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when combined with three different mutation techniques, created a significant improvement in 
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Keywords: genetic algorithms; Gumbel crossover; Rayleigh crossover; global optimization; 

real-coded crossover operator; VIKOR method 

Mathematics Subject Classification: 60-xx, 68W50 

 

mailto:ehtasham.malik@iiu.edu.pk


29251 

AIMS Mathematics  Volume 9, Issue 10, 29250–29268. 

1. Introduction 

In numerous broad fields of study, optimization is a useful strategy when choosing the 

most beneficial choice from a range of options is essential. These broad fields include computer 

science, applied mathematics, engineering, and management science, as discussed by Deb [1], 

Goldberg [2], Michalewicz, and Arabas [3]. Effective crossover operators are essential for 

solving complicated problems with genetic algorithms (GA), especially for addressing 

information technology (IT) outsourcing schedule concerns. Traditional crossover approaches 

frequently struggle to balance exploration and exploitation F Lu [4]. Complex systems, such 

as IT outsourcing timetables, have become increasingly difficult to manage in an era of 

globalization due to inherent risks and uncertainties. Just as supply chain optimization entails 

resolving multi-echelon difficulties and decreasing costs using advanced heuristics, improving 

IT outsourcing schedules necessitates sophisticated methodologies to efficiently manage 

numerous risks Nahangi and Awwad [5]. In computing and engineering, the aim is to maximize 

system or application performance while minimizing runtime and resource consumption as 

much as possible Chu and Beasley [6]. Decisions are made by creating optimization models 

containing the problem's core and then applying mathematical approaches to address these 

models Wasserkrug et al [7]. Optimization algorithms for unconstrained issues typically 

employ gradient information to locate the optimal solution. As such, the gradient-based 

optimization method can solve objective functions with non-differentiable components 

Ahmadianfar et al. [8]. Deterministic approaches are a type of local optimization where the 

search process and its outcome primarily depend on an initial guess. Several population-based 

stochastic techniques, including particle swarm optimization (PSO), simulated annealing (SA), 

GAs, and others, have been created and are employed to address optimization issues with 

constraints, as discussed in Eberhart et al. [9], Kirkpatrick et al. [10] and Deb [3]. 

The guided random search approaches comprise all of these optimization techniques 

Goldberg and Deb [11]. GAs are based on Charles Darwin’s principle that only the offspring 

of the fittest parents can survive Holland [12]. GA is a reliable and effective evolutionary search 

technique for locating the best potential solutions to complicated multi-modal situations De-

Jong [13]. Natural phenomena suggest that genetic inheritance is stored in chromosomes 

composed of genes Haq et al. [14]. As the mutation operator aids in preserving population 

diversity and preventing premature convergence, the crossover operator uses genetic 

information from different chromosomes to explore new search spaces Haq et al. [15]. The 

continuous search space is changed into a discrete one using a binary-coded scheme, where the 

string length is determined by the separation between two adjacent grids. Under a small number 

of decision variables, binary encoding performs well and requires less precision for the 

solutions Katoch et al. [16]. However, when high precision is needed to solve multi-dimensional 

optimization problems, binary encoding schemes perform unsatisfactorily Haq et al. [15]. The 

concept of real encoding first surfaced in the early 1990s, when a vector of real-coded GA was 

used to represent a chromosome Wright [17]. 

The crossover and mutation operators both have a big effect on how well GAs perform. 

As a result, a lot of research is focused on improving these operators’ performance. Laplace 

crossover (LX) is used to locate the offspring and is linked with a Laplace probability 

distribution Deep et al. [18]. Therefore, the two offspring generated by the LX operator are 

symmetrical in terms of their parental position and did not automatically locate close to the 

better of the two parents. To create a simulated binary crossover (SBX), Deb et al. [19] modified 
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a single-point binary crossover. When two parents are chosen, SBX produces two offspring. 

These offspring are positioned in a straight line that is connected to their parents. The main 

drawback of SBX is that it is unable to control the size of the parameter value adaptively. 

Essentially, the crossover operator uses the current population information to guide the search 

in the other search space. In this context, the crossover operator is essential to exploring the 

unique aspect of GA Naqvi et al. [20]. 

2. Crossover operators used in the previous studies 

2.1. LX 

At first, Deep and Thakur [18] proposed a self-parent-centric crossover operator based on 

the Laplace distribution. This is the Laplace distribution’s distribution function: 

𝐹(𝑦) = {

1

2
𝑒𝑥𝑝 (

|𝑦−𝑎|

𝑏
) ,                     𝑦 ≤ 𝑎,

1 −
1

2
𝑒𝑥𝑝 (−

|𝑦−𝑎|

𝑏
) ,          𝑦 > 𝑎,

     (1) 

where, respectively, a and b represent the location and shape parameters for Laplace 

distribution. Utilizing LX, from two parents 𝑦(1) = (𝑦1
(1)

, 𝑦2
(1)

, 𝑦3
(1)

, … , 𝑦𝑛
(1)

)  and 𝑦(2) =

(𝑦1
(2)

, 𝑦2
(2)

, 𝑦3
(2)

, … , 𝑦𝑛
(2)

), two offspring, ϑ = (ϑ1, ϑ2, ϑ3,…, ϑn) and τ = (τ1, τ2, τ3,..., τn. 

2.2. Double Pareto crossover (DPX) 

Based on the double Pareto probability distribution; the double Pareto crossover (DPX) is 

a parent-centric operator Thakur [21]. The distribution function of the double Pareto 

distribution, which this crossover operator uses, is given as 

𝐹(𝑦) = {

1

2
(1 −

𝑦

𝑎𝑏
)

−𝑎
,                              𝑦 < 0

1

2
[1 − (1 +

𝑦

𝑎𝑏
)

−𝑎
] ,                   𝑦 ≥ 0

.    (2) 

The Double Pareto probability distribution has two parameters, i.e., a  &  b , where 

a belongs to a real number and b is greater than zero. Here a = location parameter and b = 

scale parameter of the double Pareto probability distribution. 

2.3. Fisk crossover (FX) 

The Fisk crossover (FX) is a parent-centric crossover operator using a log-logistic 

distribution ul Haq et al. [22]. The FX operator uses the cumulative distribution function of the 

log-logistics distribution, as shown below: 

𝐹(𝑦) = {

1

1+(𝑦|𝛽)
−𝛼 ,                              𝑦 < 0

1 −
1

1+(𝑦|𝛽)
−𝛼 ,                      𝑦 ≥ 0

,     (3) 

where β ˃ 0 and α ˃ 0 are scale and shape parameters respectively. 
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2.4. Logistic crossover (LogX) 

This specific operator is proposed by Naqvi et al. [20], which is based on logistic 

distribution. The cumulative distribution function (CDF) of the logistic distribution is given as 

𝐹(𝑦) = {      

1

1+𝑒
−𝛼

−(𝑦−𝛼)
𝑠

,                              𝑦 < 0

1 −   
1

1+𝑒
−𝛼

−(𝑦−𝛼)
𝑠

,                      𝑦 ≥ 0
,    (4) 

where α ˃ 0 and s ˃ 0 are location and scale parameters respectively. 

