Z̃1(ds, dξ). (2.11)

One can deduce, in accordance with the insights derived from [43, Lemma 2.5] and the
inequality (2.11), that

lim
t→∞

1
t

∫ t

0
x1(s) 6

r(e + u)
u(w + u + e)

= x?1 . (2.12)

In accordance with the strong law of large numbers for local martingales, as expounded in [44], it
follows that: 

P

(
`3

t

∫ t

0

xk(s)
x3(s) + x4(s) + x5(s)

dLk(s) −→
n→∞

0
)

= 1, ∀ k = 3, 4, 5,

P

(
1
t

∫ t

0

∫
R7\{0}

ln (1 + zk(ξ)) Z̃k(ds, dξ) −→
n→∞

0
)

= 1, ∀ k = 3, 4, 5.
(2.13)

From (2.8), (2.12), and (2.13), we obtain

lim sup
t→∞

1
t

ln
(

x3(t) + x4(t) + x5(t)
)
6 g1x?1 − u −

1
6

min(`2
3, `

2
4, `

2
5) − χ̃ < 0, a.s.

This result precisely aligns with the intended conclusion. �

Remark 2.3. Unquestionably, the theorem preceding this assertion establishes the stochastic
extinction of individuals infected within the system. This implication, rooted in the positivity of the
solution, invariably leads to the convergence of key variables towards zero as time tends to infinity.
Specifically, as denoted by lim

t→∞
xk(t) = 0, ∀ k = 3, 4, 5, this convergence occurs almost surely (a.s.).
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Corollary 2.1. Within the framework of the present analysis, adopting identical notations and adhering
to the hypotheses stipulated in Theorem 2.2, we hereby establish the following assertions:

(1) P
(

lim
t→∞

1
t

∫ t

0
xk(s)ds = x?k

)
= 1, ∀ k = 1, 2.

(2) P
(

lim
t→∞

1
t

∫ t

0
xk(s)ds = 0

)
= 1, ∀ k = 6, 7.

Proof. For all time instances t > 0, we have

d
(

x1(t) + x3(t)
)

=
(
r + ex2(t) − (w + u) x1(t) − (u + v) x3(t)

)
dt + `1S (t) dL1(t) + `3(t) dL3(t)

+

∫
R7\{0}

z1(ξ)x1(t−)Z̃1(dt, dξ) +

∫
R7\{0}

z3(ξ)x3(t−)Z̃3(dt, dξ). (2.14)

By executing the integration of Eq (2.14) over the interval from 0 to t, followed by subsequent division
by t on both sides, we obtain the following expression:

1
t

(
x1(t) + x3(t)

)
=

1
t

(
x1(0) + x3(0)

)
r +

e
t

∫ t

0
x2(s)ds −

w + u
t

∫ t

0
x1(s)ds −

u + v
t

∫ t

0
x3(s)ds

+
`1

t

∫ t

0
x1(s) dL1(s) +

`3

t

∫ t

0
x3(s) dL3(s) +

1
t

∫ t

0

∫
R7\{0}

z1(ξ)x1(s−)Z̃1(ds, dξ)

+
1
t

∫ t

0

∫
R7\{0}

z3(ξ)x3(s−)Z̃3(ds, dξ).

Substituting the expression for
1
t

∫ t

0
x2(s)ds from (2.10) into the final equality results in

1
t

(
x1(t) + x3(t)

)
= r +

e
e + u

(
w
t

∫ t

0
x1(s)ds−

x2(t) − x2(0)
t

+
`2

t

∫ t

0
x2(s) dL2(s) +

1
t

∫ t

0

∫
R7\{0}

z2(ξ)x2(s−)Z̃2(ds, dξ)
)

−
w + u

t

∫ t

0
x1(s)ds −

u + v
t

∫ t

0
x3(s)ds +

`1

t

∫ t

0
x1(s) dL1(s) +

`3

t

∫ t

0
x3(s) dL3(s)

+
1
t

∫ t

0

∫
R7\{0}

z1(ξ)x1(s−)Z̃1(ds, dξ) +
1
t

∫ t

0

∫
R7\{0}

z3(ξ)x3(s−)Z̃3(ds, dξ) +
1
t

(
x1(0) + x3(0)

)
.

