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Abstract: Based on joint progressive Type-II censored data, we examined the statistical inference
of the generalized logistic distribution with different shape and scale parameters in this research.
Wherever possible, we explored maximum likelihood estimators for unknown parameters within the
scope of the joint progressive censoring scheme. Bayesian inferences for these parameters were
demonstrated using a Gamma prior under the squared error loss function and the linear exponential
loss function. It was important to note that obtaining Bayes estimators and the corresponding credible
intervals was not straightforward; thus, we recommended using the Markov Chain Monte Carlo method
to compute them. We performed real-world data analysis for demonstrative purposes and ran Monte
Carlo simulations to compare the performance of all the suggested approaches.
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1. Introduction

This paper presents a novel framework for statistical inference using the generalized logistic (GL)
lifetime model under joint progressive censoring schemes (join PCS), which has direct applications to
real-world reliability analysis. The innovation of this work lies in the integration of both frequentist
and Bayesian approaches, where unlike previous studies that focus on either one of these methods, this
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paper uniquely combines maximum likelihood estimation (MLE) and Bayesian inference with Gamma
priors under different loss functions, such as squared error loss (SEL) and linear exponential (LINEX)
loss. This dual approach offers a robust and comprehensive statistical estimation framework, allowing
for a thorough comparison of both methods in practical applications. The introduction of the joint
progressive censoring scheme within the GL model enables the simultaneous analysis of failure times
in two populations, thereby enhancing the efficiency of data collection and parameter estimation. This
approach overcomes the limitations of traditional censoring methods by allowing failures in multiple
populations, making it more applicable to real-world situations where testing time is constrained. To
demonstrate the practicality of the proposed methods, the paper applies them to the analysis of air-
conditioning system failure times, illustrating how the GL distribution can be effectively used to assess
system reliability, optimize maintenance schedules, and reduce unexpected downtimes. Moreover, the
paper showcases the use of Markov Chain Monte Carlo (MCMC) methods for Bayesian estimation,
which addresses the computational challenges of obtaining closed-form solutions for complex models.
This is especially important for practitioners, as it offers a reliable approach for Bayesian estimation
in scenarios involving censored data. Finally, the paper provides extensive Monte Carlo simulations to
validate the performance of the proposed estimators, showcasing the robustness of both frequentist
and Bayesian methods across different sample sizes and censoring schemes. This comprehensive
simulation study allows for empirical comparisons between estimation methods, offering valuable
insights into their relative efficiency under various conditions.

Based on the usual logistic distribution of the difference between two independent Gumbel-
distributed random variables, a GL distribution is proposed. The GL distribution is one of three
generalized versions of the standard logistic distribution, according to Balakrishnan and Leung [1].
More focus has been on determining the parameters of the GL distribution for practical applications.
With respect to ρ > 0 and η > 0, the cumulative distribution function (CDF) of the two-parameter GL
distribution is as follows:

F(x) =
1

(1 + e−
x
η )ρ
, −∞ < x < ∞, (1.1)

and, additionally, the probability density function (PDF) that corresponds to it is given as follows:

f (x) =
ρe−

x
η

η(1 + e−
x
η )ρ+1

, −∞ < x < ∞. (1.2)

In this case, the shape and scale parameters are denoted by ρ and η, respectively. When η < 1, the
GL distribution exhibits negative skewness; when η > 1, it shows positive skewness; and when η = 1,
the distribution is symmetric. The PDF in Eq (1.2) is noted for being log-concave, unimodal, and
effective in modeling data that is skewed either to the left or to the right. Extensive research on the
GL distribution can be found in references Johnson and Kotz [2], Asgharzadeh [3], Alkasasbeh and
Raqab [4], Gupta and Kundu [5], Li et al. [6], and Alkasasbeh et al. [7].

The PDF, CDF, survival function, and hazard rate function of the GL distribution are shown for a
range of parameter values for η and ρ in Figures 1, 2, 3, 4, and 5.
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Figure 1. Shows the PDF of the GL distribution for various values of the parameter ρ, with
η = 1, illustrating its symmetric nature.

Figure 2. Shows the PDF of the GL distribution for various values of the parameter ρ, with
η > 1, indicating positive skewness.

Figure 3. Shows the PDF of the GL distribution for various values of the parameter ρ, with
η > 1, indicating negative skewness.

Figure 4. Shows the CDF of the GL distribution for various values of the parameter ρ.
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Figure 5. (a) Shows the hazard rate function of the GL distribution for various values of the
parameter ρ. (b) Shows the survival function of the GL distribution for various values of the
parameter ρ.

The findings from the paper offer several managerial implications and insights that can enhance
decision-making. The use of the GL lifetime model enables managers to better assess the reliability
of air-conditioning systems, leading to more informed maintenance schedules and a reduction in
unexpected downtimes. By employing both MLE and Bayesian approaches, managers can utilize
real-world data for data-driven decisions, which enhances the robustness of parameter estimates and
provides more reliable predictions about system performance. The analysis also offers valuable
insights for optimizing resource allocation for maintenance and repairs by identifying critical failure
points and their probabilities, allowing managers to prioritize interventions with the highest return
on investment. Furthermore, understanding the uncertainty in parameter estimates through credible
intervals (CRIs) helps in assessing the risk associated with various operational strategies, thereby
improving risk management practices. Additionally, these findings can inform strategic planning for
product development and enhancements by highlighting factors that influence system failures, enabling
managers to focus on improving design and manufacturing processes to extend product longevity.

Given the cost and time constraints in many real-world scenarios, it is challenging to obtain lifetime
data for any product. Therefore, it is crucial to employ experimental censoring. A wide range of
censoring techniques have been extensively researched. Both Type-I and Type-II censoring schemes
prohibit the withdrawal of experimental units during the trial. However, the progressive Type-II
censoring technique, which allows for the withdrawal of some units during the experiment, was
explained by Balakrishnan and Aggarwala [8].

There are various problems when censoring techniques are applied to a specific group. Even
with progressive Type-II censoring, which permits the removal of certain data, obtaining sufficient
observations is still expensive. Furthermore, an experiment with a single population cannot provide
evidence for population dependence and interaction, which we are interested in. Rasouli and
Balakrishnan [9] proposed joint PCS as a solution to largely address these issues. To reduce the time
needed to process the same amount of data by half, the joint PCS technique allows failures to occur in
two populations. This feature also enables the comparison of failure times between the two populations
under the same conditions.

Populations A1 and A2 have m and n units, respectively, at the initial stage. An experiment based
on life testing utilizing these two populations provided the joint PCS. The expected number of failures
(δ) is decided ahead of time. The time points of failure should be indicated as χ1, . . . , χδ. At each time
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point, si surviving units will be randomly removed from population A1, and ti units will be randomly
removed from population A2. Thus, a total of Ri = si + ti units are eliminated at the time of the i-th
failure. Additionally, it is necessary to provide a second set of random variables called ω1, . . . , ωδ, the
values of which can only be 1 or 0.

Here,

ωi =

1 if χi is taken from population A1,

0 if χi is taken from population A2.