2.5. SBX 

The SBX is a real-coded crossover operator, which was first proposed by Deb and 

Agarwal [19]. The binary transformation to continuous search space is one of its special 

features. Following are the steps for generating offspring, ϑ = (ϑ1, ϑ2, ϑ3,…, ϑn) by two parents 

𝑦(1) = (𝑦1
(1)

, 𝑦2
(1)

, 𝑦3
(1)

, … , 𝑦𝑛
(1)

) and 𝑦(2) = (𝑦1
(2)

, 𝑦2
(2)

, 𝑦3
(2)

, … , 𝑦𝑛
(2)

) are as follows: 

1st step: Generate a random number ɛi between zero and one. 

2nd step: Then, obtain a parameter βi as: 

𝛽𝑖 = {
(2ɛ𝑖)

1

(𝑛𝑐+1) ,              𝑖𝑓 ɛ𝑖 ≤
1

2
1

(2−2ɛ𝑖)
1

(𝑛𝑐+1)

,             𝑖𝑓 ɛ𝑖 >
1

2

,     (5) 

where the distribution index is denoted by 𝑛𝑐 and 𝑛𝑐 ∈ [0, ∞]. 

Thus, both parents  𝑦(1) = (𝑦1
(1)

, 𝑦2
(1)

, 𝑦3
(1)

, … , 𝑦𝑛
(1)

)  and 𝑦(2) =

(𝑦1
(2)

, 𝑦2
(2)

, 𝑦3
(2)

, … , 𝑦𝑛
(2)

),  and an offspring ϑ =  (ϑ1, ϑ2, ϑ3, … , ϑn)  is produced in the 

following Eq (6): 

ϑi =
1

2
((𝑦𝑖

{1}
+ 𝑦𝑖

{2}
) − 𝛽𝑖 |𝑦𝑖

{1}
− 𝑦𝑖

{2}
|).     (6) 

3. Proposed real-coded crossover operators 

By taking a balanced approach to exploration and exploitation, the GX (Gumbel-based) 

and RX (Rayleigh-based) crossover operators will improve the performance of GAs. The 

Gumbel distribution, which is well-known for modeling extreme values, is utilized by the GX 

operator to enhance the algorithm's exploratory power. The GX operator lets the algorithm 

escape local optima and fully search the solution space by producing offspring with features 

that can differ greatly from the parent population. This makes the method especially useful in 

complicated or misleading landscapes. Conversely, the RX operator, derived from the Rayleigh 

distribution, highlights moderate deviations and helps refine the search in areas of potential 

interest, hence improving exploitation. 

3.1. First proposed real-coded crossover operator based on Gumbel distribution 

Extreme value distributions are frequently modeled by using the Gumbel distribution, 

especially when a set of random variables has maximum or minimum values Gumbel [23]. The 
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Gumbel distribution is appropriate for modeling extreme events because it exhibits heavy tails, 

and a bell-shaped, double-exponential probability function describes it. The maximum or 

minimum of an objective function is a common problem in optimization. Modeling the 

distribution of extreme values with the Gumbel distribution gives statistical insight into and 

ability to predict rare but important events. So in optimization theory, Gumbel distribution 

plays an important role. It is favored for capturing extreme values in extremely complex and 

multimodal scenarios where extreme events are extremely important Kamel et al. [24]. The 

decision is based on the optimization problem and the particular features of the data. The GX 

operator has been proposed here. The density function of the Gumbel distribution is as follows: 

𝑓(𝑦) =  
1

𝛽 
𝑒

[−
𝑦−𝜇

𝛽
−𝑒

(−
𝑦−𝜇

𝛽
)

]

,      (7) 

where the location parameter is 𝜇 and the scale parameter is 𝛽. 

The cumulative distribution function of Gumbel distribution is as follows: 

𝐹(𝑦) =  𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

.       (8) 

Main steps for generating two offspring, ϑ = (ϑ1, ϑ2, ϑ3,…, ϑn) and τ = (τ1, τ2, τ3,..., τn) by 

two parents 𝑦(1) = (𝑦1
(1)

, 𝑦2
(1)

, 𝑦3
(1)

, … , 𝑦𝑛
(1)

)  and 𝑦(2) = (𝑦1
(2)

, 𝑦2
(2)

, 𝑦3
(2)

, … , 𝑦𝑛
(2)

),  are as 

follows: 

1st step: Random number ɛi is generated in between zero and one. 

2nd step: The Gumbel distribution function is inverted to obtain the parameter βi, which 

is obtained by equating the randomly generated number ɛ to the area under the curve from −∞ 

to βi. 

𝐹(𝑦) = 𝑒−𝑒
−(

𝑦−𝜇
𝛽

)

,          (9) 

ɛ = 𝑒−𝑒
−(

𝛽𝑖−𝜇

𝛽
)

,          (10) 

log (ɛ) = −𝑒
−(

𝛽𝑖−𝜇

𝛽
)
,         (11) 

log[−log (ɛ)] = − (
𝛽𝑖−𝜇

𝛽
),       (12) 

𝛽𝑖 = 𝜇-𝛽*[log[−log (ɛ)]] .       (13) 

3rd step: The generation of offspring is based on the following Eqs (14) and (15): 

ϑi = 
(𝑦𝑖

{1}
+𝑦𝑖

{2}
)+𝛽𝑖|𝑦𝑖

{1}
−𝑦𝑖

{2}
|

2
      (14) 

and 

τi = 
(𝑦𝑖

{1}
+𝑦𝑖

{2}
)−𝛽𝑖|𝑦𝑖

{1}
−𝑦𝑖

{2}
|

2
 .     (15) 

3.2. Second proposed real-coded crossover operator based on Rayleigh distribution 

A continuous probability distribution for random variables with nonnegative values is 

called the Rayleigh distribution. The distribution of a two-dimensional vector’s magnitude is 

modeled using the Rayleigh distribution Grimmett & Stirzaker [25]. Rayleigh distribution 

describes the distribution of vector magnitudes rather than being specifically made for 
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modeling extremes. In optimization theory, the Rayleigh distribution is important, especially 

in cases where squared magnitudes or the magnitudes of two-dimensional vector components 

are essential. Depending on the unique characteristics of the optimization problem and the type 

of data being modeled, the Rayleigh or Gumbel distributions can be very important in 

optimization theory. Each of the distributions is useful in various situations and has advantages 

of its own. The crossover operator RX, which is based on Rayleigh distribution, has also been 

proposed in this study. The density function of the Rayleigh distribution is as follows: 

𝑓(𝑦) =
𝑦

𝜎2 
𝑒

−
𝑦2

2𝜎2,        (16) 

where the distribution’s scale parameter is 𝝈. 