Then, (
−

ew
t(e + u)

+ w + u
)∫ t

0
x1(s)ds

= r +
x1(0) + x3(0)

t
+

e
e + u

×
x2(0) − x2(t)

t
−

x1(t) + x3(t)
t

−
(u + v)

t

∫ t

0
x3(s)ds

+
e

e + u
`2

t

∫ t

0
x2(s) dL2(s) +

`1

t

∫ t

0
x1(s) dL1(s) +

`3

t

∫ t

0
x3(s) dL3(s)

+
e

t(e + u)

∫ t

0

∫
R7\{0}

z2(ξ)x2(s−)Z̃2(ds, dξ) +
1
t

∫ t

0

∫
R7\{0}

z1(ξ)x1(s−)Z̃1(ds, dξ)
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+
1
t

∫ t

0

∫
R7\{0}

z3(ξ)x3(s−)Z̃3(ds, dξ). (2.15)

As we allow the variable t to approach infinity on both sides of Eq (2.15), the ensuing outcome is

lim
t→∞

1
t

(
−

ew
(e + u)

+ w + u
)∫ t

0
x1(s)ds = r −

(u + v)
t

lim
t→∞

∫ t

0
x3(s)ds, a.s. (2.16)

In light of the considerations presented in Remark 2.3, we can affirm the following: lim
t→∞

x3(t) = 0, a.s.
This leads to an implication derived from the continuous version of Cesàro’s result suggesting that

P

(
lim
t→∞

1
t

∫ t

0
x3(s)ds = 0

)
= 1.

So,

lim
t→∞

1
t

∫ t

0
x1(s)ds = r

(
−

ew
e + u

+ w + u
)−1

=
r(e + u)

u (e + w + u)
= x?1 . (2.17)

Concurrently, it is imperative to acknowledge that

1
t

∫ t

0
x2(s)ds =

w
t(e + u)

∫ t

0
x1(s)ds −

x2(t)
(e + u)t

+
x2(0)

(e + u)t
+

`2

e + u
×

1
t

∫ t

0
x2(s) dL2(s)

+
1

t(e + u)

∫ t

0

∫
R7\{0}

z2(ξ)x2(s−)Z̃2(ds, dξ).

As a result, through a rigorous application of the limit to the aforementioned procedure, we derive

P

(
lim
t→∞

1
t

∫ t

0
x2(s)ds =

w
e + u

× x?1 = x?2

)
= 1.

The aforementioned rationale holds true for the final two assertions posited in our theorem

P

((
1
t

∫ t

0
x6(s)ds,

1
t

∫ t

0
x7(s)ds

)
−→
n→∞

(0, 0)
)

= 1.

Thus, the conclusion of the proof is reached. �

2.2. Stochastic persistence of the generic model (2.1)

In the interest of conciseness and clarity in presenting forthcoming results, we find it appropriate to
introduce the following notational conventions. These notations, meticulously selected for their brevity
and simplicity, will prove instrumental in succinctly articulating subsequent findings.

• h?(s) = 3 × 3
√

r (g1 − g2) v ×
(

3
√

m(1 − p)s + 3
√

p × (1 − s)
)
, ∀ 0 < s < 1,

• hc = 7u + v + ( f1 + q1 + h1) + ( f2 + q2 + h2) + (h3 + q3) + |r − w| + 2−1
7∑

k=1

`2
k

+

7∑
k=1

∫
R7\{0}

(
zk(ξ) + ln

(
1 + zk(ξ)

))
Qk(dξ),
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• ŝ =

√
m(1 − p)

√
m(1 − p) +

√
p
.