Assume ((χ1, ω1, s1), · · · , (χδ, ωδ, sδ) is the censored sample. In this case, the number of failures
from population A1 is represented by δ1 =

∑δ
i=1 ωi. Likewise, the number of failures from population

A2 is represented by δ2 =
∑δ

i=1(1 − ωi) = δ − δ1.
In the research community, joint PCS has attracted a lot of attention. Numerous authors have

explored joint PCS and related inference techniques in the literature. Many academics have explored
a range of approaches and heterogeneous lifetime models in different applications. Please see the
publications by [10–15].

The joint PCS offers several unique features that set it apart from traditional censoring methods.
Unlike Type-I and Type-II censoring schemes, which prohibit the withdrawal of experimental units
during the trial, joint PCS allows for the removal of certain units as failures occur. This flexibility helps
manage resources more effectively and reduces costs associated with data collection. Additionally,
joint PCS enables the simultaneous analysis of two populations, facilitating a comparison of failure
times under the same experimental conditions. This is particularly useful for understanding interactions
and dependencies between different groups, a capability often unavailable in single-population studies.
By allowing unit withdrawal, joint PCS can streamline the data collection process, enabling researchers
to focus on the most relevant data points and obtain a sufficient number of observations without
incurring excessive costs. Furthermore, the scheme supports the application of advanced statistical
methods, such as MLE and Bayesian inference, which can provide more accurate estimates of failure
times. This study employs these methods to derive parameter estimates under the GL distribution,
thereby enhancing the robustness of the results.

The study aims to achieve several key objectives related to the statistical analysis of the GL
distribution, particularly under a joint PCS. The primary focus is on statistical inference, where MLE
for unknown parameters is conducted alongside Bayesian estimation using both gamma and non-
informative priors, demonstrating the applicability of these methods in analyzing life distributions for
two populations. The research also evaluates the performance of the proposed estimates by employing
LINEX loss and SEL functions, using Monte Carlo simulations to compare the effectiveness of
Bayesian estimates against alternative estimators. Additionally, a real-world data analysis is included
to illustrate the practical application of the theoretical results. Extensive simulation studies assess
the robustness of the derived estimators across various sample sizes and failure counts, ensuring the
reliability of the proposed methods. The paper presents several novel contributions to the field of
statistical inference for lifetime models, including a comprehensive examination of the GL distribution
under a joint progressive censoring scheme, which allows for more accurate modeling of failure
times in engineering applications, such as air-conditioning systems where data may be censored
due to operational constraints. Moreover, the study combines Bayesian and frequentist estimation
techniques, offering a dual perspective on parameter estimation and enabling a more robust analysis
by leveraging the strengths of both methodologies. The use of Monte Carlo simulations provides
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empirical evidence of the effectiveness of the proposed estimators under various conditions, further
enhancing the reliability of the findings. Collectively, these objectives and contributions advance the
understanding of the GL lifetime model and its practical applications in real-world scenarios.

Below is an outline of the paper’s structure: The main goal of Section 2 is to determine the
confidence intervals (CIs) and MLEs for the unknown values. In Section 3, we construct Bayes
estimates of the lifetime GL distribution, taking into account the LINEX loss and SEL functions.
The examination of an actual dataset and the simulation results are presented in Section 4. Finally, in
Section 5, we provide a summary of the work.

2. Traditional estimation

2.1. MLE

Assume that the items X1, · · · , Xm belong to population A1, while the items Y1, · · · ,Yn are
from population A2. The observed data is (χ1, ω1, s1, t1), · · · , (χδ, ωδ, sδ, tδ) with a specified joint
progressive Type-II censoring scheme (R1, · · · ,Rδ). In the following pages, the censoring data group
(χ1, ω1, s1, t1), · · · , (χδ, ωδ, sδ, tδ) is designated as “data”. The likelihood function is expressed as
follows:

L(ρ1, ρ2, η1, η2|data) =

δ∏
i=1

[
[ f (χi)]ωi[g(χi)]1−ωi

]
[F̄(χi)]si[Ḡ(χi)]ti , (2.1)

χ1 ≤ χ2 ≤ . . . ≤ χδ, F̄ = 1 − F, Ḡ = 1 −G, and
∑δ

i=1 si +
∑δ

i=1 ti =
∑δ

i=1 Ri.
Applying the CDF and PDF derived from Eqs (1.1) and (1.2), respectively, to the likelihood equation

provided in (2.1) yields the following result.

L(ρ1, ρ1, η1, η2|data) =ρδ1
1 η
−δ1
1 ρδ2

2 η
−δ2
2 e

−1
η1

∑δ
i=1 χiωie

−1
η2

∑δ
i=1 χi(1−ωi)e(−ρ1−1)

∑δ
i=1 ωi ln

[
1+e

−χi
η1

]
× e(−ρ2−1)

∑δ
i=1(1−ωi) ln

[
1+e

−χi
η2

]
e
∑δ

i=1 si ln
[

1−
[
1+e

−χi
η1

]−ρ1
]

× e
∑δ

i=1 ti ln
[

1−
[
1+e

−χi
η2

]−ρ2
]
.

(2.2)

The log-likelihood function, denoted as `(ρ1, ρ2, η1, η2 | data) = ln L(ρ1, ρ2, η1, η2 | data), is provided as
follows:

`(ρ1, ρ2, η1, η2|data) =δ1 ln ρ1 − δ1 ln η1 + δ2 ln ρ2 − δ2 ln η2 −
1
η1

δ∑
i=1

χiωi −
1
η2

δ∑
i=1

χi(1 − ωi)

+ (−ρ1 − 1)
δ∑

i=1

ωi ln
[
1 + e

−χi
η1

]
+ (−ρ2 − 1)

δ∑
i=1

(1 − ωi) ln
[
1 + e

−χi
η2

]
+

δ∑
i=1

si ln
[
1 −

[
1 + e

−χi
η1

]−ρ1
]

+

δ∑
i=1

ti ln
[
1 −

[
1 + e

−χi
η2

]−ρ2
]
.

(2.3)

To determine the normal equations for the unknown parameters ρ1, ρ2, η1, and η2, we partially
differentiate Eq (2.3) and set the resulting expressions to zero. Solving the equations ρ̂1, ρ̂2, η̂1, and η̂2
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provides the estimators for each of the parameters.

