
AIMS Mathematics, 9(10): 29296–29332. 

DOI: 10.3934/math.20241420 

Received: 11 August 2024 

Revised: 13 September 2024 

Accepted: 19 September 2024 

Published: 16 October 2024 

https://www.aimspress.com/journal/Math 

 

Research article 

Enhanced dung beetle optimizer for Kriging-assisted time-varying 

reliability analysis 

Yunhan Ling1, Yiqing Shi1, Huimin Hou1, Lidong Pan1, Hao Chen1, Peixin Liang1, Shiyuan 
Yang2,*, Peng Nie3,4, Jiahao Han3,4 and Debiao Meng3,4 

1 China Academy of Machinery Beijing Research Institute of Mechanical & Electrical Technology 
Co., Ltd., Beijing 100083, China 

2 INEGI, Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal 
3 School of Mechanical and Electrical Engineering, University of Electronic Science and 

Technology of China, Chengdu, 611731, China 
4 Institute of Electronic and Information Engineering of UESTC in Guangdong, Dongguan 523808, 

China 

* Correspondence: Email: up202311575@edu.fe.up.pt. 

Abstract: During the engineering structure's operation, the mechanical structure's performance and 
loading will change with time, so the parameter uncertainty and structural reliability will also have 
dynamic characteristics. The time-varying reliability analysis method can more accurately evaluate 
structural reliability by fully using this dynamic uncertainty. However, the time-varying reliability 
analysis was mainly based on the spanning rate method, which was complex and difficult to obtain 
the final result. Therefore, this study proposed an enhanced dung beetle optimization (EDBO) 
assisted time-varying reliability analysis method based on the adaptive Kriging model. With the help 
of the adaptive Kriging model and the EDBO optimization algorithm, the efficiency of the 
time-varying reliability analysis method was improved. At the same time, to prevent prematurely 
falling into the local search trap, the method improved the uniformity of the sample by initializing 
the sample through improved tent chaotic mapping (ITCM). Next, the Gaussian random walk 
strategy was used to search the updated position, which further improved the accuracy of the 
reliability analysis results. Finally, the accuracy and effectiveness of the proposed time-varying 
reliability analysis method were verified by four mechanical structure model examples. From the 
calculation results, it can be seen that with the help of the new DBO optimization algorithm, the 
relative error of the proposed reliability analysis results was about 20%~30% lower than that of the 
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traditional reliability analysis method. What’s more, the calculation efficiency was higher than that of 
other reliability analysis methods. 
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1. Introduction 

To improve the effective solution of complex engineering problems, obtaining more accurate 
reliability analysis results is a long-term task [1–5]. A variety of reliability analysis methods and 
optimization methods are used to solve the complexity of real-world problems. Among them, 
time-varying reliability analysis (TRA), as a method to evaluate the failure probability of the system 
during the design life, is widely studied in the research and practical application of engineering 
systems [6,7]. There are two methods to solve the TRA problem: the outcrossing rate method and 
extreme value method [8]. However, these TRA methods face the problems of complexity and high 
computational cost [9,10]. 

Many scholars have proposed a TRA method based on the surrogate model to solve the 
computational difficulty faced by traditional analysis methods [11–13]. A substitute model is used to 
replace complex performance evaluation, which reduces the computational pressure of the TRA 
method that requires a lot of computational cost [14–17]. Common surrogate models include the 
physical information neural network (PINN) [18,20], the Kriging model [21,22], and the Gaussian 
model [23,24]. Dang et al. proposed a TRA method that combines PINN and Bayesian theory. 
Compared with Monte Carlo simulation (MCS), which only uses finite element analysis, the 
reliability analysis method combined with a surrogate model greatly reduces the computational 
difficulty [25]. Chen et al. proposed a TRA method assisted by the Kriging model. Due to the 
adoption of the Kriging model building method which actively tracks failure samples, the efficiency 
of the new TRA method has a high improvement effect [26]. Wang et al. proposed a TRA method 
based on Gaussian processes. This study improves the efficiency of surrogate modeling by 
combining machine learning algorithms and the Gaussian regression process [27]. Relatively, the 
Kriging model can provide both the predicted value and the predicted variance, which makes the 
adaptive Kriging model receive higher attention [28–30]. With the aid of the surrogate model, the 
efficiency of TRA is improved by higher efficiency. However, in the face of the problem of 
determining the specific time of prediction error, the efficiency of TRA assisted by the surrogate 
model has a lot of room for improvement. This is an optimization problem, so more excellent 
optimization algorithms are needed to improve the accuracy and efficiency of TRA methods [31,32]. 
Compared with the gradient-based optimization algorithm, the heuristic algorithm has higher 
applicability and global convergence [33]. Therefore, it is of great significance to develop a better 
heuristic optimization algorithm for TRA in engineering applications. 

The group optimization technique is an important heuristic algorithm, which develops excellent 
algorithms from the coordinated behavior observed in natural organisms as an inspiration [34–36]. The 
optimization process of group optimization technology is divided into two stages [37–39]. The first 
stage is to generate a set of random individuals in the search space. The second stage is to combine, 
change, and evolve these random individuals repeatedly. Common swarm optimization algorithms use 
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biological principles to push the population to the optimal or near-optimal scheme, which is the main 
difference between different optimization algorithms [40,41]. These algorithms include genetic 
algorithms (GA) [42], whale optimization (WOA) [43], particle swarm optimization (PSO) [44–46], 
differential evolution (DE) [35,47], and grey wolf optimizer (GWO) [48] to mention some. In the 
face of complex optimization problems, traditional optimization algorithms often still face the problem 
of low computational efficiency and accuracy [37,49]. Although these optimization algorithms have 
since been extensively studied and optimized, the practicability of new optimization algorithms is still 
challenged due to the complexity of the problem [50–56]. By observing how dung beetles navigate and 
move dung balls over long distances, the developed dung beetle optimization (DBO) algorithm has a 
good balance between exploration and development [31]. Therefore, the DBO algorithm is widely 
studied and applied in research and engineering. However, DBO algorithms can fall into local 
optimization traps when dealing with some optimization problems, so there is potential for further 
improvement. 

To solve this problem, this study proposes an enhanced DBO (EDBO) algorithm. Different from 
references [31,42–48], the EDBO algorithm uses chaos to generate more uniform population samples. 
This makes the new heuristic algorithm easier to get out of the dilemma in the face of local 
optimization traps. In addition, this study also uses the Gaussian random walk strategy to update the 
position of the overall population, which improves the global convergence ability of the algorithm. 
Different from references [25–27], this study introduces the heuristic algorithm into the TRA method 
based on the adaptive Kriging model. Different from reference [57], the EDBO algorithm is used to 
linearize the limit state function in this study. With the help of the EDBO algorithm, the new TRA 
method has higher accuracy and computational efficiency. Different from reference [9], this study 
uses the EDBO algorithm for TRA. Compared with the TRA based on the differential optimization 
DE algorithm, the proposed EDBO algorithm-assisted reliability method has higher computational 
efficiency. Compared with the previous TRA methods, the proposed TRA framework has higher 
computational efficiency and analysis performance with the help of the EDBO algorithm and 
adaptive Kriging model establishment strategy. In the classical CEC 2005 (IEEE Congress on 
Evolutionary Computation) and CEC 2021 benchmark tests, the EDBO algorithm is compared with 
five popular heuristic optimization algorithms, and the superiority of the EDBO algorithm is proved. 
In addition, EDBO is used to maximize the prediction error of the adaptive Kriging method in TRA, 
which further improves the efficiency and accuracy of TRA. Finally, the effectiveness and 
superiority of the proposed TRA method are verified by four classical engineering problems. 