The cumulative distribution function of Rayleigh distribution is as follows: 

𝐹(𝑦) = 1 − 𝑒
−

𝑦2

2𝜎2.        (17) 

Prerequisite steps for generating two offspring, ϑ = (ϑ1, ϑ2, ϑ3,…, ϑn) and τ = (τ1, τ2, 

τ3,..., τn) by two parents 𝑦(1) = (𝑦1
(1)

, 𝑦2
(1)

, 𝑦3
(1)

, … , 𝑦𝑛
(1)

)  and 𝑦(2) =

(𝑦1
(2)

, 𝑦2
(2)

, 𝑦3
(2)

, … , 𝑦𝑛
(2)

), are as follows: 

1st step: Begin with generating random number ɛi in between zero and one. 

2nd step: Calculating a parameter βi, which follows Rayleigh distribution, by inverting the 

distribution function of Rayleigh distribution as follows: 

𝐹(𝑦) = 1 − 𝑒
−

𝑦2

2𝜎2,         (18) 

ɛ= 1 − 𝑒
−

𝛽𝑖
2

2𝜎2,          (19) 

log(1 − ɛ) = −
𝛽𝑖

2

2𝜎2,         (20) 

𝛽𝑖 = 𝜎 ∗ [2log(1 − ɛ)]
1

2 .       (21) 

3rd step: Offspring are generated by using the following Eqs (22) and (23): 

ϑi = 
(𝑦𝑖

{1}
+𝑦𝑖

{2}
)+𝛽𝑖|𝑦𝑖

{1}
−𝑦𝑖

{2}
|

2
       (22) 

and 

τi = 
(𝑦𝑖

{1}
+𝑦𝑖

{2}
)−𝛽𝑖|𝑦𝑖

{1}
−𝑦𝑖

{2}
|

2
.       (23) 

4. Experimental setup 

A set of benchmark test problems has been used to assess the performance of novel 

crossover operators. The two novel parent-centric crossovers GX and RX improve genetic 

process performance that is closely compared to considered real-coded operators, such as LX, 

DPX, and SBX. Along with nonuniform mutation (NUM), Makinen, Periaux, and Toivanen 

mutation (MPTM), and power mutation (PM), these seven crossover operators (LX, DPX, SBX, 

FX, LogX, RX, and GX) have been utilized for evaluating the global optimal performance. The 

population size has been set to be three hundred and thirty independent runs performed to 

obtain the simulated results. The selection criteria used by all GAs is tournament selection. 

Size-one elitism refers to the idea that the most esteemed individuals are retained in the present 
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generation. Final results are considered in terms of mean values, standard deviation, and 

average execution time. The algorithm stops after five hundred generations. Trial runs and 

screening experimentation have produced the most optimal outcome for the GA process. Final 

parametric values are displayed in Figure 1, which summarizes a simulated analysis of fifteen 

algorithmic combinations and their corresponding crossover and mutation probabilities. 

 

Figure 1. Visual framework of different operators used in the study. 

4.1. Test problems 

Benchmark functions are authentic tools used to assess the effectiveness of real-coded 

algorithms in optimization problems. In this study, we take a set of fifteen well-known 

benchmark functions with different complexity levels. This set of benchmark functions also 

has different levels of multimodality. The search technique that efficiently eliminates local 

optima and continues its journey to find global optima is considered an efficient search technique 

for optimization problems because it does not stick at local optima Mahajan et al. [26]. Table 1 

details fifteen benchmark functions used in this study to judge the efficiency of proposed 

evolutionary methods. 
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Table 1. Detail of test problems. 

Sr. # Test problem Objective function Limits 

1 

Levy and 

Montalvo-2 

function 

min
𝑥

𝑓(𝑥) = 0.1(𝑠𝑖𝑛2 (3𝜋𝑥1 ) + ∑(𝑥𝑖

𝑛−1

𝑖=1

− 1)2[1 + 𝑠𝑖𝑛2 (3𝜋𝑥𝑖+1)]
+ (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]) 