δ1

ρ1
−

δ∑
i=1

ωi ln
[
1 + e

−χi
η1

]
+

δ∑
i=1

(
si
[
1 + e

−χi
η1

]−ρ1 ln
[
1 + e

−χi
η1

][
1 −

[
1 + e

−χi
η1

]−ρ1
] )

= 0, (2.4)

δ2

ρ2
−

δ∑
i=1

(1 − ωi) ln
[
1 + e

−χi
η2

]
+

δ∑
i=1

(
ti
[
1 + e

−χi
η2

]−ρ2 ln
[
1 + e

−χi
η2

][
1 −

[
1 + e

−χi
η2

]−ρ2
] )

= 0, (2.5)

−δ1

η1
+

1
η2

1

δ∑
i=1

ωiχi + (−ρ1 − 1)
δ∑

i=1

( ωie
−χi
η1

χi

η2
1[

1 + e
−χi
η1

]) +

δ∑
i=1

( siρ1
[
1 + e

−χi
η1

]−ρ1−1e
−χi
η1

χi

η2
1[

1 −
[
1 + e

−χi
η1

]−ρ1
] )

= 0, (2.6)

−δ2

η2
+

1
η2

2

δ∑
i=1

(1 − ωi)χi + (−ρ2 − 1)
δ∑

i=1

( (1 − ωi)e
−χi
η2

χi

η2
2[

1 + e
−χi
η2

] )
+

δ∑
i=1

( tiρ1
[
1 + e

−χi
η2

]−ρ2−1e
−χi
η2

χi

η2
2[

1 −
[
1 + e

−χi
η2

]−ρ2
] )

= 0. (2.7)

Since there are no closed-form solutions for the system of nonlinear equations, the first partial
derivatives of the log-likelihood function with respect to the individual parameters, as displayed in
Eqs (2.4), (2.5), (2.6), and (2.7), cannot be solved explicitly. As a result, the corresponding MLEs
are evaluated using iterative numerical approximation techniques. We can use a suitable numerical
technique, such as the Newton-Raphson iteration method, to obtain these estimates.

In order to provide proof of the existence and uniqueness of the MLE for the GL distribution
under joint progressive censoring, a rigorous approach typically involves a theorem that ensures the
conditions for both existence and uniqueness of the MLE.

Here’s a general outline of how such a theorem can be structured, along with proof concepts:

Theorem 2.1. Existence and uniqueness of MLE.
Let {X1, X2, . . . , Xn} be independent random variables from the GL distribution with the PDF:

f (x|θ) =
ρe−x/η

η(1 + e−x/η)ρ+1 , −∞ < x < ∞,

where θ = (ρ, η) are the shape and scale parameters, respectively, and ρ > 0, η > 0.
Under the following regularity conditions, the MLE of the parameters θ = (ρ, η) exist and are

unique:
Regularity conditions:

• Continuity: The likelihood function L(θ) is continuous in the parameter space Θ.
• Differentiability: The log-likelihood function `(θ) is twice differentiable with respect to θ.
• Concavity: The log-likelihood function `(θ) is strictly concave in the parameter space Θ.
• Identifiability: The model is identifiable, i.e., for distinct parameter values θ1 , θ2, the probability

distributions f (x|θ1) and f (x|θ2) are not identical.
• Boundedness: The second-order derivatives of the log-likelihood function are bounded, ensuring

that the Fisher information matrix is positive definite.
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Proof of existence. • Continuity: Since the PDF is continuous in the parameters θ = (ρ, η) and the
data is observed, the likelihood function L(θ) is a continuous function of θ. The log-likelihood
function `(θ), being the logarithm of the likelihood function, inherits this continuity.
• Regularity conditions: If the second-order derivatives of the log-likelihood function exist and are

continuous, the likelihood function satisfies the conditions for MLE existence.
�

Proof of uniqueness. • Concavity: The log-likelihood function `(θ) is strictly concave if its Hessian
matrix (second-order partial derivatives with respect to the parameters) is negative definite.
Concavity implies that there is only one maximum of the log-likelihood function.
In the case of the GL distribution, strict concavity can be shown by verifying that the second
derivatives with respect to ρ and η lead to a negative definite Hessian matrix.
• Identifiability: Since the model is identifiable, different parameter values produce different

likelihoods, ensuring that no two distinct parameter values maximize the likelihood function
simultaneously. This guarantees the uniqueness of the MLE.
• Fisher information matrix: The Fisher information matrix, I(θ), which is based on the second-

order partial derivatives of the log-likelihood function, is positive definite under regularity
conditions. This positive definiteness ensures that the MLE is unique by enforcing the strict
concavity of the log-likelihood function.

�

2.2. Asymptotic variance covariance matrix

Building the CIs requires the use of the asymptotic variance-covariance matrix. This matrix is
obtained by taking the inverse of the Fisher information matrix. The MLE of ψ = (ρ1, ρ2, η1, η2) can be
represented by ψ̂ = (ρ̂1, ρ̂2, η̂1, η̂2), and the Fisher information matrix I(ψ) is given as follows:

I(ψ) = −E


− ∂2`
∂ρ2

1
− ∂2`
∂ρ1∂ρ2

− ∂2`
∂ρ1∂η1

− ∂2`
∂ρ1∂η1

− ∂2`
∂ρ2∂ρ1

− ∂2`
∂ρ2

2
− ∂2`
∂ρ2∂η1

− ∂2`
∂ρ2∂η2

− ∂2`
∂η1∂ρ1

− ∂2`
∂η1∂ρ2

− ∂2`
∂η2

1
− ∂2`
∂η1∂η2

− ∂2`
∂η2∂ρ1

− ∂2`
∂η2∂ρ2

− ∂2`
∂η2∂η1

− ∂2`
∂η2

2


. (2.8)

We apply the following asymptotic normality result to obtain the confidence interval: N(0, I−1(ψ)) →
√

n(ψ̂−ψ). Under certain regularity conditions, ψ̂ = (ρ̂1, ρ̂2, η̂1, η̂2) roughly follows a normal distribution
with mean (ρ1, ρ2, η1, η2) and covariance matrix I−1(ρ1, ρ2, η1, η2). Obtaining the exact mathematical
expression for I(ψ) in closed form is challenging. We estimate I−1(ψ) by I−1(ψ̂) using the uniqueness
property of the MLE to derive the asymptotic confidence intervals (ACIs) for the unknown parameters
(ρ1, ρ2, η1, η2) as follows:(

ρ̂1 ± Zσ/2
√

v̂ar(ρ̂1)
)
,

(
ρ̂2 ± Zσ/2

√
v̂ar(ρ̂2)

)
,

(
η̂1 ± Zσ/2

√
v̂ar(η̂1)

)
and

(
η̂2 ± Zσ/2

√
v̂ar(η̂2)

)
, (2.9)

where the estimated variances var(ρ̂1), var(ρ̂2), var(η̂1), and var(η̂2) are given by the diagonal elements
of I−1(ψ̂). Additionally, Zσ/2 represents the percentile of the standard normal distribution corresponding
to a right-tail probability of σ/2. This value is the point on the standard normal distribution (which
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has a mean of 0 and a standard deviation of 1) where the area under the curve to the right of the point
equals σ/2. In statistical testing, σ typically denotes the significance level, which is the probability of
rejecting the null hypothesis when it is true, also known as the Type-I error rate.

3. Bayesian inference

In order to generate a posterior distribution and provide a strong foundation for parameter
estimation, Bayesian estimation is a potent statistical technique that combines past knowledge with the
available data. While Bayesian estimation incorporates prior distributions that reflect prior information
or views about the parameters, standard frequentist approaches only take into account the sample
data. When data may be scant or ambiguous, this integration makes it possible to conduct a more
thorough examination. Bayesian estimation is very helpful when dealing with the GL distribution
because it allows previous knowledge about the distribution parameters to be incorporated, improving
the estimates’ accuracy and dependability. Bayesian approaches can be tailored to suit different
experimental conditions by utilizing alternative censoring schemes and loss functions. This allows
for a flexible and sophisticated approach to parameter inference, which can greatly enhance the quality
of the statistical inferences made from the data.