Lemma 2.1. For every s belonging to the open interval (0, 1), the ensuing inequality holds true:
h?(s) 6 h?(ŝ). Alternatively expressed, h?(ŝ) represents the supremum of h?(s) over the open interval
(0, 1). In more precise terms, it denotes the maximum value attained by h?(s) within this specified
interval.

Proof. Commencing our demonstration, we initiate by acknowledging the differentiability property
inherent in the function h?(s) over the open interval (0, 1). To establish this, we explicitly define the
first derivative of this function as

dh?(s)
ds

=

(
3
√

m(1 − p) 3
√

r (g1 − g2) v
3√

s2
−

3
√

p 3
√

r (g1 − g2) v
3
√

(1 − s)2

)

=

(
m(1 − p)(1 − s)2 − ps2

)
3
√

r (g1 − g2) v

3
√

m(1 − p)p(1 − s)2s2 +
(

3
√

ps2
)2

+
3
√

(s × (1 − s))2
(

3
√

m(1 − p) (1 − s)2
)2

=

(
ŝ − s

)
3
√

r (g1 − g2) v
(√

m(1 − p)(1 − s) +
√

ps
) (√

m(1 − p) +
√

p
)(

(1 − s) 3
√

m(1 − p)s
)2

+ 3
√

mp(1 − p)s4(1 − s)4 +
(

s 3
√

p(1 − s)
)2 .

Evidently, the derivative h?′(s) and the linear function fL(s) = ŝ − s exhibit concordant signs.
Consequently, the behavior of the function h?(s) is characterized by a decreasing trend for s within
the interval (0, ŝ) and an increasing trend for s within the interval (ŝ, 1). This implies that the critical
points of h?(s) coincide with the zeros of the linear function fL(s), emphasizing the pivotal role of ŝ
in the function’s behavior. Thus, within the interval (0, 1), the maximum value attained by h?(s) is
precisely at ŝ, aligning with the assertion encapsulated in the lemma. This mathematical observation
solidifies the lemma’s claim, establishing the supremacy of h?(ŝ) as the zenith within the specified
interval. �

Theorem 2.3. Should h?(ŝ) surpass hc, then for every S (0) ∈ R7
+, the solution S (t) of the initial-value

problem defined by (2.1) satisfies the ensuing property:

P

(
lim inf

t→∞

1
t

∫ t

0

(
x5(s) + x4(s)

)
ds >

1
g1

(
h
?(ŝ) − hc

)
> 0
)

= 1.

This implies that the presence of infectious individuals, denoted by x4(t) and x5(t), exhibits a persistent
behavior on average.

Proof. Contemplate the following mathematical function:

Ĝ : R7
+ −→ R,

y 7−→
7∑

i=1
ln (yi) .

Leveraging Ito’s formula in conjunction with the dynamics described by system (2.1), we obtain the
following expression:

dĜ(S (t)) =

((
r
x1
−

(
g1 − g2

x5

s + x5

)
(mx4 + x5) + r

x2

x1
− (w + u)

)
+

(
w

x1

x2
− (e + u)

)
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+

((
g1 − g2

x5

s + x5

)
x1

x3
(mx4 + x5) − (u + v)

)
+

(
(1 − p) v

x3

x4
− (u + f1 + q1 + h1)

)
+

(
vp

x3

x5
− (u + f2 + q2 + h2)

)
+

(
f2

x5

x6
+ f1

x4

x6
− (h3 + q3 + u)

)
+

(
q3

x6

x7
+ q2

x5

x7
+ q1

x4

x7
− u
)
− 2−1

7∑
k=1

`2
k −

7∑
k=1

∫
R7\{0}

(
zk(ξ) − ln

(
1 + zk(ξ)

))
Qk(dξ)

)
dt

+

7∑
k=1

`k dLk(t) +

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

Given the positivity constraint inherent in the solution, we derive the following mathematical
implication:

dĜ(S (t)) >
(

r
x1
− g1 (mx4 + x5) + min (r,w)