The remainder of the paper is organized as follows. The general formulation of the adaptive 
Kriging-based TRA and the EDBO is thoroughly reviewed in Section 2. Then, in Section 3, the 
proposed EDBO algorithm is explained in detail. In Section 4 the standard real-world benchmark 
functions are used to validate the performance of the proposed method. In Sections 5 and 6, 
EDBO-based TRA and four widely used TRA test cases are used to validate the performance of the 
proposed method. Finally, Section 7 provides a summary and prospect of the research findings. 

2. Review on TRA and DBO 

This section briefly reviews some preliminaries, basic definitions, and procedures of adaptive 
Kriging-based TRA and DBO. 
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2.1. Adaptive Kriging-based TRA 

One of the primary steps in this approach is the implementation of accurate surrogate models [58]. 
This is particularly crucial because the most probable point trajectory (MPPT), denoted as 𝑢ොெ௣௣(𝑡), 
is solely varying on a single input variable, which is the time parameter 𝑡. This characteristic 
simplifies the process of constructing the one-dimensional response surface using gaussian process 
regression (GPR) [57,59–63]. By leveraging the capabilities of GPR, we can efficiently model the 
behavior of the MPPT over time [64]. 

Another key aspect of this methodology is the strategic use of the adaptive sampling approach. 
This approach is designed to focus exclusively on conducting MPP searches at critical time instances 
that have been carefully identified [65–68]. These instances are chosen to maximize the mean square 
error (MSE) of the GPR model 𝑢ොெ௣௣(𝑡). By concentrating our computational resources on these 
critical time points, we substantially reduce in the overall number of MPP searches compared to the 
more traditional time-dependent reliability analysis (TDTRA) method [69,70]. This reduction in 
computational effort translates to significant gains in efficiency without compromising the accuracy 
of our results. 

Utilize a Gaussian process regression to estimate the trajectory of the MPP in a time-varying 
scenario. Let 𝑡௜ be an arbitrary time moment within the interval [𝑡௦, 𝑡௘]. Represent the MPP of the 
instantaneous limit-state function 𝑔(𝑋, 𝑌(𝑡௜), 𝑡௜) = 0 as 𝑢ොெ௣௣(𝑡). As 𝑡௜  varies from 𝑡௦  to 𝑡௘ , 
𝑢ොெ௣௣(𝑡) transitions from 𝑢ොெ௣௣(𝑡) to𝑢ොெ௣௣(𝑡). When these MPPs are interconnected, they form a 
trajectory in the U-space known as the MPPT, denoted as 𝑢ெ௣௣(𝑡) for 𝑡 ∈ [𝑡௦, 𝑡௘]. Figure 1 
illustrates the MPPT with solid curves representing the limit-state boundaries at different time 
instances and a dashed curve representing the MPPT. 

 

Figure 1. Schematic diagram of the MPPT (the solid curves represent limit-state 
boundaries at different time instants, and the dashed curve depicts the MPPT). 

However, for a general time-varying performance function, obtaining 𝑢ெ௣௣(𝑡) through MPP 
searches at multiple discretized time instances, as in the TDTRA method, becomes computationally 
impractical [71]. To alleviate computational expenses, surrogate modeling is used to approximate the 
MPPT. The Gaussian process regression is chosen due to its significant advantage in quantifying 
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prediction variance and its successful applications in the field of reliability analysis. 
To determine the precise time 𝑡∗  at which the most probable point occurs, it becomes 

imperative to employ heuristic optimization techniques, as the underlying problem exhibits a 
non-convex nature. Non-convex optimization involves intricate and mathematically undefined 
relationships. This research introduces and scrutinizes various non-convex optimization approaches. 
In this thesis, we leverage a recent hybrid method that combines an enhanced DBO method to 
enhance the accuracy of 𝑡∗, consequently exerting an influence on both the MPP and the probability 
of failure. Additionally, we provide an exposition of other optimization methods that have been 
previously utilized for the purpose of comprehensive comparison. 

The Kriging meta-modeling technique, also called GPR, is a widely employed statistical model 
in engineering design and optimization [72]. It proves especially valuable in scenarios where 
computational resources are limited. When dealing with costly simulation-based functions, Kriging 
is proficient at constructing a mathematical model based on a finite set of observed points, serving as 
an effective approximation. This cost-effective Kriging model aids in gaining insights into the target 
function by enabling exploration of the design space. 

An efficient adaptive sampling approach should encompass three key components: 
(1) Local Exploitation: This aspect entails modifying the sampling procedure to concentrate on 

regions with significant prediction errors. The local exploitation aspect can be represented in several 
ways, including by using cross-validation errors, prediction errors at validation sites, local optima 
locations, and local response variation analysis, among other techniques. 

(2) Global Exploration: This element ensures that the global meta-modeling objective is 
maintained, preventing the oversight of potentially significant regions. It achieves this by employing 
criteria based on distances. 

(3) Balancing Local and Global Considerations: This final component is pivotal in striking a 
balance between local exploitation and global exploration, significantly influencing sampling 
performance. However, many existing adaptive sampling approaches for Kriging tend to rely on 
fixed balancing rules, which may not be optimal for sampling performance. 

Therefore, the maximizing error prediction estimation (MEPE) method for adaptive Kriging [57] 
is used for constructing surrogate models for the performance functions of mechanical structures. 

2.2. DBO 

There exist numerous species of dung beetles, including Copris ochus Motschulsky, 
Onthophagus gibbulus, and Caccobius jessoensis Harold, among others [31]. These insects, widely 
distributed in nature, are recognized for their diet primarily consisting of animal dung. Dung beetles 
play a crucial role as decomposers in ecosystems worldwide. Notably, research indicates an 
intriguing behavior among dung beetles, wherein they form dung into spherical balls and roll them, 
as depicted in Figure 2. Notably, dung beetles aim to transport their dung balls swiftly and 
efficiently, thus avoiding competition from other dung beetles. 

As illustrated in Figure 2, a dung beetle is observed rolling a dung ball backward, larger than its 
size. Conversely, an intriguing behavior of dung beetles involves utilizing celestial cues, particularly 
from sources like the sun, the moon, and polarized light, for navigation, ensuring the dung ball's 
movement along a straight trajectory. 
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Figure 2. The rolling dung ball behavior of the dung beetle [31, 72]. 

However, in conditions of complete darkness where no light sources are available, the path of 
the dung beetle becomes curved and occasionally circular instead of straight. It's important to note 
that various natural factors, such as wind and uneven terrain, can cause dung beetles to deviate from 
their intended course. Moreover, dung beetles may encounter obstacles hindering their progress in 
the rolling process. Consequently, dung beetles often ascend onto the dung ball to perform a series of 
movements, including rotations and pauses, known as a "dance" which determines their subsequent 
direction of movement. 

To mimic the behavior of rolling a ball, dung beetles need to maintain a consistent direction of 
movement across the entire search area. The trajectory of a dung beetle's movement is depicted in 
Figure 3. In this illustration, the dung beetle utilizes the sun for navigation, with the red arrow 
denoting the rolling direction. As the rolling progresses, the position of the dung beetle, engaged in 
rolling the ball, is continuously adjusted and can be formulated as follows: 

𝑥௜(𝑡 + 1) = 𝑥௜(𝑡) + 𝛼 × 𝑘 × 𝑥௜(𝑡 − 1) + 𝑏 × 𝛥𝑥,      Δ𝑥 = |𝑥௜(𝑡) − 𝑋௪|,   (1) 

where in the context of an iterative process denotes the current iteration. The position of the 
𝑖௧ℎdung beetle at the 𝑡௧ℎ iteration is represented by 𝑥௜(𝑡). Here, the constant 𝑘 falls within the 
range (0, 0.2] and signifies the deflection coefficient. Additionally, b represents another constant 
within the range (0,1). The natural coefficient, denoted by 𝛼 , takes values of either -1 or 1. 𝑥௪ 
signifies the global worst position, while 𝛥𝑥 mimics changes in light intensity. 
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Figure 3. Dung beetle’s trajectory. 