3.1. Prior distribution

In Bayesian statistics, the prior distribution and posterior distribution are fundamental concepts that
describe our knowledge about a parameter before and after observing data, respectively. The prior
distribution represents the initial beliefs or assumptions about the parameter’s value before any data
is taken into account. This distribution can be based on previous studies, expert knowledge, or other
relevant information. Priors can be informative, incorporating substantial previous knowledge, or non-
informative, reflecting a lack of specific prior information.

In this section, we provide the Bayesian estimates for the unknown parameters, along with the CRIs,
employing the JPog-II scheme as described earlier. Our primary emphasis is on the SEL and LINEX
loss functions.

Let’s now establish the prior distributions for ρ1, ρ2, η1, and η2. It is preferable for the
model parameters to be independent, ensuring that both prior and posterior densities belong to
similar families. These selected priors facilitate analytical handling of the posterior distribution and
computational efficiency. A suitable choice for the priors of ρ1, ρ2, η1, and η2 would be to assume that
these four quantities follow independent gamma distributions, denoted as Gamma(ai, bi), where i takes
values 1, 2, 3, and 4, respectively. The PDFs of these distributions are as follows:

ρ1 ∼ Gamma(a1, b1), π1(ρ1) ∝ ρa1−1
1 e−b1ρ1 , ρ1 > 0, a1, b1 > 0, (3.1)

ρ2 ∼ Gamma(a2, b2), π2(ρ2) ∝ ρa2−1
2 e−b2ρ2 , ρ2 > 0, a2, b2 > 0, (3.2)

η1 ∼ Gamma(a3, b3), π3(η1) ∝ ηa3−1
1 e−b3η1 , η1 > 0, a3, b3 > 0, (3.3)

η2 ∼ Gamma(a4, b4), π4(η2) ∝ ηa4−1
2 e−b4η2 , η2 > 0, a4, b4 > 0, (3.4)

where ρ1, ρ2, η1, η2 and ai, and bi, where i = 1, 2, 3, 4, are selected to reflect prior knowledge about ρ1,
ρ2, η1, and η2.
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By integrating the prior distributions outlined in Eqs (3.1), (3.2), (3.3), and (3.4), we derive the joint
prior density for ρ1, ρ2, η1, and η2 as follows:

π(ρ1, ρ2, η1, η2) ∝ρa1−1
1 ρa2−1

2 ηa3−1
1 ηa4−1

2 e−b1ρ1−b2ρ2−b3η1−b4η2 . (3.5)

3.2. Posterior distribution

The posterior distribution, on the other hand, is the updated probability distribution of the parameter
after incorporating the observed data. It combines the prior distribution with the likelihood of the
observed data through Bayes’ theorem. Mathematically, the posterior distribution is proportional to
the product of the prior distribution and the likelihood function. This updating process allows for the
integration of new information with existing beliefs, refining the parameter estimates and quantifying
uncertainty in a coherent manner. The posterior distribution is central to Bayesian inference, enabling
probabilistic statements and predictions about the parameter based on both prior knowledge and
empirical data.

The joint posterior density function for ρ1, ρ2, η1, and η2 can be derived by combining Eqs (2.2)
and (3.5) as follows:

π∗(ρ1, ρ2, η1, η2|data) ∝ ρa1−1
1 ρa2−1

2 ηa3−1
1 ηa4−1

2 e−b1ρ1−b2ρ2−b3η1−b4η2

× ρδ1
1 η
−δ1
1 ρδ2

2 η
−δ2
2 e

−1
η1

∑δ
i=1 χiωie

−1
η2

∑δ
i=1 χi(1−ωi)e(−ρ1−1)

∑δ
i=1 ωi ln

[
1+e

−χi
η1

]
× e(−ρ2−1)

∑δ
i=1(1−ωi) ln

[
1+e

−χi
η2

]
e
∑δ

i=1 si ln
[

1−
[
1+e

−χi
η1

]−ρ1
]

× e
∑δ

i=1 ti ln
[

1−
[
1+e

−χi
η2

]−ρ2
]
.

(3.6)

Explicit formulas for the marginal posterior distributions are difficult to derive, as illustrated by
Eq (3.6). This challenge can be addressed by generating samples from Eq (3.6) using the MCMC
method. The conditional posterior density functions for η1, η2, ρ1, and ρ2 are as follows:

π∗1(ρ1|ρ2, η1, η2) ∝ ρδ1+a1−1
1 e−ρ1

[
b1+

∑δ
i=1 ωi ln

(
1+e

−χi
η1

)]
e
∑δ

i=1 si ln
[

1−
[
1+e

−χi
η1

]−ρ1
]
, (3.7)

π∗2(ρ2|ρ1, η1, η2) ∝ ρδ2+a2−1
2 e−ρ2

[
b2+

∑δ
i=1(1−ωi) ln

(
1+e

−χi
η2

)]
e
∑δ

i=1 ti ln
[

1−
[
1+e

−χi
η2

]−ρ2
]
, (3.8)

π∗3(η1|ρ1, ρ2, η2) ∝ η−δ1+a3−1
1 e−b3η1−

1
η1

∑δ
i=1 χiωi−

∑δ
i=1 ωi ln

[
1+e

−χi
η1

]
e
∑δ

i=1 si ln
[

1−
[
1+e

−χi
η1

]−ρ1
]
, (3.9)

π∗4(η2|ρ1, ρ2, η1) ∝ η−δ2+a4−1
2 e−b4η2−

1
η2

∑δ
i=1 χi(1−ωi)−

∑δ
i=1(1−ωi) ln

[
1+e

−χi
η2

]
e
∑δ

i=1 ti ln
[

1−
[
1+e

−χi
η2

]−ρ2
]
. (3.10)

It is observed that Eqs (3.7), (3.8), (3.9), and (3.10) present mathematical tractability issues. By
utilizing various loss functions, such as SEL and LINEX loss functions, we derive Bayes estimators
for the unknown parameters.

3.3. Loss functions

Loss functions are essential tools in Bayesian estimating because they put a number on the cost
of estimation errors and help to minimize predicted loss, which powers decision-making. Many loss
functions exist, each with a specific purpose and setting in mind.

AIMS Mathematics Volume 9, Issue 10, 29346–29369.



29356

3.3.1. Squared error loss

A common loss function in statistical estimation and decision theory, especially in the context
of Bayesian inference, is the SEL. SEL provides an indication of the size of mistakes in a model’s
predictions. It is defined as the square of the difference between the estimated and true parameter
values. Mathematically, the SEL for an estimate φ̂ of a parameter φ is given by:

L(φ̂, φ) = (φ̂ − φ)2.