{-5, 5} 

2 
Neumair 

function 
min

𝑥
𝑓(𝑥) = ∑ (𝑥𝑖

𝑛
𝑖 -1)2 +∑ 𝑥𝑖

𝑛−1
𝑖=1 𝑥𝑖−1 {-n2, n2} 

3 
Griewank 

function 
min

𝑥
𝑓(𝑥) = 1 +

1

4000
∑ 𝑥𝑖

2

𝑛

𝑖=1

− ∏ cos ( 
𝑥𝑖

√𝑖

𝑛

𝑖=1

) {-10, 10} 

4 
Brown3 

function 
min

𝑥
𝑓(𝑥) = ∑ [ 𝑛−1

𝑖=1 (𝑥𝑖
2)^(𝑥𝑖

2+1) + (𝑥𝑖+12)^(𝑥𝑖+1
2 +1)] {-1, 4} 

5 
Ellipsoidal 

function 
min

𝑥
𝑓(𝑥) = ∑(𝑥𝑖

𝑛

𝑖=1

− 𝑖)2 {-n, n} 

6 Cigar function min
𝑥

𝑓(𝑥) = 𝑥1
2 + 10000000∑ 𝑥𝑖

2𝑛
𝑖=2  {-10, 10} 

7 

Axis Parallel 

hyper ellipsoid 

function 

min
𝑥

𝑓(𝑥) = ∑ 𝑖

𝑛

𝑖=1

𝑥𝑖
2 {-5.12, 5.12} 

8 
Ackley 

function min
𝑥

𝑓(𝑥) = −20 𝑒
−0.2√

∑ 𝑥𝑖
2𝑛

𝑖=1
𝑛

 −𝑒
∑ cos(2𝜋𝑥𝑖)𝑛

𝑖
𝑛  + 20 + e 

{-30, 30} 

9 
Rosenbrock 

function 
min

𝑥
𝑓(𝑥) = ∑[100 (𝑥𝑖+1

𝑛

𝑖=1

− 𝑥𝑖
2) + (𝑥𝑖 − 1)2] {-30, 30} 

10 New function 
min

𝑥
𝑓(𝑥)  = (

𝜋

𝑛
 ) 10 sin2(𝜋𝑥1 ) + ∑ (𝑥𝑖 − 1)2𝑛−1

𝑖=1 [ 1 +

10 sin2(𝜋𝑥𝑖 + 1)]  + (𝑥𝑛 −1)2 
{-10, 10} 

11 C01 
𝑀𝑖𝑛 𝑓(𝑥) = ∑ (∑ 𝑧𝑗

𝑖
𝑗=1 )𝐷

𝑖=1
2 , z=x-0 

g(x) = ∑ {𝑧𝑖
2 − 5000 cos(0.1𝜋𝐷

𝑖=1 𝑧𝑖) − 4000} ≤ 0 
xϵ{-100,100}D 

12 C02 
𝑀𝑖𝑛 𝑓(𝑥) = ∑ (∑ 𝑧𝑗

𝑖
𝑗=1 )𝐷

𝑖=1
2 , z=x-0, y=M*z 

g(x) = ∑ {𝑦𝑖
2 − 5000 cos(0.1𝜋𝐷

𝑖=1 𝑦𝑖) − 4000} ≤ 0 
xϵ{-100,100}D 

13 C03 
𝑀𝑖𝑛 𝑓(𝑥) = ∑ (∑ 𝑧𝑗

𝑖
𝑗=1 )𝐷

𝑖=1
2 , z=x-0 

g(x) = ∑ {𝑧𝑖
2 − 5000 cos(0.1𝜋𝐷

𝑖=1 𝑧𝑖) − 4000} ≤ 0 

h(x) = -∑ 𝑧𝑖
𝐷
𝑖=1 sin(0.1𝜋𝑧𝑖) = 0 

xϵ{-100,100}D 

14 C04 
𝑀𝑖𝑛 𝑓(𝑥) = ∑ {𝑧𝑖

2 − 10 cos(2𝜋𝐷
𝑖=1 𝑧𝑖) + 10},z=x-0 

g1(x) = − ∑ 𝑧𝑖
𝐷
𝑖=1 sin (2𝑧𝑖) ≤ 0 

g2(x) = − ∑ 𝑧𝑖
𝐷
𝑖=1 sin (𝑧𝑖) ≤ 0 

xϵ{-10,10}D 

15 C05 

𝑀𝑖𝑛 𝑓(𝑥) = ∑ (𝐷
𝑖=1 100(𝑧𝑖

2 − 𝑧𝑖+1)2 − (𝑧𝑖 − 1)2) ,z =x-

0, y = M1*z, w =  M2*z 

g1(x) = ∑ {𝑦𝑖
2 − 50 cos(2𝜋𝐷

𝑖=1 𝑦𝑖) − 40} ≤ 0 

g2(x) = ∑ {𝑤𝑖
2 − 50 cos(2𝜋𝐷

𝑖=1 𝑤𝑖) − 40} ≤ 0 

xϵ{-10,10}D 

5. Results and discussion 

Our primary contribution to this research effort is the introduction of two novel real-coded 

crossover operators such as GX and RX. The main objective is to assess the proposed crossover 

operators’ performance in light of the simulation results. As GX-NUM, RX-NUM, GX-MPTM, 

RX-MPTM, GX-PM, and RX-PM are the proposed operators that are compared to other 

crossover operators, such as LX-NUM, DPX-NUM, SBX-NUM, FX-NUM, LogX-NUM LX-

MPTM, DPX-MPTM, SBX-MPTM, FX-MPTM, LogX-MPTM, LX-PM, DPX-PM, SBX-PM, 
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FX-PM, and LogX-PM. 

Table 2. Results for real-coded crossover operators under NUM operator. 