Alpha denotes natural factors such as wind and uneven ground that can deflect dung beetles 
from their original path. A value of 1 for alpha means no deviation, while -1 indicates a deviation 
from the original direction. Alpha is randomly set to 1 or -1 to mimic real-world complexities. 
Similarly, a higher 𝛥𝑥 value signifies a weaker light source. Additionally, 𝑘 and 𝑏 are fixed at 0.1 
and 0.3, respectively, according to [31]. 

The dung beetle, when obstructed, adjusts its direction by engaging in a dance-like behavior 
crucial for ball-rolling dung beetles, wherein the tangent function within the range [0, 𝜋]  is 
employed to derive the new rolling direction, after which the beetle rolls the ball backward, updating 
its position accordingly and defined as Eq (2). 

 𝑥௜(𝑡 + 1) = 𝑥௜(𝑡) + 𝑡𝑎𝑛( θ)|𝑥௜(𝑡) − 𝑥௜(𝑡 − 1)|, (2) 

where 𝜃 is the deflection angle [0, 𝜋]. 
Dung beetles roll dung balls to secure locations for hiding, vital for safeguarding their offspring, 

thus motivating the development of a boundary selection strategy to mimic suitable egg-laying areas 
based on natural behavior, which is shown by Eq (3). 

 𝐿𝑏∗ = 𝑚𝑎𝑥( 𝑋∗ × (1 − 𝑅), 𝐿𝑏),      𝑈𝑏∗ = 𝑚𝑖𝑛( 𝑋∗ × (1 + 𝑅), 𝑈𝑏), (3) 

where 𝑋∗ represents the current best position within a limited spawning area defined by 𝐿𝑏∗and 

𝑈𝑏∗  while 𝑅 = 1 −
௧

೘்ೌೣ
 with 𝑇௠௔௫  as the maximum iteration number progresses. 𝐿𝑏and 𝑈𝑏 

signify the lower and upper bounds of the optimization problem, respectively. 
Female dung beetles select brood balls within the identified spawning area for egg laying, with 

the boundary range dynamically changing based on the 𝑅 value, as indicated by Eq (3), resulting in 
the dynamic positioning of the brood ball throughout the iteration process. 

 𝐵௜(𝑡 + 1) = 𝑋∗ + 𝑏ଵ × (𝐵௜(𝑡) − 𝐿𝑏∗) + 𝑏ଶ × (𝐵௜(𝑡) − 𝑈𝑏∗), (4) 

where the position of the 𝑖௧ℎ brood ball at the 𝑡௧ℎ iteration is denoted as 𝐵௜(𝑡), with 𝑏ଵ and 𝑏ଶ 
representing two separate random vectors sized 1 × 𝐷, where 𝐷 signifies the dimension of the 
optimization problem; it's important to highlight that the brood ball's position is confined strictly 
within a defined range, namely, the spawning area. 

Upon reaching adulthood, certain dung beetles surface from the ground in search of food, 
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prompting the establishment of an optimal foraging area to direct their foraging activities, mimicking 
their natural behavior, with the boundaries of this area precisely defined by the Eq (5) below. 

 𝐿𝑏௕ = 𝑚𝑎𝑥( 𝑋௕ × (1 − 𝑅), 𝐿𝑏),     𝑈𝑏௕ = 𝑚𝑖𝑛( 𝑋௕ × (1 + 𝑅), 𝑈𝑏), (5) 

where 𝑋௕ represents the best global position, while 𝐿𝑏௕ indicates the lower and upper bounds of 
the optimal foraging area, with other parameters defined in Eq (3), leading to the subsequent update 
of the small dung beetle's position as shown in Eq (6). 

 𝑥௜(𝑡 + 1) = 𝑥௜(𝑡) + 𝐶ଵ × (𝑥௜(𝑡) − 𝐿𝑏௕) + 𝐶ଶ × (𝑥௜(𝑡) − 𝑈𝑏௕), (6) 

where 𝑥௜(𝑡) represents the position of the 𝑖௧ℎ small dung beetle at the 𝑡௧ℎ iteration, with 𝐶ଵ being 
a normally distributed random number, and 𝐶ଶ being a random vector within the range of (0,1). 

Thieving dung beetles, a prevalent natural occurrence depicted in Figure 4, target dung balls from 
other beetles; this behavior is highlighted in Eq (5), where 𝑋௕ represents the optimal food source, 
implying that the vicinity of 𝑋௕ is prime territory for food competition, with the thief's position 
information being updated accordingly throughout the iteration process as shown in the Eq (7) below. 

 𝑥௜(𝑡 + 1) = 𝑋௕ + 𝑆 × 𝑔 × (|𝑥௜(𝑡) − 𝑋∗| + |𝑥௜(𝑡) − 𝑋௕|), (7) 

where 𝑥௜(𝑡) represents the positional data of the 𝑖௧ℎ  thief at the 𝑡௧ℎ  iteration, while 𝑔  is a 
normally distributed random vector with a size of 1 × 𝐷. 𝑆 denotes a constant value. 

 

Figure 4. Position searching of the DBO method. 

3. The proposed enhanced DBO 

This section presents proposed enhancements to the DBO algorithm, alongside the 
corresponding framework in adaptive Kriging-based TRA problems. 

3.1. Improved tent chaotic mapping (initialization) 

One crucial aspect of optimization is the initialization of the population, which significantly 
influences the algorithm's convergence and ability to find optimal solutions efficiently. Traditional 
methods often rely on random or uniform initialization techniques, which may not always lead to 
effective exploration of the search space. 
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In recent years, chaotic dynamics have emerged as a promising avenue for improving 
population initialization in optimization algorithms [73]. Chaos theory deals with complex, 
deterministic systems that exhibit seemingly random behavior. One particular chaotic mapping 
function, known as the tent map, has garnered attention for its ability to introduce controlled 
randomness into optimization processes. 

The tent map operates on the principle of iteratively transforming an initial condition through a 
nonlinear equation, resulting in chaotic behavior characterized by sensitivity to initial conditions [74]. 
This property makes the tent map suitable for generating diverse and evenly distributed initial 
populations, enhancing the exploration capabilities of optimization algorithms. Using this property, 
chaos can be harnessed to design population initialization processes that promote a more even 
distribution, thereby creating ample opportunities for generating potential optimal solutions. The tent 
chaotic mapping is represented by the Eq (8). 

 𝑥௜ାଵ = ൜
2𝑥௜,0 ≤ 𝑥 ≤ 0.5,

2(1 − 𝑥௜),0.5 ≤ 𝑥 ≤ 1.
 (8) 

Examination of the chaotic iterative sequence derived from the tent chaotic mapping function reveals 
the presence of minor cycles and unstable periodic points. To mitigate the emergence of such cycles 
and points throughout the iteration process, an element of randomness can be incorporated into the 
initial tent chaotic mapping formula. This enhanced formulation of the tent chaotic mapping is 
depicted in Eq (9). 

 𝑥௜ାଵ = ቐ
2𝑥௜ + 𝑟𝑎𝑛𝑑 ×

ଵ

ே௉
, 0 ≤ 𝑥 ≤ 0.5,

2(1 − 𝑥௜) + 𝑟𝑎𝑛𝑑 ×
ଵ

ே௉
, 0.5 ≤ 𝑥 ≤ 1,

 (9) 

where rand is a random variable from 0 to 1. 
The improved tent chaotic mapping performance is tested with the simulation, as shown in 

Figure 5. 
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Figure 5. Diagram of improved tent chaos. 