By emphasizing the reduction of significant disparities, this quadratic penalty helps minimize total
error because it ensures that larger deviations between the estimate and the true value are penalized
more severely than smaller ones. The SEL is popular due to its desirable characteristics, such as
differentiability, which facilitates the application of optimization strategies to determine the optimal
estimates. It is also mathematically simple. The posterior mean is the best choice rule in Bayesian
estimation when using SEL, as it minimizes the expected squared error. This makes the SEL
particularly useful when the objective is to obtain an unbiased estimate that is generally closer to
the true parameter value in a least-squares sense. However, because SEL is quadratic, it is sensitive to
outliers, which can be problematic when robustness to extreme results is crucial.

3.3.2. Linear exponential loss function

The asymmetric LINEX loss function proposed by Varian [16] is utilized in statistical estimation
and decision-making. It is distinguished by its ability to represent varying costs associated with
both overestimation and underestimation of parameters. The LINEX loss function is more flexible
in capturing situations where the penalty for errors is not equal, compared to symmetric loss functions
like the SEL.

The LINEX loss function can be expressed mathematically as follows:

L(φ̂, φ) = eε(φ̂−φ) − ε(φ̂ − φ) − 1,

where φ is the true parameter, φ̂ is the estimated parameter, and ε is a parameter that regulates the
loss function’s asymmetry. Overestimation is penalized more severely than underestimation when
ε > 0, and vice versa when ε < 0. This asymmetry is particularly useful in real-world situations
where the costs of overestimating and underestimating a parameter have differing consequences. The
LINEX loss function is valuable in applications where it is important to consider the varying effects
of estimation errors on decision outcomes. For example, in quality control or financial forecasting,
underestimation might lead to missed opportunities or subpar performance, while overestimation could
result in excessive costs or resource misallocation. By adjusting ε, the LINEX loss function can be
tailored to account for these fluctuating costs and guide the estimation procedure appropriately. When
the LINEX loss function is used in Bayesian estimation, the posterior mode that minimizes the expected
LINEX loss is found to be the best choice rule. In domains where error asymmetry significantly
impacts decision-making, this approach can lead to estimates that are more useful and contextually
appropriate. Overall, the LINEX loss function offers a refined method for parameter estimation and
error assessment, making it a valuable alternative to symmetric loss functions.
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3.4. MCMC in Bayesian estimation and credible intervals

The MCMC method is a class of algorithms used to sample from complex probability distributions
and estimate statistical properties when direct sampling is infeasible. These methods are particularly
useful in Bayesian estimation, where deriving the posterior distribution of parameters analytically is
challenging. MCMC generates samples by constructing a Markov chain with the desired distribution
as its equilibrium distribution, using iterative processes that converge to this distribution. Two popular
MCMC algorithms are the Metropolis-Hastings (M-H) algorithm, which proposes new samples based
on a proposal distribution and accepts or rejects them according to specific criteria, and the Gibbs
sampler, which iteratively samples from the conditional distributions of each parameter given the
others (see Metropolis et al. [17] and Hastings [18]). These techniques are invaluable for providing
approximate solutions to high-dimensional and complex problems, enabling researchers to estimate
posterior distributions, calculate integrals, and make probabilistic inferences in a computationally
feasible manner. In this context, credible intervals, the Bayesian counterpart to CIs in frequentist
statistics, are calculated using the MCMC method, as mentioned in the paper. These intervals provide
a range of values within which the true parameter is believed to lie with a certain probability, based
on the posterior distribution. The study highlights that Bayesian estimates and their corresponding
credible intervals often outperform MLEs in terms of accuracy and reliability, especially in simulation
studies where Bayesian CRIs showed smaller average interval lengths compared to confidence
intervals. Additionally, the practical application of Bayesian methods, including CRIs, in analyzing
life distributions for two populations underscores their relevance in real-world scenarios.

Theorem 3.1. Conditions for the successful execution of the M-H algorithm for Bayesian estimation
of the GL distribution.

Let π(θ|X) be the target posterior distribution of the parameters θ = (ρ1, ρ2, η1, η2) of the GL
distribution under joint progressive censoring, where X represents the observed failure time data.
Let q(θ′|θ) be the proposal distribution for generating candidate values θ′ in the M-H algorithm. The
M-H algorithm generates a sequence of samples {θ(1), θ(2), . . . , θ(n)}, intended to converge to the target
posterior distribution π(θ|X). For the M-H algorithm to execute successfully, the following conditions
must be satisfied:

Regularity conditions:

• Aperiodicity: The Markov chain must be aperiodic.
Definition: A Markov chain is aperiodic if there is no fixed period such that the chain revisits a
state only at fixed intervals.
Verification: The acceptance probability in the M-H algorithm allows for the possibility of
staying at the current state, ensuring aperiodicity. For the GL distribution with joint progressive
censoring, the chain can stay at the current state when the proposed state is rejected.
• Irreducibility: The Markov chain must be irreducible, meaning that it is possible to reach any

state θ′ ∈ Θ from any other state θ ∈ Θ in a finite number of steps.
Definition: Irreducibility ensures that the entire parameter space Θ = (ρ1, ρ2, η1, η2) is explored
by the algorithm.
Verification: For Bayesian estimation of the GL distribution, a proper choice of the proposal
distribution q(θ′|θ) ensures that any state θ′ = (ρ′1, ρ

′
2, η

′
1, η

′
2) can be reached from the current

state θ = (ρ1, ρ2, η1, η2). Common choices like Gaussian proposals with nonzero variance satisfy
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this condition.
• Detailed balance: The Markov chain must satisfy the detailed balance condition with respect to

the target posterior distribution π(θ|X).
Definition: Detailed balance ensures that for any two states θ and θ′, the following holds:

π(θ|X)q(θ′|θ)α(θ′|θ) = π(θ′|X)q(θ|θ′)α(θ|θ′),

where α(θ′|θ) is the acceptance probability given by:

α(θ′|θ) = min
(
1,
π(θ′|X)q(θ|θ′)
π(θ|X)q(θ′|θ)

)
.

Verification: In the context of Bayesian estimation for the GL distribution, the M-H algorithm’s
acceptance rule is designed to ensure detailed balance. Since the acceptance probability α(θ′|θ)
is derived from the ratio of the posterior densities and proposal distributions, detailed balance is
satisfied, guaranteeing that the posterior distribution is the stationary distribution of the Markov
chain.
• Positivity of proposal density: The proposal density q(θ′|θ) must be positive for all θ, θ′ ∈ Θ.

Definition: This condition ensures that there is a positive probability of proposing any new
candidate state θ′ from the current state θ.
Verification: In the Bayesian estimation of the GL distribution, this condition is satisfied by
choosing a proposal distribution such as a Gaussian proposal, where q(θ′|θ) > 0 for all pairs
θ = (ρ1, ρ2, η1, η2) and θ′ = (ρ′1, ρ

′
2, η

′
1, η

′
2).

• Convergence to stationary distribution: The Markov chain must converge to the target posterior
distribution π(θ|X) as the number of iterations tends to infinity.
Definition: Convergence ensures that after a sufficiently large number of iterations, the samples
generated by the algorithm are from the target posterior distribution π(θ|X).
Verification: Convergence is a direct consequence of the Ergodic theorem, which states that an
irreducible and aperiodic Markov chain converges to its stationary distribution. In the case
of the Bayesian estimation for the GL distribution, if the Markov chain satisfies the conditions
of aperiodicity, irreducibility, and detailed balance, it will converge to the target posterior
distribution π(θ|X).