Benchmark 

functions 
Statistics LX-NUM DPX-NUM SBX-NUM RX-NUM GX-NUM FX-NUM LogX-NUM 

LevyMont 

Mean 0.00014 0.000087 0.0087 0.00013 0.0000557 0.377 0.000814 

SD 0.00011 0.0000559 0.0033 0.000061 0.0000375 0.1015 0.000376 

Time  107.712624 83.698256 78.64462 85.495419 126.712031 127.4357 205.604031 

Neumair 

Mean 8846.9 3539.3 35852 10210 5980.5 610000 8701.3 

SD 4935.7 1248.4 13880 6067.3 3736.1 168000 4459.3 

Time  181.629503 130.1451 141.17727 91.065393 126.993684 87.9393 207.780145 

Griewank 

Mean 0.0024 0.0016 0.2108 0.0037 0.0016 1.0103 0.0198 

SD 0.0017 0.000841 0.0652 0.0035 0.0033 0.0301 0.0084 

Time  81.457873 82.578837 80.650737 91.321104 125.847594 137.349 150.965613 

Brown 

Mean 0.004 0.0033 0.3586 0.0064 0.0014 1580000 0.0382 

SD 0.003 0.0022 0.1069 0.0102 0.000874 4740000 0.0137 

Time  166.842948 341.123536 165.873626 155.008723 276.27197 178.4728 188.646094 

Ellipsoidal 

Mean 3.3488 8.9061 591.2497 8.4815 3.2852 629.444 79.9827 

SD 1.9276 3.038 92.7802 4.889 3.1216 129.164 33.5738 

Time  96.062947 96.814591 88.736142 125.60401 122.285082 155.3865 146.618962 

Cigar 

Mean 30023 27657 4612800 36789 12376 84000000 398740 

SD 22476 11481 1324100 21110 9082.3 23079000 218480 

Time  106.53924 87.859938 181.107231 89.925312 91.538608 165.17616 134.638317 

Axis 

Mean 0.1682 0.2142 17.8474 0.2078 0.0636 286.565 1.3887 

SD 0.1884 0.1156 5.3991 0.1938 0.0463 60.3644 0.8416 

Time  76.02274 119.661781 89.444963 127.6703 95.830265 178.415314 131.44787 

Ackley 

Mean 3.9109 4.1854 5.4239 3.4013 3.1305 15.4012 3.9752 

SD 0.9224 0.7202 0.548 0.6378 0.7961 0.8268 0.8615 

Time  137.023015 96.202567 80.377248 131.106759 97.026432 103.415305 111.027993 

Rosenbrock 

Mean 462.872 372.023 33105 484.198 330.1029 7020000 87.2238 

SD 283.913 189.3726 16914 228.506 181.1197 2900000 5425.4 

Time  127.652415 75.60977 75.820732 121.291021 74.967119 82.75117 56140 

Newfunc 

Mean 1.6991 0.6085 12.2297 1.1294 0.5286 285.369 129.454239 

SD 2.1336 0.662 3.8633 1.2487 0.671 63.8885 3.4262 

Time  89.410394 90.788672 120.692209 87.656918 86.152792 127.3678 129.454239 

C01 

Mean 56648 55988 55724 56450 52836 54708 56140 

SD 5587.1 5544.5 4672.1 4952.3 5160.3 5318 5425.4 

Time  92.524 97.2278 95.3304 85.2393 112.855 120.235 87.2238 

C02 

Mean 56517 56260 57668 54954 54649 56583 56217 

SD 5902 4713.6 5189.1 6172.8 4855 6067.4 5874.8 

Time  111.096 114.066 127.537 96.6299 144.089 92.7783 111.117 

C03 

Mean 54512 56250 57072 56927 53875 56375 57188 

SD 4990.4 4679.4 3841.3 5095 4661.5 4960.3 5078.8 

Time  104.291 87.1485 105.457 88.2495 113.392 77.6518 134.316 

C04 

Mean 190.419 191.344 189.738 186.129 192.465 187.933 194.472 

SD 11.8573 14.8278 18.3649 15.5929 10.7845 15.5167 12.3093 

Time  101.72 95.2251 105.39 122.696 133.913 96.3571 94.5518 

C05 

Mean 57207 57123 57054 56962 55723 57351 57011 

SD 4797.4 5436.8 4645.6 4301.5 5239.4 6195.3 6341.4 

Time  79.2145 84.4875 83.0697 93.0925 70.9508 107.106 102.261 

 



29259 

AIMS Mathematics  Volume 9, Issue 10, 29250–29268. 

Table 3. Results for real-coded crossover operators under MPTM operator. 

Benchmark 

functions 
Statistics LX-NUM DPX-NUM SBX-NUM RX-NUM GX-NUM FX-NUM LogX-NUM 

LevyMont 

Mean 0.000021 0.000018 0.0011 0.000035 9.86E-06 0.0013 0.00027297 

SD 0.000036 0.0000228 0.00076 0.000049 0.0000103 0.0026 0.0001875 

Time  102.36276 104.78486 102.9611 108.5233 96.859274 113.1815 215.58379 

Neumair 

Mean 540.05 892.727 3059.3 936.661 484.8504 2730 1781.6 

SD 666.967 1056.1 2636.2 1271.1 842.9453 3530 1233.7 

Time  82.433744 92.002206 87.96502 84.6824 153.12932 138.1825 144.79124 

Griewank 

Mean 0.00033 0.00032 0.0135 0.00077 0.000251 0.0068 0.003 

SD 0.00071 0.00061 0.0166 0.0018 0.00043 0.0061 0.002 

Time  94.864538 93.857005 87.56846 83.61188 78.106502 80.57535 103.5461 

Brown 

Mean 0.00018 0.00036 0.0153 0.00068 0.000183 0.0046 0.0029 

SD 0.00021 0.000359 0.0093 0.0009 0.000249 0.0051 0.002 

Time  161.53716 189.79598 131.5321 211.5596 131.20721 165.9176 159.56679 

Ellipsoidal 

Mean 4.9484 8.0844 616.77 9.7785 3.3263 887.3165 87.6828 

SD 4.6375 6.2504 88.5754 8.2256 4.9136 178.292 25.1313 

Time  92.944851 97.119153 89.22244 114.6436 91.098581 196.0281 137.74008 

Cigar 

Mean 4213.4 3641 261720 9597.2 3664.7 171170 54229 

SD 4299.1 3481.1 351380 18292 7043.9 204670 39044 

Time  72.341756 75.668512 75.01477 82.10584 76.012442 183.34413 149.30796 

Axis 

Mean 0.0146 0.0182 1.1316 0.0595 0.007 0.7543 0.2631 

SD 0.0207 0.018 1.4478 0.1935 0.0086 1.2248 0.2826 

Time  78.913791 98.06796 75.77991 103.4081 163.50531 103.3628 129.63321 

Ackley 

Mean 1.0033 1.4194 2.0116 0.8519 1.0428 2.2011 1.2607 

SD 1.0086 1.4095 1.2068 0.8057 1.0207 0.9361 0.7002 

Time  84.841513 77.599839 76.55104 101.5414 79.835305 175.81324 162.0749 

Rosenbrock 

Mean 21.3398 30.3796 77.6897 28.9044 26.7186 37.9367 133.5898 

SD 43.5137 32.7939 91.6669 25.1465 30.9383 40.0273 154.0104 

Time  75.457313 76.27202 74.91132 95.12053 75.433864 81.01464 133.62013 

Newfunc 

Mean 0.1065 0.0101 1.8897 0.148 0.0194 1.0756 0.5968 

SD 0.5688 0.0117 2.7021 0.4442 0.0909 2.9493 1.6975 

Time  85.437091 91.872155 83.41255 91.01216 87.218181 95.16292 132.18987 

C01 

Mean 56707 55594 55073 56904 56334 55767 56016 

SD 4854.4 5396.6 6041.8 4364.4 4246.7 5265.7 6602.3 

Time  108.809 89.4791 101.773 101.017 164.761 92.5819 106.041 

C02 

Mean 56580 53596 56727 55552 55575 56129 54544 

SD 4696.4 5711.1 5959.8 5404.5 4622.2 6283.8 6550.7 

Time  106.335 127.417 103.112 119.922 106.425 100.304 115.498 

C03 

Mean 56653 55562 55815 55986 54708 56841 55989 

SD 4381.7 5404.4 7171.9 6356.9 4178.6 4765.8 5389.3 

Time  86.4351 85.5492 79.178 63.6457 63.5677 88.315 91.4974 

C04 

Mean 186.933 188.32 190.307 189.828 185.832 186.731 190.316 

SD 12.637 14.3215 19.8155 14.583 12.7689 17.5531 10.8582 

Time  121.466 103.941 146.528 122.123 135.113 98.9032 152.392 

C05 

Mean 57657 59380 56877 57588 56805 56952 57101 

SD 4773.1 6000.9 5475 5109.5 7164.5 4838.1 6639.3 

Time  114.003 119.092 102.944 123.649 110.352 176.427 108.11 
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Table 4. Results for real-coded crossover operators under the PM operator. 