(
x1

x2
+

x2

x1

)
+ (g1 − g2)

x1

x3
(mx4 + x5) + (1 − p) v

x3

x4

+ vp
x3

x5
−

(
7u + e + w + v + ( f1 + q1 + h1) + ( f2 + q2 + h2) + (h3 + q3)

+

7∑
k=1

∫
R7\{0}

(
zk(ξ) + ln

(
1 + zk(ξ)

))
Qk(dξ)

))
dt +

7∑
k=1

`k dLk(t)

+

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

Observing that min(r,w) = 2−1(r + w − |r − w|) and
(

x1x−1
2 + x2x−1

1

)
> 2, we establish the following

inequality for all t > 0:

dĜ(X(t)) >
((

(1 − ŝ)r
x1

+ (g1 − g2)
x1x5

x3
+ vp

x3

x5

)
+

(
ŝr
x1

+ m (g1 − g2)
x1x4

x3
+ (1 − p) v

x3

x4

)
− g1 (mx4 + x5) − hc

)
dt +

7∑
k=1

`k dLk(t) +

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

Exploiting the relationship between arithmetic and geometric averages, we deduce the following:

dĜ(X(t)) >
(

3× 3
√

(1− ŝ)r (g1−g2) vp + 3× 3
√

ŝr (g1−g2) mσ(1− p)−g1 (x5 + mx4)− hc
)

dt

+

7∑
k=1

`k dLk(t) +

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ)

>
( (
h
?(ŝ) − hc

)
− g1 (x5 + mx4)

)
dt +

7∑
k=1

`k dLk(t) +

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

(2.18)

Upon integrating from 0 to t and subsequently dividing both sides of Eq (2.18) by t, we obtain the
following expression:

Ĝ(X(t)) − Ĝ(X(0))
t

>
(
h
?(ŝ) − hc

)
−

g1

t

∫ t

0

(
x5(s) + mx4(s)

)
ds
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+

7∑
i=1

`i
Li(t)

t
+

1
t

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

Then,

1
t

∫ t

0

(
x5(s) + x4(s)

)
ds

>
1
t

∫ t

0

(
x5(s) + mx4(s)

)
ds

>
1
g1

(
Ĝ(X(0)) − Ĝ(X(t))

t
+
(
h
?(ŝ) − hc

))
+

7∑
i=1

`i
Li(t)
g1t

+
1

g1t

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

Given that ln(z)+1 6 z 6 z+1 for all positive z, it follows that one can confidently affirm the inequality

Ĝ(z) 6
7∑

k=1

zi for any z ∈ R7
+. Therefore,

1
t

∫ t

0

(
x5(s) + x4(s)

)
ds

>
1
g1

(
Ĝ(X(0))

t
−

1
t

7∑
i=1

Xi(t) +
(
h
?(ŝ) − hc

))
+

7∑
i=1

`i
Li(t)
g1t

+
1

g1t

7∑
k=1

∫
R7\{0}

ln
(
zk(ξ) + 1

)
Z̃k(dt, dξ).

Utilizing the strong law of large numbers for local martingales, we derive the following expression:

P

(
lim inf

t→∞

1
t

∫ t

0

(
x5(s) + x4(s)

)
ds >

1
g1

(
h
?(ŝ) − hc

)
> 0
)

= 1.

This inequality constitutes the essential result we sought, thereby establishing the required assertion.
�

3. Numerical experiments and discussion

In this section, we present a series of numerical examples to validate the various results proposed
in this study, utilizing the parameter values listed in Table 1. These parameters are predominantly
chosen for numerical verification purposes. The simulations focus on solving our general model,
considering both its perturbed and non-perturbed forms. For the initial data, we choose S (0) =

(100, 15, 2, 2, 50, 10, 10). It is important to note that the selected parameter values for these simulations
are not arbitrary; they are derived from empirical data sourced from reputable sources, ensuring a
realistic and meaningful exploration of our model’s behavior. The simulation results will be thoroughly
analyzed in the subsequent subsections, offering insights into the dynamics and implications of our
general model (1.2).
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Table 1. Generic definitions of the key model parameters utilized in the simulation.