Proof outline. Aperiodicity and irreducibility: The ability of the M-H algorithm to either stay at the
current state or propose a wide range of values ensures aperiodicity and irreducibility. For Bayesian
estimation of the GL distribution, the joint progressive censoring setup allows the exploration of the
parameter space Θ, and appropriate choices of proposal distributions ensure that all states can be
reached.

Detailed balance: The acceptance probability is constructed to satisfy detailed balance, which
implies that the target posterior distribution is the stationary distribution of the Markov chain.

Convergence: The conditions of aperiodicity, irreducibility, and detailed balance ensure that the
M-H algorithm converges to the posterior distribution π(θ|X).

M-H algorithm:

• Step 1: To begin, use the following initial values:
(
ρ(0)

1 , ρ(0)
2 , η(0)

1 , η(0)
2

)
, and K is burn-in.

• Step 2: Set j = 1.
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• Step 3: The M-H algorithm can be employed to generate ρ( j)
1 , ρ( j)

2 , η( j)
1 , and η( j)

2 using Eqs (3.7),
(3.8), (3.9), and (3.10). It is recommended to use normal distributions N(ρ( j−1)

1 , var(ρ1)),
N(ρ( j−1)

2 , var(ρ2)), N(η( j−1)
1 , var(η1)), and N(η( j−1)

2 , var(η2)) for this purpose.
(I) Use the corresponding normal distributions to generate the suggested values ρ∗1, ρ∗2, η∗1, and η∗2.
(II) Using the steps listed below, determine the probability of acceptance,

r1 = min
[
1,

π∗1(ρ∗1|η
( j−1)
2 , η

( j−1)
1 , ρ

( j−1)
2 , data)

π∗1(ρ( j−1)
1 |η

( j−1)
2 , η

( j−1)
1 , ρ

( j−1)
2 , data)

]
,

r2 = min
[
1,

π∗2(ρ∗2|η
( j−1)
2 , η

( j−1)
1 , ρ

( j−1)
1 , data)

π∗2(ρ( j−1)
2 |η

( j−1)
2 , η

( j−1)
1 , ρ

( j−1)
1 , data)

]
,

r3 = min
[
1,

π∗3(η∗1|η
( j−1)
2 , ρ

j
1, ρ

j
2, data)

π∗3(η( j−1)
1 |η

( j−1)
2 , ρ

j
1, ρ

j
2, data)

]
,

r4 = min
[
1,

π∗4(η∗2|η
( j−1)
1 , ρ

j
1, ρ

j
2, data)

π∗4(η( j−1)
2 |η

( j−1)
1 , ρ

j
1, ρ

j
2, data)

]
.

(III) Choose a random variable u from a uniform distribution with values between 0 and 1.
(IV) Accept the suggestion and update ρ( j)

1 to ρ∗1 if u ≤ r1; otherwise, keep ρ( j)
1 as ρ( j−1)

1 .
(V) Accept the suggestion and update ρ( j)

2 to ρ∗2 if u ≤ r2; otherwise, keep ρ( j)
2 as ρ( j−1)

2 .
(VI) Accept the suggestion and update η( j)

1 to η∗1 if u ≤ r3; otherwise, keep η( j)
1 as η( j−1)

1 .
(VII) Accept the suggestion and update η( j)

2 to η∗2 if u ≤ r4; otherwise, keep η( j)
2 as η( j−1)

2 .
• Step 7: Set j = j + 1.
• Step 8: Proceed through Steps 2 through 7 δ times. As a result, the estimated posterior means of

(ρ1, ρ2, η1, η2), indicated by β under the SEL function, can be computed as follows:

β̂BS = E[β|x] =
1

δ − K

δ∑
i=k+1

β( j). (3.11)

Lastly, use the LINEX loss function to find the Bayesian estimates of β.

β̂BL = −
1
ε

ln
[

1
δ − K

δ∑
i=k+1

e−εβ
( j)

]
. (3.12)

For more information about Bayesian methods and lifetime data analysis, see Xu et al. [19] and Zhuang
et al. [20]. �

4. Numerical study

The aim of this section is to evaluate the effectiveness of the different estimation methods discussed
in previous sections. To illustrate this, we analyze a real dataset and conduct a simulated experiment
to assess the statistical performance of the estimators under the joint PCS.
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4.1. Real data study

The data, initially obtained from Proschan [21], shows the air conditioning system failure times (in
hours) for airplanes 7913 and 7914. It is assumed that the two datasets are independent and that the
failure times are independent within each dataset. Table 1 presents the data below.

Table 1. The air conditioning system failure times (in hours) for airplanes 7913 and 7914.

Data I Airplane 7913 1 4 11 16 18 18 18 24 31 39 46 51 54 63
68 77 80 82 97 106 111 141 142 163 191 206 216.

Data II Airplane 7914 3 5 5 13 14 15 22 22 23 30 36 39 44 46
50 72 79 88 97 102 139 188 197 210.

The Kolmogorov-Smirnov (K-S) test results, which are used to determine if the data complies with
the GL distribution, are shown in Table 2.

Table 2. K-S test and P-value of air conditioning system failure times for airplanes 7913 and
7914.

Airplanes n K-S 5% Significance P-value
Airplane 7913 27 0.1166 0.2544 0.8151
Airplane 7914 24 0.1674 0.2693 0.5000

The computed K-S values for the data are clearly smaller than the equivalent values predicted at
a significance level of 5%, as shown in Table 2. Notably high p-values have also been observed.
Therefore, it makes sense to conclude that the GL distribution is a good model fit for the data. In
addition, we have produced fitted S (x) and empirical S (x) for each dataset, as shown in Figures 6
and 7. The GL distribution model fits the data better, as these charts further demonstrate. Figures 8
and 9 present the profile log-likelihood function for the parameters ρ1, ρ2, η1, and η2, demonstrating
that it achieves a single maximum.

(a)

˜

(b)

Figure 6. (a) Plots of the GL distribution’s fitted functions for airplane 7913, and (b) GL
distribution for airplane 7913 in a probability plot.
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(a)

˜

(b)

Figure 7. (a) Plots of the GL distribution’s fitted functions for airplane 7914, and (b) GL
distribution for airplane 7914 in a probability plot.

(a)

˜

(b)

Figure 8. (a) The log-likelihood function profile for η1, and (b) the log-likelihood function
profile for η2.

(a)

˜

(b)

Figure 9. (a) The log-likelihood function profile for ρ1, and (b) the log-likelihood function
profile for ρ2.

Using the following censoring strategy, we created a joint PCS sample from the datasets listed
above. To implement joint PCS with r = 20, set m = 27 for the first sample and n = 24 for the second.
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Below is the definition of the censoring vectors:

S = (0, 0, 4, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 6, 0, 0, 0, 0, 0),
R = (0, 0, 8, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 11, 0, 0, 0, 0, 0),
T = (0, 0, 4, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 0, 0).

The datasets created are as follows:

w = (1, 3, 4, 5, 5, 11, 13, 14, 15, 16, 18, 18, 18, 22, 22, 23, 24, 30, 31, 36),
z = (1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0).