The illustration indicates that incorporating the random variable results in a more evenly 
spread-out set of initial values. This modification preserves the randomness, ergodicity, and 
regularity inherent in the original tent chaotic mapping. The improved tent chaotic mapping is 
implemented to replace random initialization in the DBO algorithm, thereby improving the 
distribution quality of the initial population within the search space and bolstering its global search 
effectiveness. 

3.2. Gaussian random walk (exploration) 

The Gaussian function calculates the probability density value of a Gaussian distribution at a 
given point 𝑥 with mean 𝜇 and standard deviation 𝜎. It follows the Eq (10) for a Gaussian 
distribution: 

 𝑦 =
ଵ

√ଶగ×ఙ
× 𝑒𝑥𝑝 ቀ−

(௫ିఓ)మ

ଶ×ఙమ
ቁ. (10) 

The function returns the probability density value 𝑦 at the given point 𝑥 within the distribution 
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defined by 𝜇  and 𝜎 . 𝜎  is a parameter that controls the standard deviation of the Gaussian 
distribution. It determines the magnitude of the perturbations applied to each solution. 

The weight or probability associated with the current solution based on its similarity to the best 
solution is calculated by the Gaussian random walk [75]. The weight is computed using the Gaussian 
function. The step size is then calculated by multiplying the weight with the difference between the 
current solution and best solution. The direction and magnitude of the perturbation to be applied to 
the current solution are determined by this step size. 

Finally, the perturbation is added to the current solution. Random numbers are generated from a 
standard normal distribution (rand), which are then scaled by the step size. The resulting scaled 
values are added element-wise to the current solution, resulting in an updated solution, as shown in 
Eq (11). 

 𝑋(𝑡 + 1) = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑋௕௘௦௧
௧ , 𝜎) + (𝑟ଷ × 𝑋௕௘௦௧

௧ − 𝑟ସ × 𝑋௕௘௦௧
௧ ). (11) 

3.3. The Procedure of the Proposed EDBO Algorithm 

In this study, two strategies are adopted to improve the exploration and exploitation ability of 
the DBO algorithm. To solve optimization problems, the initialization of the population adopts an 
improved tent chaotic mapping method, enhancing the randomness, ergodicity, and regularity of the 
population. Then, the position of the thief beetle, which is explained in Eq (7), is improved using the 
Gaussian random walk exploration.  

The main procedures of the proposed EDBO are as follows: 
(1) Initialize the population of blood mass randomly and update with the tent chaotic mapping 

function. 
(2) Calculate the fitness values and their corresponding position by Eq (1). 
(3) Update the position using Eq (2) up to Eq (6). 
(4) Then, update the thief position using the Gaussian random walk-by Eq (11) 
(5) If the current optimal position has better fitness than the previous one, replace the previous 

one with the current position. Then, return to step (2) if the iteration count is not reached. 
(6) If no, check the iteration count and stop the iteration if the iteration count is reached. 
The flowchart of the procedures is shown in Figure 6. 



29307 

AIMS Mathematics  Volume 9, Issue 10, 29296–29332. 

Start

Initialize the search agents 
with tent chaotic mapping

Calculate the fitness values and its 
corresponding position

Update the producer positions 
using Eq. (1)- Eq. (6)

Update thief location using 
Gaussian random walk

Apply bounds and evaluate fitness

Find the current optimal 
and its position

Better fitness Value?

Update the convergence 
curve and global optimum 

Check iteration count

Update the convergence curve 
and global optimum 

End
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Figure 6. Flowchart of EDBO algorithm. 

4. Case study and discussion 

The standard real-world benchmark functions and three widely used TRA test cases are used to 
validate the performance of the proposed method in this section, such as the accuracy and efficiency. 
The proposed EDBO is compared with three notable metaheuristic algorithms: WOA, PSO, DE, 
GWO, and the original DBO. Table 1 meticulously outlines the relevant parameters for each 
algorithm. 

Table 1. The parameter of the metaheuristic algorithm. 

Algorithm Parameters 

# All algorithms Maximum iterative number 𝑇௠௔௫:100, Population size 𝑁𝑃:30 

WOA 
Exploration Rate, Spiral Updating Coefficient, Encircling Prey Coefficient, 
Shrinking Encircling Prey Coefficient (a,b,c,d) 

DE Crossover Probability:0.2, lower and upper Bound of Scaling Factor:(0.2, 0.8); 

PSO Acceleration constant𝑐ଵ = 𝑐ଶ = 2; Weight factor 0.9; 
Continued on next page 
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Algorithm Parameters 

GWO Universal parameters (i.e., 𝑇௠௔௫ and 𝑁𝑃) 

DBO Initial standard deviation: 0.1; Weight decay coefficient:0.01 

EDBO Recombination probability: 0.7; Mutation probability: 0.001 

CEC 2005 and CEC 2021 are widely used standard real-world benchmark test function sets. In 
this section, they are used to illustrate the performance of the EDBO. 𝐹௠௜௡represents a theoretical 
minimum. The maximum iterative number 𝑇௠௔௫ and population size are 100 and 30, respectively. 

Ten benchmark functions from CEC 2005 and ten benchmark functions (F1–F10) from CEC 
2021 were used; the proposed EDBO method has the lowest error among all comparative algorithms. 
Among the 10 test functions, the standard deviation of the proposed algorithm in calculating the 10 
test functions is the smallest. This indicates that while EDBO has high accuracy, it also has high 
robustness. Figures 7 and 8 show the iterative convergence curves of different algorithms and the 
corresponding two-dimensional views of the test functions. The figures indicate that in the majority 
of instances, the slope of the convergence curve of the proposed method is the largest. At the same 
time, it can also quickly jump out of the local optimum and reach the global optimum. 

In Figures 7 and 8, the proposed EDBO method is presented with a red color having a triangle 
mark. The overall performance of the proposed method is the best for all the benchmark functions, 
which illustrates the applicability of the proposed method when targeting most functions. 
From Figures 7–9, it can be seen that the proposed method can reach the global optimum with the 
fewest number of function calls in all of the test functions. In different convergence curves, the 
proposed method has the fastest convergence speed in many of the test functions. The overall 
convergence speed is fast, which illustrates the less computational cost of the proposed method 
compared with other algorithms. 
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Figure 7. Convergence curve of different optimization methods for 10 benchmark 
functions CEC2021. 
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Figure 8. Convergence curve of different optimization methods for 10 benchmark 
functions CEC2005. 



29311 

AIMS Mathematics  Volume 9, Issue 10, 29296–29332. 

 

Figure 9. Bar graph comparison of the optimization methods for CEC2021. 

5. The proposed EDBO method for TRA 

The conventional TRA problem is to figure out how likely it is that a structure will stay safe 
within a certain amount of time, given several dynamic uncertainties. The adaptive Kriging-based 
TRA algorithm uses surrogate modeling to approximate the performance function. Since it is an 
adaptive process, it will use a certain kind of learning function that finds the best time point that will 
maximize the prediction error. This results in an optimization problem that maximizes the prediction 
error which is based on the learning function. In this section, MSE is maximized to find the next time 
point in the adaptive Kriging process. As a result, the approximate MPPT (AMPPT) coupled with the 
EDBO is proposed. Furthermore, the procedure of the EDBO-based AMPPT algorithm is outlined as 
follows:  

(1) Discretize time into N initial samples. 
(2) Apply the MPP search at the time point 𝑡∗. 
(3) Build a Kriging model for the performance function. 
(4) Using the prediction variance as a prediction error, find the next 𝑡∗ that maximizes it. 
(5) Check for the target error and update the Kriging model. 
(6) If the target error is met, calculate the time-varying reliability by spectral decomposition and 

the MCS method [76]. 
The flowchart of the EDBO-based TRA is shown in Figure 10. 
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Discretize time into N initial samples

Apply MPP search at the next time point
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Perform MPP search
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variance square

Find the next time using 
enhanced DBO algorithm
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varying reliability

End

Check if the target error is met

Yes

No

 

Figure 10. Flowchart of the EDBO-based TRA. 