Constant Biological significance Apparent
value

r Bioligical insert rate 9.5
g1 Rate of interaction in the absence of media exposure 0.032 (case 1)

0.06 (case 2)
0.1 (case 3)

g2 Rate of cognitive awareness (or, alternatively, the level of response intensity) 0.02
s Half-saturation constant for media influence 0.003
m Ratio for modifying asymptomatic infectiousness 0.05
w Standard isolation rate 0.5
e Quarantine discharge rate 0.09
u Mortality rate due to natural causes 0.12
v The rate at which individuals move from the exposed to the infective classes 0.5
p Likelihood of symptomatic presentation in individuals who are infected 0.5
f1 The rate at which asymptomatic infected individuals require hospitalization 0.041
q1 The rate at which asymptomatic infected individuals recover 0.0.0411
h1 Mortality rate attributed to the disease among asymptomatic infected

individuals
0.042

f2 The rate at which symptomatic infected individuals require hospitalization 0.041
q2 The rate at which symptomatic infected individuals recover from the illness 0.0411
h2 Mortality rate resulting from the disease among symptomatic infected

individuals
0.0418

q3 The rate at which hospitalized individuals recover from their condition 0.041
h3 Mortality rate caused by the disease among hospitalized individuals 0.0413

3.1. Simulation techniques and verification of the theoretical findings

Crafting stochastic processes through computer methodologies entails the application of two refined
discretization techniques. Initially, it necessitates the precise discretization of the time parameter,
succeeded by the intricate task of approximating random variables utilizing meticulously generated
finite time series datasets. When confronted with the complexities of a Lévy process, distinguished
by its property of stationary and independent increments, the most effective approach to simulate it
at discrete time points mirrors the process of generating random numbers from an infinitely divisible
distribution. In this subsection, we present a method for simulating GTS distributions and tempered
stable processes. Although numerous techniques exist for simulating Lévy processes, many prove
unsuitable for the task of simulating tempered stable processes due to the intricate nature of their
Lévy measure. Consider the sequences {S 1, j} j>1, {S 2, j} j>1, and {S 3, j} j>1, representing independent and
identically distributed (i.i.d.) random variables in the real numbers following the distribution (1.3).
Additionally, let {S 2, j} j>1 and {S 3, j} j>1 be i.i.d. sequences of uniform random variables within the
intervals (0, 1) and (0,T ), respectively. Furthermore, consider {S 4, j} j>1 and {S 5, j} j>1 as i.i.d. sequences
of random variables following an exponential distribution with a rate coefficient of 1. It is assumed
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that all the aforementioned random variables are mutually independent. Now, let

{S 6, j} =

j∑
k=1

{S 5,k}.

Noticeably, {S 6, j} can be regarded as a Poisson point process on the interval R+ with random intensity
measure. In reference to the theory outlined in [37], if α ∈ (0, 2), then

Gt =

+∞∑
j=1

S 1, j1{S 3, j6t}

|S 1, j|

((
αS 6, j

T ||ρ||

)α−1

∧

(
S α−1

2, j S 4, j

|S 1, j|

))
,

converges almost surely and uniformly for t within the interval [0,T ] to a Lévy process, where

||ρ|| = QL(R7 \ {0}) =

∫
R7\{0}

|x|αRL(dx).

Ultimately, we can formulate a method for generating a GTS process with specified parameters at
discrete time instances ti, where {ti}i∈[0,I] represents a partition of the interval [0,T ] with uniformly
sized subintervals and mesh ∆t = T/I, I ∈ N. Then, we use the following algorithm:

(1) Select a specific time duration T and create a division of the time interval [0,T ] into I equally
sized segments.

(2) Select and fix a number N.
(3) Numerically replicate or emulate independent quantities {S i, j}, i ∈ {1, · · · , 6} of range N.
(4) Determine the value of Gt.

Using the aforementioned algorithm, we can generate the complete path of a GTS process associated
with system (1.2).