Depending on the type of data utilized in this investigation, we employed the MLE approach to derive
estimates for ρ1, ρ2, η1, and η2. Table 3 presents the corresponding results, whereas Tables 4 and 5
provide the 95% ACIs for ρ1, ρ2, η1, and η2. To ensure convergence, we omitted the first 1000
iterations as “burn-in” and used the MCMC method for Bayesian estimation, running 12,000 iterations.
The hyperparameters ai and bi that we have chosen are 10−3, which is close to zero for the prior
distributions. Both the SEL and LINEX loss functions were used to construct Bayesian estimates for
ρ1, ρ2, η1, and η2; Table 3 details the associated outcomes. Furthermore, Tables 4 and 5 offer the 95%
CRIs for ρ1, ρ2, η1, and η2.

Table 3. Frequentist and Bayesian estimates for (ρ1, ρ2, η1, η2).

Parameters Frequentist estimates Bayesian estimates
SEL LINEX

c = −5.0 c = 10−3 c = 5.0
ρ1 4.9530 4.9709 4.9717 4.9709 4.9702
ρ2 4.7285 4.7286 4.7288 4.7286 4.7285
η1 25.8396 25.8550 25.8587 25.8550 25.8510
η2 18.4558 18.4806 18.4821 18.4806 18.4791

Table 4. Interval Bayesian for (ρ1, ρ2).

Method ρ1 ρ2

Lower Upper Length Lower Upper Length
CI 2.5287 7.3773 4.8486 2.2229 7.2341 5.0112

CRI 4.9402 4.9949 0.0546 4.7155 4.7433 0.0277

Table 5. Interval Bayesian for (η1, η2).

Method η1 η2

Lower Upper Length Lower Upper Length
CI 13.2258 38.4533 25.2275 10.5552 26.3565 15.8013

CRI 25.7671 25.9145 0.1473 18.4351 18.5281 0.0929
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4.2. Simulation study

To evaluate the effectiveness of the estimation techniques developed in the earlier sections, we
conduct simulation tests in this section. For both populations, we investigate a range of sample sizes,
such as (m, n) = (15, 20), (30, 40), (40, 60), and a range of failure counts for each sample size,
such as (15, 20), (25, 35), (40, 50). For both populations, the parameter values are ρ1, ρ2, η1, and η2

= (6.5, 8.5, 5.5, 7.5). For each parameter ρ1, ρ2, η1, and η2, we calculated MLEs and 95% confidence
intervals for the parameters ρ1, ρ2, η1, and η2. After 1000 iterations of this procedure, we computed the
mean values of the MLEs and their corresponding lengths. Tables 6, 7, 8 and 9 display the findings.

Table 6. Frequentist and Bayesian estimates, along with the length and corresponding MSE
(in bold) of estimates for the parameter ρ1.

(m, n) r Scheme Frequentist estimates Bayesian estimates
MLE Length SEL LINEX Length

ε = −6 ε = 6
(15, 20) 15 (0(14), 20) 6.6378 8.6201 6.6596 6.6607 6.6585 0.0693

0.9990 0.9255 0.9258 0.9251
15 (20, 0(14)) 7.4592 10.9775 7.4414 7.4420 7.4408 0.0493

0.9201 0.8862 0.8873 0.8851
(15, 20) 20 (0(19), 15) 7.1963 8.8725 7.2723 7.2761 7.2685 0.1160

0.8849 0.7965 0.7024 0.7906
20 (15, 0(19)) 7.8856 13.0641 7.9421 7.9532 7.9306 0.2225

0.8200 0.6797 0.6117 0.6466
(30, 40) 25 (0(24), 45) 5.3294 4.6483 5.3367 5.3367 5.3366 0.0167

0.7702 0.6533 0.5532 0.5533
25 (45, 0(24)) 7.5117 10.0567 7.5188 7.5212 7.5165 0.0876

0.6236 0.6380 0.5429 0.5333
(30, 40) 35 (0(34), 35) 9.4022 10.5080 9.4329 9.4347 9.4309 0.0854

0.5226 0.6019 0.5126 0.5005
35 (35, 0(34)) 5.0710 4.9565 5.0685 5.0685 5.0685 0.0014

0.3419 0.3293 0.3244 0.3223
(40, 60) 40 (0(39), 60) 5.9177 4.4882 5.9311 5.9314 5.9309 0.0327

0.3391 0.3236 0.3233 0.3220
40 (60, 0(39)) 8.5844 9.0196 8.5965 8.5967 8.5963 0.0290

0.3245 0.2951 0.2960 0.2943
(40, 60) 50 (0(49), 50) 6.6985 5.7894 6.6907 6.6910 6.6904 0.0319

0.1394 0.0364 0.0365 0.0363
50 (50, 0(49)) 4.1476 3.3121 4.1474 4.1474 4.1474 0.0009

0.0937 0.0234 0.0347 0.0347

Furthermore, in the context of Bayesian estimation under SE and LINEX loss functions, we used
informative gamma priors for α1, α2, γ1, and γ2. The hyperparameters ai = 5.0 and bi = 7.0 were
specified for i = 1, 2, 3, 4. ε = 6 signified overestimation, and ε = −6 indicated underestimation.
Using 18,000 samples, we applied the MCMC technique to obtain 95% CRIs and Bayesian estimates
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for ρ1, ρ2, η1, and η2 with 1000 simulations. To ensure convergence, we omitted the first 4000 iterations
as “burn-in”. The performance of the derived estimators for ρ1, ρ2, η1, and η2 were assessed using mean
squared errors (MSE). We calculated the mean values of the MLEs and their corresponding lengths
after 1000 iterations of this method. The findings are shown in Tables 6, 7, 8, and 9.

Table 7. Frequentist and Bayesian estimates, along with the length and corresponding MSE
(in bold) of estimates for the parameter ρ2.

(m, n) r Scheme Frequentist estimates Bayesian estimates
MLE Length SEL LINEX Length

ε = −6 ε = 6

(15, 20) 15 (0(14), 20) 7.9557 13.7203 7.9969 7.9973 7.9965 0.0418
0.2963 0.2531 0.2527 0.2536

15 (20, 0(14)) 8.5179 16.5289 8.4225 8.4240 8.4209 0.0841
0.2103 0.2006 0.2058 0.2063

(15, 20) 20 (0(19), 15) 6.2977 9.7348 6.2666 6.2672 6.2659 0.0510
0.1503 0.1881 0.1852 0.1910

20 (15, 0(19)) 8.1496 10.6903 8.1709 8.1719 8.1700 0.0689
0.1228 0.1083 0.1077 0.1069

(30, 40) 25 (0(24), 45) 9.1471 11.7626 9.1469 9.1469 9.1469 0.0540
0.1187 0.1045 0.1035 0.1029

25 (45, 0(24)) 7.2385 7.6991 7.2394 7.2405 7.2384 0.0638
0.1113 0.1043 0.1033 0.1011

(30, 40) 35 (0(34), 35) 6.5883 6.3805 6.5378 6.5381 6.5375 0.0408
0.1025 0.0984 0.0992 0.0955

35 (35, 0(34)) 7.9318 9.0774 7.9282 7.9283 7.9281 0.0214
0.0988 0.0940 0.0932 0.0928

(40, 60) 40 (0(39), 60) 9.9721 10.9662 9.9723 9.9712 9.9700 0.0208
0.0872 0.0648 0.0645 0.0644

40 (60, 0(39)) 8.7826 8.8072 8.8181 8.8199 8.8162 0.0722
0.0798 0.0512 0.0524 0.0500

(40, 60) 50 (0(49), 50) 8.4488 7.6291 8.4481 8.4474 8.4470 0.0204
0.0262 0.0257 0.0255 0.0215

50 (50, 0(49)) 9.0410 10.7017 9.0453 9.0443 9.0432 0.0124
0.0209 0.0173 0.01355 0.0138
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Table 8. Frequentist and Bayesian estimates, along with the length and corresponding MSE
(in bold) of estimates for the parameter η1.