6. The proposed EDBO-based TRA examples 

6.1. Cantilever tube structure 

The tube structure has a diameter and a wall thickness of 𝑑 and ℎ, respectively [77]. The 
component is shown in Figure 11, and the structure is subjected to three random forces (𝐹ଵ(𝑡), 𝐹ଶ, 𝑃) 
as well as one random torque 𝑇(𝑡) . The force 𝐹ଵ(𝑡)  and torque 𝑇(𝑡)  are represented as 
stochastic processes. The initial yield strength of the component is 𝑅଴ . The structure’s yield 
strength, 𝑅(𝑡) = (1 + 0.01𝑡)𝑅଴ , decreases monotonically due to material deterioration. The 
structure will collapse if the maximal stress 𝑚𝑎𝑥(𝑡) is greater than the yield strength 𝑅(𝑡). 

 

Figure 11. Cantilever tube structure [77]. 

At elevated temperatures, the time-varying limit state function is given by: 
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 𝑔(𝑡) = 𝜎(𝑡)(𝑡)௠௔௫,  (12) 

where 𝜎(𝑡)௠௔௫ is calculated by 

 𝜎(𝑡)ඥ𝜎௫
ଶ(𝑡) + 3𝜏௭௫

ଶ (𝑡)
௠௔௫

, (13) 

 𝜏௭௫(𝑡) =
்(௧)ௗ

ସூ
, (14) 

 𝜎௫(𝑡) =
ிభ(௧) ௦௜௡(ఏభ)ାிమ ௦௜௡(ఏమ)ା௉

஺
+

ெ(௧)ௗ

ଶூ
, (15) 

 𝑀(𝑡) = 𝐹ଵ(𝑡) 𝑐𝑜𝑠(𝜃ଵ) 𝐿ଵ + 𝐹ଶ(𝑡) 𝑐𝑜𝑠(𝜃ଶ) 𝐿ଶ, (16) 

 𝐴 =
గ

ସ
(𝑑ଶ − (𝑑 − 2ℎ)ଶ), (17) 

 𝐼 =
గ

଺ସ
(𝑑ସ − (𝑑 − 2ℎ)ସ). (18) 

The reliability of this structure has been monitored over five years. The proposed AMPPT-EDBO 
techniques are compared with previously done MCS, TDTRA, and the adaptive Kriging-based 
AMPPT using differential evolution (AMPPT-DE). 

For MCS, 300 equally spaced time points are discretized within the interval [0,5] years, 
generating 106 samples. Two cases with different discrete step lengths have been presented for 
TDTRA, AMPPT-DE, and AMPPT-EDBO. Case 1 is set to 1/2 year, and case 2 is set to 1/6 year, 
respectively. In the AMPPT-DE and AMPPT-EDBO, three-time instants (0, 2.5, and 5) are employed 
to generate the initial MPP samples. Table 2 provides the probability characteristics of each variable 
that affects the cantilever tube structure. It’s worth noting that some entries are marked as "NA" (Not 
Available), indicating that specific data points were not applicable in those particular cases. 

Table 2. Probabilistic characteristics of the variables of the cantilever tube structure. 

List of Variables 
Type of 
distribution 

Mean value 
Coefficient of 
variation 

Autocorrelation 

d Normal 42mm 1.19% NA 

h Normal 5mml 2.0% NA 

R Normal 560Mpa 10.0% NA 

F1(t) Gaussian process 1800N 10.0% exp(-∆t2) 

F2 Normal 1800N 10.0% NA 

P Gumbel 1000N 10.0% NA 

T(t) Gaussian process 1900N42mm 10.0% exp(-∆t2) 

L1 Deterministic 60mm NA NA 

L2 Deterministic 120mm NA NA 

θ1 Deterministic 10° NA NA 

θ2 Deterministic 5° NA NA 
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In Figure 12, the MCS method is represented by the yellow line, while the AMPPT-DE method 
is presented by deep orange and light orange colors for cases 1 and 2, respectively. The TDTRA 
method is shown by purple and green colors for cases 1 and 2, respectively. Finally, the proposed 
AMPPT-EDBO method is presented with blue and red colors for cases 1 and 2, respectively. The 
probability of failure increases gradually for all the methods. In addition, both in cases 1 and 2, the 
three methods have nearly comparable failure probability with variation of ±0.0001. The details of 
the comparison are given in Table 3. 

 

Figure 12. Failure probability against time graph for cantilever tube. 

Table 3. Failure probability of cantilever tube. 

Time 
(year) 

MCS 
Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

0 7.32×10-4 7.18×10-4 7.26×10-4 7.10×10-4 7.15×10-4 7.25×10-4 7.14×10-4 

1 0.0023 0.0019 0.0019 0.0019 0.0023 0.0022 0.0023 

2 0.0040 0.0033 0.0025 0.0032 0.0039 0.0038 0.0039 

3 0.0058 0.0047 0.0047 0.0047 0.0057 0.0056 0.0057 

4 0.0078 0.0065 0.0064 0.0065 0.0078 0.0078 0.0079 

5 0.0101 0.0074 0.0074 0.0075 0.0097 0.0098 0.0098 

Tables 3 and 4 present the failure probability and reliability index, respectively. As inferred 
from Tables 3 and 4, the failure probability of the TDTRA, AMPPT-DE, and AMPPT-EDBO 
increases with the number of discrete step lengths, represented as cases 1 and 2. 
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Table 4. Reliability index of cantilever tube. 

Time 
(year) 

MCS 
Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

0 3.1817 3.1873 3.1841 3.1906 3.1885 3.1845 3.1889 

1 2.8338 2.8943 2.8943 2.8943 2.8338 2.8480 2.8338 

2 2.6521 2.7164 2.8070 2.7266 2.6606 2.6693 2.6606 

3 2.5241 2.5972 2.5972 2.5972 2.5302 2.5364 2.5302 

4 2.4181 2.4838 2.4893 2.4838 2.4181 2.4181 2.4135 

5 2.3226 2.4372 2.4372 2.4324 2.3378 2.3339 2.3339 

Table 5 presents the accuracy and efficiency of the methods. Since MCS generates huge 
samples, its prediction is considered to be the more reliable and accurate. Therefore, the accuracy of 
other methods is calculated by comparing the failure probability with that of MCS. The efficiency is 
the number of calls that are required to calculate the failure probability. Table 5 shows that the 
accuracy of all three discretization-based methods is similar with slight deviation. In case 2, 
AMPPT-EDBO has the accuracy of 2.97%, AMPPT-DE has 2.97%, while TDTRA’s is 3.9%. 
However, the efficiency comparison between the methods shows a significant difference. MCS 
has by far the largest number of calls, which is 3×108. TDTRA has a relatively lower number of 
calls: 1541 for case 1 and 3514 for case 2; however, it is still computationally costly. AMPPT-DE 
needs 356 calls for case 1 and 671 for case 2. The proposed AMPPT-EDBO needs the lowest number 
of calls, which is 263 for case 1 and 263 for case 2. 

Table 5. Accuracy and efficiency of the cantilever tube structure. 