Benchmark 

functions 
Statistics LX-NUM DPX-NUM SBX-NUM RX-NUM GX-NUM FX-NUM LogX-NUM 

LevyMont 

Mean 0.00029188 0.00044951 0.01 0.00053266 0.00012793 0.5802 0.00075139 

SD 0.00028392 0.00024785 0.0036 0.00047348 0.00011685 0.1658 0.00040303 

Time  84.624551 87.889195 84.79806 96.266321 128.015248 78.136 114.231003 

Neumair 

Mean 17660 5829.3 48169 17680 12722 1100000 10913 

SD 10570 1994.4 17482 9224.2 10172 262000 4147.2 

Time  76.387883 77.273559 74.559053 80.738701 93.808228 132.1672 115.832336 

Griewank 

Mean 0.011 0.0076 0.22 0.0133 0.005 1.0365 0.0166 

SD 0.0104 0.0032 0.0643 0.0106 0.0086 0.0114 0.0074 

Time  77.444941 79.57467 73.455623 84.317306 108.64987 102.2386 95.016283 

Brown 

Mean 0.0171 0.0182 0.4092 0.0275 0.0067 150000000 0.0369 

SD 0.0157 0.015 0.1433 0.0297 0.0039 216000000 0.0216 

Time  118.097805 130.299253 141.748471 202.023482 138.965081 152.3581 156.981702 

Ellipsoidal 

Mean 12.8189 27.0527 582.962 17.1602 6.7218 894.8881 37.4548 

SD 9.5745 12.8489 87.0768 10.9878 8.4446 183.4455 14.0708 

Time  81.374196 87.473469 83.054335 107.340013 83.439545 179.9395 102.88153 

Cigar 

Mean 146650 122430 5178300 207810 56580 160000000 330020 

SD 120740 91644 1861900 147350 48021 30300000 171040 

Time  103.470988 102.063039 94.859803 69.272894 89.969564 146.1098 117.330069 

Axis 

Mean 0.8665 0.5906 19.1424 0.7692 0.2216 561.8476 1.2993 

SD 0.862 0.2811 6.9989 0.5294 0.1483 115.6398 0.6751 

Time  80.632743 70.974762 71.756398 91.537621 67.093254 85.751672 133.283326 

Ackley 

Mean 4.585 4.6023 5.7192 4.3573 3.7683 16.2949 4.3009 

SD 0.6772 0.6189 0.765 0.7281 0.8069 0.8198 0.7688 

Time  73.641746 74.941498 71.834179 124.518549 71.533324 96.644492 134.60261 

Rosenbrock 

Mean 2133 795.5493 55823 3162.6 1138.9 26300000 2607.7 

SD 1351.1 540.5518 39463 5062.1 1618.7 10900000 1524 

Time  87.658367 70.738393 69.854953 86.866803 112.408897 74.95865 112.957973 

Newfunc 

Mean 2.8305 1.8898 15.9042 2.4014 1.385 430.0245 3.8883 

SD 2.8807 1.7127 4.9163 2.2697 1.3594 83.8202 3.2206 

Time  83.868899 97.802163 73.286121 130.844641 150.45537 85.07991 119.062673 

C01 

Mean 54985 56467 56475 57416 54458 55304 55516 

SD 6121.2 5738.8 5533.9 4805.2 5416.3 5941.9 5384.8 

Time  106.927099 64.585727 64.741079 65.951868 76.611812 73.597283 65.504372 

C02 

Mean 55247 55788 56889 56668 53980 57005 54505 

SD 5603.3 5843.2 6943.1 3946 4933.3 5285.3 5023.1 

Time  78.033709 75.670182 68.064948 74.584962 97.248741 66.907757 97.391049 

C03 

Mean 55459 55087 55942 57314 54092 55747 56519 

SD 6990 6642.3 5305.5 5372.2 5346.1 5669.7 5530.9 

Time  97.438107 92.050652 107.485536 62.965519 75.8755 55.902367 72.503046 

C04 

Mean 189.4933 194.6566 192.249 194.8476 189.024 189.3816 191.455 

SD 13.3131 12.6488 12.2808 15.641 10.129 15.8216 11.9106 

Time  65.09012 71.011633 88.869256 63.046407 59.316266 67.058653 82.14324 

C05 

Mean 56232 55251 56948 59842 57325 58569 54250 

SD 7084.4 6620 5632.7 5197.8 4800.2 5381.2 5936.7 

Time  81.343016 51.506021 68.586363 81.39364 77.857029 75.532882 72.242855 

Based on the results presented in Table 2, GX-NUM performs extremely efficiently 

against almost all other real-coded operators having the least mean value in all benchmark 

functions except ‘Neumair’. The empirical results also indicate that other novel operators i.e. 

RX-NUM did not perform well. This suggests that GX-NUM has a clear-cut dominant capacity 

for handling selection pressure and population diversity as compared to RX-NUM and other 

considered operators. According to Table 3, the results show that GX-MPTM performs 
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distinctly as compared to RX-MPTM and other considered operators under many benchmark 

functions. Similarly from Table 4, GX-PM can also efficiently handle the selection pressure 

and population diversity. This all suggests that the Gumbel distribution outperformed in terms 

of efficiently handling selection pressure, and preservation of population diversity than the 

Rayleigh distribution in the search for global maxima. 

6. Performance index 

The behavior of several controlled stochastic search techniques was carefully examined 

by using the performance index (PI) in Figures 2–4. It is an approach that is frequently used to 

compare various heuristic algorithms Ul Haq et al. [22]. The equation that follows provides the 

mathematical derivation of PI: 

𝑃𝐼 =
1

𝑁𝑞
∑ (𝜗1𝜂1

𝑖 + 𝜗2𝜂2
𝑖 + 𝜗3𝜂3

𝑖 )
𝑁𝑞

𝑖=1
,      (24) 

where 

𝜗1𝜂1
𝑖  = 

𝑀𝑖

𝑚𝑖, 𝜗2𝜂2
𝑖  = 

𝑆𝑖

𝑠𝑖 and 𝜗3𝜂3
𝑖  = 

𝐶𝑖

𝑐𝑖  for 𝑖 = 1,2,3, … , 𝑁𝑞. 

Three statistics were taken into consideration, with weights as  𝜗1 , 𝜗2 , and 𝜗3 

respectively (∑ 𝜗𝑖 = 13
𝑖=1  and 0 ≤ 𝜗𝑖≥1). Hence PI is the function of 𝜗𝑖, for making a clear 

visualization of all seven algorithms and avoiding overlapping. Two terms in PI expression are 

given equal weights at a time, thus PI becomes a function of a single variable. Following are 

the three resulting cases: 

1) 𝜗1 = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑤), 𝜗2 = 𝜗3 = 0.5(1 − 𝑤𝑒𝑖𝑔ℎ𝑡(𝑤)), 

2) 𝜗2 = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑤), 𝜗1 = 𝜗3 = 0.5(1 − 𝑤𝑒𝑖𝑔ℎ𝑡(𝑤)), 

3) 𝜗3 = 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑤), 𝜗1 = 𝜗2 = 0.5(1 − 𝑤𝑒𝑖𝑔ℎ𝑡(𝑤)), 

where for all cases 0 ≤ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑤) ≤ 1. 

 

Figure 2. PI graphically represented for real-coded crossover schemes in the first 

case. 



29262 

AIMS Mathematics  Volume 9, Issue 10, 29250–29268. 

 

Figure 3. PI graphically represented for real-coded crossover schemes in the 

second case. 

 

Figure 4. PI graphically represented for real-coded crossover schemes in the third 

case. 

When a line chart exhibits a consistent upward trending line above all other real-coded 

operators, it indicates in the form of a plotted metric line, and the corresponding crossover 

operator is outperforming the others. Here in Figures 2–4, we can observe that the line of novel 

crossover operator GX is initially below the line of considered crossover operator DPX, but it 

continuously rises and outperforms all. This increasing trend indicates a convergence toward 

the global solution for the proposed crossover operator (GX). The novel crossover operator 

(GX) allows for finding global solutions more successfully as the algorithm develops its search. 

Examine the rate at which each operator converges. It is possible to argue that the novel 

crossover (GX) is more efficient because it produces better results more quickly. Thus, in the 

context of the obtained optimum mean values in fifteen benchmark functions, seven real-coded 

crossover operators and three mutation operators are visually compared in Figure 5. 
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Figure 5. Visual representation of crossovers with various mutation operators 

regarding benchmark functions. 

The first proposed crossover operator (GX) shows considerable dominance with 87% in 

NUM, 60% in MPTM, and 80% in PM mutation. But in the same visual representation, the 

second novel crossover operator (RX) shows limited performance. 

7. Multi-criteria decision-making technique 

The process of finding and selecting the best option from multiple options by considering 

the decision maker's expectations is known as decision-making. The diversity of benchmarks 

used to evaluate the solutions makes the decision-making process the most challenging. 

Therefore, the term multi-criteria decision-making (MCDM) describes decision-making when 

faced with several, frequently opposing criteria. 

7.1. VIKOR method 

Several strategies for MCDM, including VlseKriterijuska Optimizacija I Komoromisno 

Resenje (VIKOR) mean “multi-criteria optimization and compromise solution”. Opricovic 

developed the main VIKOR research in a 1979 PhD dissertation and subsequently in an 

application in 1980 Mardani et al. [27], Zheng and Wang [28]. The VIKOR approach is 

necessary to create the appropriate evaluation or decision matrix, which displays how well the 

crossover operators perform on several test problems. Let, Xij represent the performance 

measure of the ith alternative (crossover operators) for the jth criterion (test problems). The Lp-

metric used as an aggregating function in a compromise programming technique, is then 

utilized to build the multi-criteria measure for compromise ranking Zeleny [29]. 

𝐿𝑝,𝑖 = {∑ [𝑤𝑗 (
[(𝑋𝑖𝑗)𝑚𝑎𝑥−𝑋𝑖𝑗]

[(𝑋𝑖𝑗)𝑚𝑎𝑥−(𝑋𝑖𝑗)𝑚𝑖𝑛]
)

𝑀

𝑗=1

]𝑝}

𝑝

 i = 1, 2, . . . , N; 1<p<∞,   (25) 

where 𝑤𝑗 denotes weights for jth criteria, M is the number of criteria (test problems), and N is 

the number of alternatives (crossover operators). Applying the VIKOR approach, values of sum 

(Si) and maximum row (Ri) are first calculated for each crossover operator that is considered 

for a v = 0.5. The appropriate values of least quantity (Qi )are subsequently determined in 

Tables 5, 7, and 9 for each case of mutations (NUM, MPTM, and PM), respectively. 
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Furthermore, Tables 6 and 8 demonstrate that as the v values change, the rankings of the 

crossover operators (alternatives) with the highest and lowest rankings remain unchanged, and 

moderate changes in the intermediate ranking order in Table 6 are observed. In Table 10, 

variation is observed in the best-ranked positions, but GX crossover operators hold the best 

ranking position. 

Table 5. Ranking of crossover operators (alternatives) in the VIKOR method (in 

case of NUM mutation). 

Crossover operators 

(Alternatives) 
Si Ri Qi Rank 

LX-NUM 0.37346 0.1 0.04365 4 

DPX-NUM 0.42009 0.086 0.03548 3 

SBX-NUM 1.42196 0.62594 0.57167 6 

RX-NUM 0.30299 0.09481 0.03369 2 

GX-NUM 0.07863 0.07594 0 1 

FX-NUM 6.40965 0.6666 1 7 

LogX-NUM 0.57215 0.1 0.05934 5 

Table 6. Variations in rankings with different values of “v” in the VIKOR method 

(in case of NUM mutation). 

Crossover operators 

(Alternatives) 
v=0.1 v=0.2 v=0.3 v=0.4 v=0.5 v=0.6 v=0.7 v=0.8 v=0.9 

LX-NUM 
0.04131 

(4) 

0.0419 

(4) 

0.04248 

(4) 

0.04306 

(4) 

0.04365 

(4) 

0.04423 

(4) 

0.04481  

(4) 

0.0454 

(4) 

0.0459 

(3) 

DPX-NUM 
0.02071 

(2) 

0.0244 

(2) 

0.02809  

(2) 

0.03178 

(2) 

0.03548 

(3) 

0.03917 

(3) 

0.04286 

(3) 

0.04655 

(3) 

0.0502 

(4) 

SBX-NUM 
0.85926 

(6) 

0.78736 

(6) 

0.71547 

(6) 

0.64357 

(6) 

0.57167 

(6) 

0.49977 

(6) 

0.42788 

(6) 

0.35598 

(6) 

0.2841 

(6) 

RX-NUM 
0.03228 

(3) 

0.03263 

(3) 

0.03299 

(3) 

0.03334 

(3) 

0.03369 

(2) 

0.03404 

(2) 

0.03439 

(2) 

0.03474 

(2) 

0.0350 

(2) 

GX-NUM 
0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

FX-NUM 
1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

LogX-NUM 
0.04445 

(5) 

0.04817 

(5) 

0.0519 

(5) 

0.05562 

(5) 

0.05934 

(5) 

0.06306 

(5) 

0.06679 

(5) 

0.07051 

(5) 

0.07423 

(5) 

Table 7. Ranking of crossover operators (alternatives) in the VIKOR method (in 

case of MPTM mutation). 