In the upcoming analysis, our goal is to evaluate the accuracy of the results presented in
Theorems 2.2 and 2.3, focusing specifically on the influence of the GTS distribution on the dynamics of
infection. Setting the stability index at α = 1.5, we provide three types of trajectories for comparison:
deterministic trajectories (without any noise), solutions incorporating jumps with a standard measure
(with standard distribution), and stochastic trajectories with jumps and GTS distribution (with GTS
distribution). This generic approach allows us to explore a range of potential scenarios. It is crucial to
emphasize that our assumptions hold true in the following three experiments.

Remark 3.1. The parameter α, referred to as the stability index, offers significant insights into the
tail characteristics of a tempered α-stable distribution. A value of α less than 1 indicates heavy
tails, suggesting a higher probability of extreme events. Conversely, when α exceeds 1, the tails
become lighter, resembling a distribution closer to normal. This distinction is visually evident in the
representations depicted in Figures 2.
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Figure 2. Trajectories characterized by interruptions in a stochastic process following a
tempered stable distribution with broad applicability.

3.2. Case 1: Total elimination of the infection

We parameterize our system based on the data provided in the third column of Table 1. Specifically,
we assign values to `k (k ∈ {1, . . . , 7}) as 1.2, 1.22, 1.02, 1.27, 1.23, and 1.26 respectively. The
jump intensities are characterized by the function zk(ξ) =

−ukξ
0.5+ξ2 , where k ∈ {1, . . . , 7} and ξ = 0.22.

Correspondingly, uk (k ∈ {1, . . . , 7}) take values 0.02, 0.03, 0.02, −0.0770, 0.02, and 0.03. These
parameter selections give the following result:

0.1734 =
1
6

min(`2
3, `

2
4, `

2
5) > g1

=23.4155︷︸︸︷
x?1 −u −

=0.5306︷︸︸︷
χ̃ = 0.0987.

Consequently, we have verified that the condition stated in Theorem 2.2 has been satisfied, thereby
confirming that

lim sup
t→∞

1
t

ln
(

x3(t) + x4(t) + x5(t)
)
6 g1x?1 − u −

1
6

min(`2
3, `

2
4, `

2
5) − χ̃ = −0.0747 < 0.

To validate this finding through numerical analysis, we have depicted three distinct types of trajectories
associated with system (1.2) in Figure 3. Our observations confirm that the model consistently
converges to an infection-free state across all trajectory types. Specifically, focusing on the initial
data mentioned earlier, we note that over time, x1(t) stabilizes at a constant value of 23.4155, while
x2(t) reaches an equilibrium point at 55.7512. Interestingly, regardless of the trajectory type, the
solutions for xk(t) (k = 3, . . . , 7) eventually extinguish after a certain duration. This phenomenon
exemplifies stochastic extinction, where the solutions converge towards complete eradication of the
disease. Importantly, this behavior holds true for all trajectories—whether they are noise-free, follow
a standard distribution, or adhere to a GTS distribution—showcasing a consistent and identical pattern
across different scenarios.

An additional observation worth noting is the marked contrast in the speed of extinction between
paths governed by the GTS distribution and those following standard jumps. Notably, trajectories
characterized by GTS distribution exhibit a notably swifter extinction process compared to their
counterparts with standard jumps. This implies that the modeling incorporating GTS distribution
captures a higher degree of external perturbations and more abrupt noises, thus creating a more
realistic framework. The accelerated extinction in GTS-driven paths suggests a heightened sensitivity
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to external factors, lending credence to the notion that this distribution effectively incorporates and
reflects a greater level of real-world dynamics.
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Figure 3. Numerical simulations are performed across three distinct trajectory categories
corresponding to system (1.2). These categories comprise the following: (1) The
deterministic solution; (2) the solution perturbed solely by standard jumps; (3) the solution
exposed to heavy-tailed jumps. In this case, g1x?1 − u − 1

6 min(`2
3, `

2
4, `

2
5) − χ̃ = −0.0747 < 0.
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To underscore the significance of incorporating the GTS distribution, we present a pivotal case in
the ensuing example. This illustrative instance serves as a compelling demonstration of the pivotal role
played by GTS distribution, emphasizing its essential contribution to the overall modeling framework.