Method Relative Error Efficiency (NFE) 

MCS NA 3×108 

TDTRA [57]  Case 1 26.72% 1541 

Case 2 3.9% 3514 

AMPPT-DE [9] 
Case 1 26.7% 356 

Case 2 2.97% 671 

AMPPT-EDBO 
Case 1 25.7% 263 

Case 2 2.97% 263 

Therefore, the proposed AMPPT-EDBO method decreases computational cost without 
compromising the accuracy of the reliability analysis. Since the adaptive Kriging simplifies the limit 
state function, the high computational cost needed for the highly nonlinear limit state function is 
significantly decreased. In addition, the enhanced DBO further improves the adaptive Kriging by 
quickly finding the best time point that minimizes fitness error in the adaptive Kriging process. 

6.2. Corroded steel beam 

This example is based on the simply supported beam, as shown in Figure 13. The steel beam 
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has an 𝐿 span and an 𝐴 − 𝐴 rectangular cross-section [78]. The corrosion effect causes the initial 
width and height of the cross-section, 𝑤଴and ℎ଴, to linearly decrease with time. Both a load brought 
on by the self-weight and a concentrated dynamic load 𝐹(𝑡) are imposed on the beam. Failure will 
occur if the maximum stress on the beam exceeds the yield strength of the material. 

 

Figure 13. Corroded steel beam [78]. 

The limit state function is described as follows: 

 𝑔(𝑡) = ቀ
ி(௧)௅

ସ
+

ఙೞ೟௪బℎబ௅మ

଼
ቁ − ቀ

(௪బିଶ௞௧)(ℎబିଶ௞௧)ఋ೤

ସ
ቁ. (19) 

In this context, the symbols 𝜌௦௧ and 𝜎௬ represent the yield strength and density of the steel material, 
respectively, while 𝑘 indicates the corrosion rate. For this particular situation, the variables 𝑦, 𝑤଴, 
and ℎ଴ are treated as stochastic variables. The concentrated load 𝐹(𝑡) is assumed to follow a 
stationary Gaussian process. The probabilistic properties of all these variables are outlined in Table 6, 
provided below. 

Table 6. Probabilistic characteristics of the variables of the corroded steel beam. 

List of 
Variables 

Type of distribution Mean value 
Coefficient of 
variation 

Autocorrelation 

𝐹(𝑡) Gaussian Process 3500 N 20.0 % exp(-∆t2) 

𝑤଴ Lognormal 0.2m 5.0% NA 

ℎ଴ Lognormal 0.04m 10.0% NA 
𝜎௬ Lognormal 2.4×108 Pa 10.0% NA 

𝐿 Deterministic 5 m NA NA 

𝜎௦௧ Deterministic 7.85×104 N/m3 NA NA 

𝑘 Deterministic 5×10-4 m/years NA NA 

The reliability of this structure has been monitored over 30-years period. The proposed 
AMPPT-EDBO techniques are compared with previously done MCS, TDTRA, and AMPPT-DE. 

For MCS, 500 equally spaced time points are discretized within the interval [0,30] years, 
generating 2×106 samples. Two cases with different discrete step lengths have been presented for 
TDTRA, AMPPT-DE, and AMPPT-EDBO. Case 1 is set to 1/3th year, and case 2 is set to 1/10th year, 
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respectively. In the AMPPT-DE and AMPPT-EDBO, three-time instants (0, 15, and 30) are employed 
to generate the initial MPP samples. 

In Figure 14, the MCS method is represented by the yellow line, while the AMPPT-DE method 
is presented by deep orange and light orange colors for cases 1 and 2, respectively. For cases 1 and 2, 
the TDTRA method is represented by the colors purple and green, respectively. In cases 1 and 2, the 
proposed AMPPT-EDBO method is shown in blue and red, respectively. The probability of failure 
rises steadily for every method with an increase in time. Furthermore, it appears that the three 
methods in Cases 1 and 2 have comparable failure probabilities, which affirms that the accuracy of 
the prediction methods is fairly comparable. Table 7 provides the comparison's details. 

 

Figure 14. Failure probability against time graph for steel beam. 

Table 7. Failure probability of steel beam. 

Time 
(year) 

MCS 
Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

0 4.5×10-6 2.76×10-6 2.92×10-6 2.77×10-6 2.69×10-6 2.87×10-6 3.0×10-6 

6 4.0×10-5 1.77×10-5 1.77×10-5 1.6×10-5 2.92×10-5 2.59×10-5 2.69×10-5 

12 1.04×10-4 4.88×10-5 4.98×10-5 4.45×10-5 8.34×10-5 7.66×10-5 8.13×10-5 

18 2.16×10-4 1.18×10-4 1.18×10-4 1.16×10-4 1.87×10-4 1.78×10-4 1.90×10-4 

24 4.36×10-4 2.65×10-4 2.66×10-4 2.87×10-4 3.93×10-4 4.18×10-4 4.05×10-4 

30 8.56×10-4 4.47×10-4 4.5×10-4 4.82×10-4 7.42×10-4 8.0×10-4 7.44×10-4 

Tables 7 and 8 present the failure probability and reliability index, respectively. As inferred 
from Tables 7 and 8, the probability of failures using the TDTRA, AMPPT-DE, and AMPPT-EDBO 
increases with an increase in discretization interval, which is proved in cases 1 and 2. Both failure 
probability and reliability index are less for smaller discretization intervals, as in case 1, and 
gradually increase as the discretization interval increases, evidenced in case 2. 
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Table 8. Reliability index of steel beam. 

Time 
(year) 

MCS 
Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

0 4.4399 4.5440 4.5321 4.5432 4.5494 4.5357 4.5264 

6 3.9444 4.1356 4.1356 4.1587 4.0192 4.0474 4.0385 

12 3.7091 3.8965 3.8916 3.9188 3.7646 3.7858 3.7710 

18 3.5197 3.6770 3.6770 3.6814 3.5578 3.5707 3.5536 

24 3.3289 3.4651 3.4641 3.4436 3.3577 3.3406 3.3494 

30 3.1361 3.3219 3.3201 3.3008 3.1778 3.1559 3.1770 

Table 9 displays the results for the accuracy and efficiency of the four methods. According to 
Table 9, TDTRA, AMPPT-DE, and the proposed AMPPT-EDBO methods have comparable accuracy. 
In case 2, AMPPT-EDBO achieves an accuracy of 0.37%, while AMPPT-DE has 14.13%, and 
TDTRA's accuracy is 12.3%. However, when comparing efficiency, there is a significant contrast 
between the methods. MCS requires the highest number of calls, which is 1×109. TDTRA has a 
relatively lower number of calls, 1817 for case 1 and 4885 for case 2. As shown in Table 9, the 
number of calls increases with a larger discretization interval, represented by cases 1 and 2. 
AMPPT-DE necessitates 335 number of calls for case 1 and 335 for case 2. In comparison, the 
proposed AMPPT-EDBO method requires the fewest number of calls, 304 for case 1 and 299 for 
case 2. Therefore, the proposed AMPPT-EDBO method significantly improves efficiency compared 
to the rest of the presented methods. 

Table 9. TRA results of the corroded steel beam. 

Method Relative Error Efficiency (NFE) 

MCS NA 1×109 

TDTRA  Case 1 43.9% 1817 

Case 2 12.3% 4885 

AMPPT -DE 
Case 1 43.53% 335 

Case 2 14.13% 339 

AMPPT-EDBO 
Case 1 39.5% 304 

Case 2 7.7% 299 

6.3. Solid rocket engine shell 

The shell structure of the solid rocket engine's time-variant reliability is examined in this 
illustration [79]. Due to their simple architecture and low number of moving parts, solid rocket 
engines are widely used to boost satellite launch vehicles. We give a schematic of a solid rocket 
engine, where we suppose that 𝐷௧ stands for the nozzle throat's diameter and 𝐷௦ stands for the 
inner shell's diameter. The propellant has a length of 𝐿 and a starting thickness of 𝐻଴ . The solid 
propellant is housed inside the cylindrical metal casing. A hole in the cylindrical shell is used as the 
combustion chamber. A flame front develops on the surface of the propellant once it has caught fire. 
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The solid rocket engine is presented in Figure 15. 