Crossover operators (Alternatives) Si Ri Qi Rank 

LX-MPTM 0.44436 0.09531 0.01816 2 

DPX-MPTM 0.68949 0.28039 0.20272 4 

SBX-MPTM 5.62095 0.6666 1 7 

RX-MPTM 0.62367 0.11699 0.05382 3 

GX-MPTM 0.25889 0.09432 0 1 

FX-MPTM 4.3809 0.6666 0.88437 6 

LogX-MPTM 2.22905 0.6666 0.68371 5 
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Table 8. Variations in rankings with different values of “v” in the VIKOR method 

(in case of MPTM mutation). 

Crossover operators (Alternatives) v=0.1 v=0.2 v=0.3 v=0.4 v=0.5 v=0.6 v=0.7 v=0.8 v=0.9 

LX-MPTM 
0.00501 

(2) 

0.0083 

(2) 

0.01158 

(2) 

0.0149 

(2) 

0.01816 

(2) 

0.02144 

(2) 

0.02473 

(2) 

0.02802 

(2) 

0.0313 

(2) 

DPX-MPTM 
0.30065 

(4) 

0.2762 

(4) 

0.25168 

(4) 

0.2272 

(4) 

0.20272 

(4) 

0.17824 

(4) 

0.15375 

(4) 

0.12927 

(4) 

0.10479 

(4) 

SBX-MPTM 
1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

RX-MPTM 
0.04245 

(3) 

0.0453 

(3) 

0.04814 

(3) 

0.0509 

(3) 

0.05382 

(3) 

0.05666 

(3) 

0.0595 

(3) 

0.06235 

(3) 

0.06519 

(3) 

GX-MPTM 
0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

0 

(1) 

FX-MPTM 
0.97687 

(6) 

0.9538 

(6) 

0.93062 

(6) 

0.9075 

(6) 

0.88437 

(6) 

0.86124 

(6) 

0.83812 

(6) 

0.81499 

(6) 

0.79186 

(6) 

LogX-MPTM 
0.93674 

(5) 

0.8735 

(5) 

0.81023 

(5) 
0.7469(5) 0.68371(5) 0.62045(5) 

0.5572 

(5) 

0.49394 

(5) 

0.43068 

(5) 

Table 9. Ranking of crossover operators (alternatives) in the VIKOR method (in 

case of PM mutation). 

Crossover operators (Alternatives) Si Ri Qi Rank 

LX-PM 0.20644 0.04346 0.01168 2 

DPX-PM 0.33571 0.09672 0.06467 4 

SBX-PM 1.08619 0.43249 0.39361 6 

RX-PM 0.54265 0.1 0.08371 5 

GX-PM 0.0592 0.05499 0.00925 1 

FX-PM 6.36274 0.6666 1 7 

LogX-PM 0.23595 0.07533 0.03959 3 

Table 10. Variations in rankings with different values of “v” in the VIKOR method 

(in case of PM mutation). 

Crossover 

operators 

(Alternatives) 

v=0.1 v=0.2 v=0.3 v=0.4 v=0.5 v=0.6 v=0.7 v=0.8 v=0.9 

LX-PM 
0.0023 

(1) 

0.0048 

(1) 

0.0070 

(1) 

0.0093 

(1) 

0.0117 

(2) 

0.0140 

(2) 

0.0164 

(2) 

0.0187 

(2) 

0.0210 

(2) 

DPX-PM 
0.0813 

(4) 

0.0772 

(4) 

0.0729 

(4) 

0.0688 

(4) 

0.0647 

(4) 

0.0605 

(4) 

0.0564 

(4) 

0.0522 

(4) 

0.0480 

(4) 

SBX-PM 
0.5782 

(6) 

0.5320 

(6) 

0.4859 

(6) 

0.4398 

(6) 

0.3936 

(6) 

0.3475 

(6) 

0.3013 

(6) 

0.2552 

(6) 

0.20906 

(6) 

RX-PM 
0.0893 

(5) 

0.0879 

(5) 

0.0865 

(5) 

0.0851 

(5) 

0.0837 

(5) 

0.0823 

(5) 

0.0809 

(5) 

0.0795 

(5) 

0.0781 

(5) 

GX-PM 
0.0167 

(2) 

0.0148 

(2) 

0.0129 

(2) 

0.0111 

(2) 

0.0093 

(1) 

0.0074 

(1) 

0.0056 

(1) 

0.0037 

(1) 

0.0019 

(1) 

FX-PM 
1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

1 

(7) 

LogX-PM 
0.0488 

(3) 

0.0465 

(3) 

0.0442 

(3) 

0.0419 

(3) 

0.0396 

(3) 

0.0373 

(3) 

0.0349 

(3) 

0.0327 

(3) 

0.0304 

(3) 
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8. Conclusions 

This study introduces two novel crossover operators, the GX operator and the RX operator. 

In comparison with three existing real-coded algorithms (LX, DPX, and SBX), the performance 

of GX and RX are evaluated to assess their effectiveness. Furthermore, six new algorithmic 

combinations, GX-NUM, GX-MPTM, GX-PM, RX-NUM, RX-MPTM, and RX-PM, are 

proposed by integrating GX and RX with three mutation operators (NUM, MPTM, and PM). 

In terms of algorithmic procedures, tournament selection is employed during the 

reproduction phase, while a simulation-based approach is utilized to analyze the efficacy of the 

algorithms. A comprehensive evaluation uses fifteen benchmark functions sourced from 

existing literature to authenticate the performance of the novel algorithms introduced in this 

study. The comparison metrics encompass mean value, standard deviation, and execution time 

(measured in seconds) to gauge the efficiency of each algorithm. 

Empirical findings, graphical representations of performance indices, and the MCDC 

VIKOR method indicate that GX outperforms RX and other operators. Notably, the real-coded 

crossover operator GX enhances the performance of the GA by fine-balancing population 

diversity and selection pressure. Consequently, GX exhibits significant potential in tackling 

increasingly complex optimization challenges compared to the existing real-coded operators. 

Moreover, future work should concentrate on several important areas, including evaluating 

these operators in practical settings, investigating their efficacy in dynamic and multi-objective 

scenarios, and extending their applicability to other optimization procedures. Furthermore, it's 

critical to improve the operators' effectiveness and adaptability across a range of problem kinds.  

However, this study has certain limitations, such as the scope of the benchmark functions 

utilized and the need for a broader variety of performance indicators. Addressing these 

constraints and introducing more evaluation criteria will result in a more comprehensive 

understanding of the operators' capabilities, paving the way for future breakthroughs in 

optimization techniques. 
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