3.3. Case 2: Specific instance of the eradication of the infection

In the specific context at hand, our initial procedural step involves assigning numerical values to
the system parameters. This critical process aligns these values with the data presented in the third
column of Table 1. By meticulously calibrating the numerical parameters to match the provided data,
we establish a foundational framework for deeper analysis and exploration within this specific context.
For instance, setting u4 = −2.2 yields

0.1734 =
1
6

min(`2
3, `

2
4, `

2
5) > g1

=23.4155︷︸︸︷
x?1 −u −

=1.1632︷︸︸︷
χ̃ = 0.1218.

Consequently, we confirm that the essential condition described in Theorem 2.2 is satisfied. To
empirically validate this result, we provide visual representations of three distinct system trajectories
for Eq (1.2) in Figure 4. These figures emphasize the critical importance of incorporating the GTS
distribution into our model. Specifically, the comparison reveals a stark difference between a system
influenced by the standard Lévy distribution and one utilizing the GTS distribution. In a system
driven by standard Lévy jumps (as in model (1.2) with standard Lévy distribution), the disease
persists indefinitely within the population. However, when the GTS distribution is employed, the
disease ultimately goes extinct. This observation highlights the pivotal role of the GTS distribution
in shaping the dynamics of disease transmission, addressing a key limitation in the conventional
Lévy jump framework where extinction does not occur. The incorporation of the GTS distribution is
therefore a decisive factor, fundamentally altering the system’s behavior and providing a more nuanced
understanding of disease dynamics. Lévy processes, especially when using the GTS distribution,
exhibit heavy-tailed characteristics, meaning that extreme events (such as sudden spikes in infection
rates) are far more likely compared to systems governed by Gaussian (normal) distributions. In the
context of infectious disease transmission, this implies a significant chance of experiencing rapid
outbreaks, where the number of infections surges within a short period, potentially leading to the
rapid spread of the disease and its eventual extinction. The stochastic nature of Lévy jumps, when
combined with the GTS distribution, introduces the possibility of large, sudden increases in the number
of infected individuals, which could drive the system toward a stochastic extinction event. If this
surge results in a substantial proportion of the population becoming infected and if conditions are
unfavorable for sustained transmission, the disease may self-extinguish. This phenomenon illustrates
the importance of considering not only the average dynamics of the system but also the extreme tail
behaviors introduced by the GTS distribution. These tail behaviors play a critical role in understanding
the full range of possible outcomes in epidemic scenarios, allowing us to explore extreme scenarios
where rapid disease propagation could lead to its extinction. The GTS distribution provides a richer
framework for studying these complex dynamics, offering valuable insights into the behavior of
infectious diseases under varying conditions.
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Figure 4. Numerical simulations are performed across three distinct trajectory categories
corresponding to system (1.2). These categories comprise the following: (1) The
deterministic solution; (2) the solution perturbed solely by standard jumps; (3) the solution
exposed to heavy-tailed jumps. In this case, g1x?1 − u − 1

6 min(`2
3, `

2
4, `

2
5) − χ̃ = −0.0516 < 0.
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3.4. Case 3: Continuation of the infection

Exploring the scenario of sustained infection dynamics, we focus on setting specific values for `k

(k ∈ {1, . . . , 7}), choosing 0.9, 0.49, 0.28, 0.98, 0.39, and 0.26, respectively. These parameter choices
are informed by empirical data and are crucial for modeling realistic infection spread scenarios. The
jump intensities are defined by the function zk(ξ) =

−ukξ
0.5+ξ2 , where k ranges from 1 to 7, and ξ is fixed

at 0.24. Correspondingly, uk (k ∈ {1, . . . , 7}) are specified as 0.02, 0.03, 0.02, 0.81, 0.02, and 0.03.
By leveraging the numerical values from the last column of Table 1, we confirm the validity of our
hypotheses, and derive

lim inf
t→∞

1
t

∫ t

0

(
x5(s) + x4(s)

)
ds >

1
g1

(
h
?(ŝ) − hc

)
= 1.3091 > 0.