Igniter Propellant Grain

Motor Case Insulation
Nozzle

 

Figure 15. Solid rocket propellant engine. 

The system of differential equations can be computed by the Runge-Kutta method, which will 
yield the time-variant pressure 𝑃(𝑡). We use the parameters (𝐶∗, 𝜌, 𝐷௧) as random variables for 
calculating 𝑃(𝑡) . As shown in Figure 15, solid rocket engines are used on air-to-air and 
air-to-ground missiles, on model rockets, and as boosters for satellite launchers. In a solid rocket, the 
fuel and oxidizer are mixed into a solid propellant packed into a solid cylinder. A hole through the 
cylinder serves as a combustion chamber. 

The system of differential equations can be computed by: 

 
ௗு(௧)

ௗ௧
= −𝑎𝑃(𝑡)௡,      

ௗ௏(௧)

ௗ௧
= −𝐴௙(𝑡)

ௗு(௧)

ௗ௧
,      

ௗ௠(௧)

ௗ௧
= −𝜌

ௗ௏(௧)

ௗ௧
, (20)

  

 
ௗ௉(௧)

ௗ௧
=

௰మ஼∗஺೟

௏(௧)
ቆ𝜌

஺೑(௧)

஺೑
𝐶∗𝑎𝑃(𝑡)௡ − 𝑃(𝑡)ቇ, (21) 

where ρ is the density of the propellant. 𝐶∗ is a coefficient of the chamber characteristic velocity with 
uncertainty. a, n, and Γ are uniform values given by 𝑎 = 7.9752 × 10ି଺, 𝑛 = 0.4356, 𝛤 = 0.6528. 

The 𝐴௧ and 𝐴௙(𝑡) are the areas of the nozzle throat and the flame front, respectively, which 
can be computed by: 

 𝐴௧ =
గ஽೟

మ

ସ
, (22) 

 𝐴௙(𝑡) = 𝜋൫𝐷௦ − 2𝐻(𝑡)൯𝐿. (23) 

The beginning circumstances for the system of differential equations are given by 

 𝐻(0) = 𝐻଴ = 0.06𝑚, (24) 

 𝑉(0) = 𝜋 ቀ
஽ೞ

ଶ
− 𝐻଴ቁ

ଶ

𝐿, (25) 
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 𝑚(0) =
ఘ௅గ൫஽ೞ

మି(஽ೞିଶுబ)మ൯

ସ
, (26) 

 𝑃(0) = 2 × 10଺𝑃𝑎. (27) 

To avoid excessively computing the differential equations, a polynomial response surface is built for 
𝑃(𝑡) to formulate it as a function of the time parameter and random variables(𝐶∗, 𝜌, 𝐷௧). This is 
represented by: 

 𝑃(𝑡) = 𝑤ଵ𝑡ଶ + 𝑤ଶ𝑡 + 𝑤ଷ. (28) 

Therefore, the time-dependent limit state function of the solid rocket engine shell is given by: 

 𝑔(𝑡) = 𝑘𝑃(𝑡) − 𝑃𝑎(𝑡). (29) 

The time period analysis is in the interval of [7,10] seconds. For the MCS, 300 discretized equal 
distant time instants are created, and 106 samples are generated at each instant. Similar to the previous 
examples, two cases were set, with discrete step lengths of 1/3rd and 1/10th of a second for cases 1 
and 2, respectively. Once again, the proposed AMPPT-EDBO method is compared with previously 
done MCS, TDTRA, and AMPPT-DE. The MCS is set similarly to the previous example 6.2. 

Table 10 lists the random variables for the components with their probabilistic features, 
including the type of distribution, mean value, coefficient of variation, and autocorrelation 
coefficient function, if available. 

Table 10. Probabilistic characteristics of the variables of the solid rocket engine. 

List of variables 
Type of 
distribution 

Mean value 
Coefficient of 
variation in 
percent 

Autocorrelation 
coefficient function 

Pa0 Normal 9.2×106 Pa 1.0% NA 

C* Normal 1575 2.0% NA 

ρ Normal 1690 Kg/m3 1.0% NA 

Dt Normal 0.064 m 1.0% NA 

k Gaussian process 1 5.0% exp(-(Δt/0.1)^2) 

L Deterministic 1.35 m NA NA 

H0 Deterministic 0.06 m NA NA 

Ds Deterministic 0.247 m NA NA 

In Figure 16, the MCS method is represented by the yellow line, while the AMPPT-DE method 
is presented by deep orange and light orange colors for cases 1 and 2, respectively. For cases 1 and 2, 
the TDTRA method is represented by the colors purple and green, respectively. In cases 1 and 2, the 
proposed AMPPT-EDBO method is shown in blue and red, respectively. In a similar trend to the 
previous examples 5.1 and 5.2, the probability of failure increases with an increase in time for every 
method. Table 11 provides a detailed comparison of the probability of failure for each method. 

Tables 11 and 12 present the failure probability and reliability index, respectively. With a similar 
trend with previous examples 6.1 and 6.2, the accuracy of the TDTRA, AMPPT-DE, and AMPPT-EDBO 
increase with an increase in discretization interval, which is represented in cases 1 and 2. 
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Figure 16. Failure probability curve of a solid rocket engine in time. 

Table 11. Failure probability of a solid rocket engine in time. 

Time 

(year) 
MCS 

Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 

-EDBO 
TDTRA AMPPT-DE 

AMPPT 

-EDBO 

7 0 0 0 0 0 0 0 

8 0 7×10-8 7×10-8 5×10-8 2.2×10-7 2.4×10-7 1×10-7 

9 8.6×10-5 3.92×10-5 3.92×10-5 5.92×10-5 8.7×10-5 8.39×10-5 1.23×10-4 

10 0.0041 0.0023 0.0023 0.0025 0.0035 0.0035 0.0040 

Table 12. Reliability index of a solid rocket engine in time. 

Time 
(year) 

MCS 
Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

7 Inf Inf Inf Inf Inf Inf Inf 

8 Inf 5.2652 5.2652 5.3267 5.0508 5.0341 5.1993 

9 3.7569 3.9492 3.9492 3.8494 3.7541 3.7631 3.6664 

10 2.6437 2.8338 2.8338 2.8070 2.6968 2.6968 2.6521 

Table 13 presents the accuracy and efficiency of the methods. In case 2, the relative error of 
AMPPT-EDBO is 2.43%, while AMPPT-DE’s is 14.63% and TDTRA’s is 14.63%. In this example, 
the accuracy of the proposed AMPPT-EDBO method is much better than the TDTRA and 
AMPPT-DE methods. In addition, the efficiency comparison between the methods shows a 
significant difference. MCS has by far the largest number of calls, which is 3×108. TDTRA has a 
relatively lower number of calls: 1490 for case 1 and 4854 for case 2. AMPPT-DE needs 664 calls 
for case 1 and 557 for case 2. The proposed AMPPT-EDBO needs the lowest number of calls, which 
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is 435 for case 1 and 456 for case 2. 

Table 13. Accuracy and efficiency of a solid rocket engine in time. 

Method Relative Error Efficiency (NFE) 

MCS NA 3×108 

TDTRA Case 1 43.9% 1490 

Case 2 14.63% 4854 

AMPPT-DE 
Case 1 43.9% 664 

Case 2 14.63% 557 

AMPPT-EDBO 
Case 1 39.02% 435 

Case 2 2.43% 456 

The proposed AMPPT-EDBO method not only has efficiency improvement by decreasing 
computational cost but is also proven to have better accuracy compared to traditional TDTRA and 
Kriging-based AMPPT-DE. 