(m, n) r Scheme Frequentist estimates Bayesian estimates

MLE Length SEL LINEX Length

ε = −6 ε = 6

(15, 20) 15 (0(14), 20) 6.3874 5.8281 6.3883 6.3885 6.3880 0.0328

0.7874 0.7891 0.7895 0.7886

15 (20, 0(14)) 4.4801 4.2685 4.4920 4.4923 4.4918 0.0270

0.6403 0.6216 0.6155 0.6145

(15, 20) 20 (0(19), 15) 7.6231 5.5054 7.5997 7.5998 7.5995 0.0299

0.5077 0.4086 0.4093 0.4079

20 (15, 0(19)) 6.1953 6.1765 6.2171 6.2175 6.2167 0.0412

0.4835 0.3142 0.3147 0.3136

(30, 40) 25 (0(24), 45) 8.0908 6.2906 8.1544 8.1555 8.1533 0.0658

0.3120 0.2658 0.2514 0.2399

25 (45, 0(24)) 5.6466 4.5870 5.6237 5.6242 5.6231 0.0443

0.2215 0.2153 0.2154 0.2152

(30, 40) 35 (0(34), 35) 5.3897 3.1869 5.3590 5.3595 5.3586 0.0394

0.2122 0.1999 0.1997 0.1800

35 (35, 0(34)) 6.9059 4.7703 6.8875 6.8879 6.8872 0.0367

0.2065 0.1982 0.1962 0.1942

(40, 60) 40 (0(39), 60) 6.5522 3.4617 6.5388 6.5390 6.5385 0.0319

0.1872 0.1790 0.1796 0.1785

40 (60, 0(39)) 4.9577 3.1105 4.9586 4.9586 4.9585 0.0143

0.1041 0.0931 0.0928 0.0921

(40, 60) 50 (0(49), 50) 6.3491 3.4742 6.3508 6.3510 6.3507 0.0259

0.0821 0.0723 0.0721 0.0708

50 (50, 0(49)) 5.5948 3.0464 5.6032 5.6011 5.6031 0.0165

0.0584 0.0206 0.0107 0.0106
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Table 9. Frequentist and Bayesian estimates, along with the length and corresponding MSE
(in bold) of estimates for the parameter η2.

(m, n) r Scheme Frequentist estimates Bayesian estimates
MLE Length SEL LINEX Length

ε = −6 ε = 6
(15, 20) 15 (0(14), 20) 5.9875 6.5316 5.9703 5.9713 5.9692 0.0703

0.5876 0.5454 0.5369 0.5433
15 (20, 0(14)) 9.8408 10.4470 9.8479 9.8485 9.8473 0.0501

0.5792 0.5125 0.5153 0.5097
(15, 20) 20 (0(19), 15) 8.7166 9.2264 8.7245 8.7250 8.7239 0.0512

0.4802 0.4993 0.5007 0.4979
20 (15, 0(19)) 9.0165 6.2204 8.9867 8.9872 8.9861 0.0510

0.2996 0.2102 0.2119 0.2086
(30, 40) 25 (0(24), 45) 5.6502 4.4376 5.6777 5.6778 5.6777 0.0201

0.2218 0.2106 0.2103 0.2009
25 (45, 0(24)) 8.0368 4.7977 8.0208 8.0216 8.0201 0.0558

0.2181 0.2013 0.2050 0.2005
(30, 40) 35 (0(34), 35) 8.2908 5.6586 8.2800 8.2805 8.2795 0.0426

0.2054 0.1084 0.1091 0.1076
35 (35, 0(34)) 7.2820 4.4473 7.2588 7.2591 7.2586 0.0382

0.1075 0.1058 0.1058 0.1058
(40, 60) 40 (0(39), 60) 7.1157 4.9217 7.1271 7.1274 7.1269 0.0334

0.1055 0.0839 0.0829 0.0792
40 (60, 0(39)) 7.046 4.0895 7.035 7.0355 7.0344 0.0422

0.0861 0.0822 0.0787 0.0766
(40, 60) 50 (0(49), 50) 7.1415 3.8964 7.1115 7.1119 7.1111 0.0391

0.0754 0.0811 0.0654 0.0621
50 (50, 0(49)) 6.0121 3.4268 5.9919 5.9930 5.9909 0.0522

0.0139 0.0244 0.0182 0.0175

Many inferences can be made from the data provided above:

1) Comparing Bayesian estimators at ε = −6 with the LINEX loss function at ε = 6, we find that the
former performs better in terms of MSEs than the latter.

2) A closer look at Tables 6, 7, 8, and 9 reveals that, when comparing the average interval lengths
of CIs to CRIs, CRIs have the smallest interval lengths, suggesting that Bayesian estimators are
superior to MLEs.

3) Remarkably, in terms of having the smallest MSEs, Bayesian estimators utilizing the LINEX loss
function outperform those employing the SE loss function.

4) According to Tables 6, 7, 8, and 9, Bayesian estimates often perform better than MLEs in terms
of having the smallest MSEs.
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5. Conclusions

The research presented in this paper offers significant insights into the statistical inference of the
GL distribution under joint progressive censoring. It effectively estimates maximum likelihood for
unknown parameters and conducts Bayesian estimation using both gamma and non-informative priors,
demonstrating the versatility and applicability of these methods in analyzing life distributions for two
populations, thereby enhancing the understanding of failure times in air conditioning systems. The
study’s use of two loss functions, SEL and LINEX, facilitated a comprehensive evaluation of the
proposed estimates, with Monte Carlo simulations revealing that Bayesian estimates, along with their
corresponding CRIs, consistently outperformed alternative estimators, underscoring the effectiveness
of Bayesian methods. Additionally, the robustness of the derived estimators for parameters ρ1, ρ2, η1,
and η2 was confirmed through simulation studies, with detailed tables illustrating the reliability of these
methods across various sample sizes and failure counts. A numerical example further highlighted the
practical application of the theoretical findings, emphasizing the relevance of the research in addressing
actual failure times. The conclusions not only underscore the importance of both frequentist and
Bayesian approaches but also pave the way for future research, providing a comprehensive framework
for further investigations into failure time analysis and related fields.
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