Thus, in accordance with Theorem 2.3, we confidently affirm that our model exhibits persistent
infection dynamics on average, as consistently observed in the patterns depicted in Figure 5. Notably,
unlike the deterministic version where an endemic equilibrium prevails, the stochastic model (1.2)
does not settle into a stable state over extended time spans. The influence of noise intensity becomes
pronounced, significantly impacting the fluctuations around deterministic equilibria.

Moreover, the temporal average closely approximates the endemic equilibrium, particularly
evident in scenarios with lower noise intensities. This underscores the necessity of accounting for
environmental fluctuations in biological systems. Figure 5 provides a detailed comparison between
the volatility patterns of standard jumps and those governed by the GTS distribution. It reveals that
GTS-distributed jumps exhibit greater volatility with heavier tails compared to those modeled by a
normal distribution. Stochastic volatility occasionally experiences sharp upward spikes and clusters,
contrasting sharply with the smoother trajectories observed in standard scenarios.

Further analysis of Figure 5 illustrates how adopting the GTS distribution mitigates infection
intensity. This distribution not only modulates volatility but fundamentally reshapes infection
dynamics, introducing unpredictability and resilience into biological systems. This deeper
understanding enhances our grasp of infection dynamics and underscores the practical advantages of
employing advanced distributional models in epidemiological studies.
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Figure 5. Numerical simulations are performed across three distinct trajectory categories

corresponding to system (1.2). In this case
1
g1

(
h?(ŝ) − hc

)
= 1.3091 > 0.
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4. Conclusions

The core objective of an epidemic model is to thoroughly encapsulate the complex dynamics of
disease transmission, capturing a broad spectrum of biological and environmental factors [46–48].
In our work, we advance this objective by introducing a generalized epidemic model that integrates
two crucial elements: the effects of quarantine measures and media interventions on populations, and
the stochastic impact of significant environmental fluctuations modeled using the GTS distribution.
This model employs a compartmental approach, articulated as a system of interconnected stochastic
differential equations influenced by Lévy noise. Our rigorous mathematical analysis has confirmed
the model’s robustness, biological relevance, and its behavior over extended periods in the absence of
disease. By carefully calibrating stochastic parameters, we have identified conditions that influence
whether infections can persist or be eradicated within human populations. This model’s flexibility in
capturing diverse transitions between compartments makes it particularly useful for studying diseases
such as Zika virus, West Nile virus, Chikungunya virus, and Dengue fever. This comprehensive
approach significantly enhances our understanding of disease transmission dynamics and aids in
developing effective public health strategies and interventions. Despite these advancements, our
research faces inherent limitations that present compelling avenues for future investigation:

(1) Existence of a stationary distribution for model (1.2): The stochastic system outlined in (1.2) does
not possess a traditional endemic equilibrium state, necessitating the exploration of alternative
concepts of stochastic stability. It is essential to investigate the existence of a stationary
distribution for (1.2), as this would suggest the potential for persistent disease dynamics within
both mosquito and human populations. Understanding the conditions under which such a
distribution emerges remains a key unresolved issue in the realm of human epidemic models
influenced by Lévy noise and the GTS distribution.

(2) Parameter estimation for model (1.2): Although our study addresses the model with assumed
known parameters, the challenge of parameter identification is significant when adapting the
model to specific diseases. This process involves determining appropriate values for the
model parameters and stochastic noise based on observed data from population dynamics over
time. Achieving an optimal fit to empirical data remains a complex and unresolved challenge,
particularly for epidemic models driven by Lévy noise and the GTS distribution.

Given the complexity and importance of these questions, we plan to explore them in future research
endeavors, aiming to further refine our model and enhance its applicability to real-world epidemic
scenarios.
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