6.4. Bar truss 

This example considers the 23-bar truss [61] presented in Figure 17. 

 

Figure 17. 23-Bar Truss. 

The cross-section areas and Young’s modulus of the bars are considered random variables, 
denoted as 𝐴ଵ and 𝐸ଵ for horizontal bars, and 𝐴ଶand 𝐸ଶ for sloping bars, respectively. The truss 
is subjected to six time-variant stochastic loads 𝐹௜(𝑡)(𝑖 = 1,2, . . . ,6). The maximum defection of the 
truss, denoted as 𝑑௠(𝑡) in Figure 17, is required to be less than the threshold 𝑑(𝑡) = 𝑑଴(1 −

0.01𝑡), where 𝑑଴ is the initial value of 𝑑(𝑡). Therefore, the time-variant performance function is 
given by 

 𝑔(𝑡) = 𝑑௠(𝑡) − 𝑑(𝑡), (30) 

where 𝑑௠(𝑡) is obtained by the finite element method. 
Eleven stochastic process/random variables are involved in this example, and the probabilistic 

characteristics of all involved variables are listed in Table 14. The 23-bar truss is assessed over a time 
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span of [0,10] years. The proposed AMPPT-EDBO techniques are compared with MCS, TDTRA, 
and AMPPT-DE. 

Table 14. Probabilistic characteristics of the variables of the 23-bar truss. 

List of variables 
Type of 
distribution 

Mean value 
Coefficient of 
variation in 
percent (%) 

Autocorrelation 
coefficient function 

F1(t)~F6(t) Gaussian process 5×104N 15 exp(-(Δt/0.2)^2) 

A1 Lognormal 2×10-3m2 10 Not available 

A2 Lognormal 1×10-3m2 10 Not available 

E1,E2 Lognormal 2.1×1011Pa 10 Not available 

d0 Normal 0.13m 10 Not available 

The simulation steps for the 23-bar truss are presented as follows. Since the force is a Gaussian 
process, 10 sample points are generated by using the mean, standard deviation, and autocorrelation 
values, which are already given. Then, since the area of the truss bar is also a normal distribution, it 
is set as an input variable in the Ansys software, with the directional deformation at the desired point 
set as an output variable. The input data points are then generated according to the given normal 
distribution information and set as input in the Ansys software. MATLAB is used to call the Ansys 
software to solve the directional deformation for the given input points, and the output is saved in an 
Excel file. The distribution of the directional deformation is then estimated from the recorded Excel 
file, and the failure probability of the truss bar structure is solved using the given limit state function. 

In Figure 18, the ANSYS simulation result of the 23-bar truss is presented for total deformation 
in (a) and direction deformation along the y-axis in (b). The total deformation plot in part (a) 
provides an overall view of how the truss structure is deforming under the applied loads or boundary 
conditions. The y-direction deformation plot in part (b) isolates the deformation in a specific axis, 
which can be useful for understanding the directionality of the structural response and identifying 
potential problem areas or stress concentrations along the y-axis. 

（a） (b)  

Figure 18. ANSYS simulation of 23-bar truss (a) total deformation (b) directional deformation. 



29324 

AIMS Mathematics  Volume 9, Issue 10, 29296–29332. 

In Figure 19, the MCS method is represented by the yellow line, while the AMPPT-DE method 
is presented by deep orange and light orange colors for cases 1 and 2, respectively. For cases 1 and 2, 
the TDTRA method is represented by the colors purple and green, respectively. In cases 1 and 2, the 
proposed AMPPT-EDBO method is shown in blue and red, respectively. As in the examples, the 
probability of failure increases gradually with time for all the methods. The details of the comparison 
are given in Table 15. 

 

Figure 19. Failure probability and reliability index against time graph for steel beam. 

Table 15. Failure probability of corroded steel beam. 

Time 

(year) 
MCS 

Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 

-EDBO 
TDTRA AMPPT-DE 

AMPPT 

-EDBO 

0 9.80×10-5 9.18×10-5 9.3637×10-5 9.349×10-5 9.4899×10-5 8.9905×10-5 9.8766×10-5 

2 0.00065 0.00034 0.0003462 0.0003465 0.0005066 0.00051959 0.000507 

4 0.00110 0.000553 0.00054819 0.00056250 0.00087199 0.0008974 0.000878 

6 0.00150 0.000751 0.00075459 0.00075699 0.00121099 0.0012335 0.00120 

8 0.00191 0.000920 0.0009289 0.0009192 0.0014748 0.0015161 0.00151 

10 0.00221 0.001018 0.0010350 0.001035 0.0017237 0.00171589 0.00173 

Tables 15 and 16 present the probability of failure and reliability index, respectively. As is 
already the trend in previous examples, the accuracy of TDTRA, AMPPT-DE, and AMPPT-EDBO 
increases with an increase in the discretization interval, which is seen in cases 1 and 2. 
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Table 16. reliability index of corroded steel beam. 

Time 
(year) 

MCS 
Case 1 Case 2 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

TDTRA AMPPT-DE 
AMPPT 
-EDBO 

0 3.7241 3.7406 3.7356 4.5432 4.5372 4.5372 4.5264 

2 3.2160 3.3975 3.3926 4.1587 4.0192 4.0192 4.0385 

4 3.0618 3.2621 3.2646 3.9188 3.7778 3.7778 3.7710 

6 2.9677 3.1743 3.1729 3.6814 3.5578 3.5578 3.5536 

8 2.8927 3.1149 3.1121 3.4436 3.3577 3.3577 3.3494 

10 2.8465 3.0849 3.0800 3.3008 3.1747 3.1747 3.1743 

Table 17 presents the accuracy and efficiency of the methods. In case 2, AMPPT-EDBO has an 
accuracy of 21.2%, AMPPT-DE has 22.6%, and TDTRA’s is 22.4%. In this example, the accuracy of 
the proposed AMPPT-EDBO method is much better than the TDTRA and AMPPT-DE methods. In 
addition, the efficiency comparison between the methods shows a significant difference. MCS has by 
far the largest number of calls, which is 5×108. TDTRA has a relatively lower number calls: 315 for 
case 1 and 630 for case 2. AMPPT-DE needs 84 calls for case 1 and 84 for case 2. The proposed 
AMPPT-EDBO needs the lowest number of calls, which is 57 for both cases 1 and 2. 

Table 17. TRA results of the corroded steel beam. 

Method Relative Error Efficiency (NFE) 

MCS NA (%) 5e08 

TDTRA Case 1 54.2 315 

Case 2 22.4 630 

AMPPT-DE 
Case 1 53.8 84 

Case 2 22.6 84 

AMPPT-EDBO 
Case 1 53.1 57 

Case 2 21.2 57 

The proposed AMPPT-EDBO method not only has efficiency improvement by decreasing 
computational cost but is also proven to have better accuracy compared to traditional TDTRA and 
Kriging-based AMPPT-DE. 

7. Conclusions 

In this study, a novel EDBO algorithm is proposed to solve the optimization problem in Kriging 
model-assisted adaptive TRA. The algorithm combines tent chaos and Gaussian random walk to 
improve the performance of optimization techniques. The proposed optimization method is applied 
to solve the optimization problem in the process of adaptive Kriging model-assisted reliability 
analysis. Finally, the effectiveness of this method is illustrated by four examples of mechanical 
structure models. Compared with the traditional method, this method reduces the computational cost 
while maintaining a low relative error rate, which reflects the high efficiency, accuracy, and 
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reliability of the proposed method. In the future, it is a direction with great potential to develop better 
optimization algorithms to solve complex reliability analysis problems. In addition, we will also 
develop a new reliability analysis framework based on excellent optimization algorithms to evaluate 
the reliability of more complex engineering problems in future work. 
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