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Abstract: In recent years, conventional Ricker maps have enjoyed widespread applications across
crucial domains such as modeling and security. However, their limitation to a single changeable
parameter poses constraints on their adaptability. This paper introduces a generalized form of
the Ricker map, incorporating arbitrary powers, thus offering enhanced versatility compared to
the traditional Ricker map. By introducing an additional parameter (arbitrary power), the map
gains increased degrees of freedom, thereby accommodating a broader spectrum of applications.
Consequently, the conventional Ricker map emerges as merely a special case within each proposed
framework. This newfound parameter enhances system flexibility and elucidates the conventional
system’s performance across diverse contexts. Through numerous illustrations, we meticulously
investigate the impact of the arbitrary power and equation parameters on equilibrium points, their
positions, basin of attraction, stability conditions, and bifurcation diagrams, including the emergence
of chaotic behavior.
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1. Introduction

In recent decades, the study of nonlinear dynamics in population models has made significant
progress, unveiling complex behaviors such as chaos and bifurcations. [11] demonstrated that even
simple mathematical models, including population dynamics, can lead to highly complex dynamics,
sometimes resulting in chaotic behavior in seemingly straightforward systems. Similarly, the
pioneering work of [14] laid the foundation for understanding stock-recruitment relationships in
fisheries, with the Ricker map emerging as a central tool in discrete population modeling.
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The investigation of stability in population models has continued to evolve. [1, 12] contributed to
this by analyzing global stability, shedding light on how various conditions can either stabilize or
destabilize population dynamics. This line of inquiry was further advanced by [19], who explored
global stability in various population models, reinforcing the importance of stability analysis in
ecological studies. More recently, [2] revisited the stability and instability in one-dimensional
population models, broadening our understanding of discrete-time dynamics.

The Ricker map has frequently been employed in predator-prey models, serving as a cornerstone
for research into complex population dynamics. Particularly, Ricker-type predator-prey models have
been extensively studied in the context of bifurcations and chaotic behavior. [9,10] conducted detailed
bifurcation analyses within these models, revealing intricate predator-prey interactions across various
parameter regimes. Their work underscores how different parameter settings can significantly influence
population persistence and the stability of predator-prey relationships [5, 8, 9].

Beyond ecological studies, mathematicians like [4, 15] have deepened our understanding of
nonlinear dynamics and chaos, providing a theoretical framework applicable to both biological and
physical systems. Works such as [17, 18] offer comprehensive introductions to nonlinear dynamical
systems and chaos, providing valuable insights into the behavior of both discrete and continuous
systems.

Building on foundational concepts in population dynamics, [3, 6, 7] expanded the study of stability,
bifurcation, and chaos to piecewise and discrete systems, demonstrating their wide applicability across
various fields. Radwan et al. extended this understanding by investigating generalized discrete logistic
maps, providing additional insights into the complexity of long-term population dynamics [13].

The study of Ricker-type models has seen significant advancements and generalizations. In
particular, [16] generalized the conventional Ricker map by introducing an arbitrary power to the
population variable x, resulting in the following form:

xn+1 = xδner−xn . (1.1)

Building upon Stewart’s work, we further extend the Ricker map (1.1) by introducing an additional
parameter to increase its generality. The new generalized Ricker map with arbitrary powers is given by:

xn+1 = xαn er
(
1−xβn

)
, (1.2)

where α, β, and r are positive parameters. This extension allows for a more flexible analysis of
population dynamics under various conditions.

In the subsequent sections, we investigate the behavior and properties of the proposed generalized
Ricker map. Section 2 focuses on the existence and stability of equilibria, offering both theoretical and
numerical insights. Section 3 provides bifurcation analyses and numerical simulations, exploring how
parameter changes affect the system’s dynamics. Finally, Section 4 concludes with a summary of the
findings and a comparison of the results, discussing the broader implications of the generalized Ricker
map in population dynamics.

2. Fixed points: existence and stability

The following passage sets the foundation for our inquiry into the existence and stability of
equilibria within the generalized Ricker map represented by Eq (1.2):
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f (x, r, α) = xαer(1−xβ), (2.1)

where x ≥ 0, α > 0, β > 0, and r > 0. Our investigation is structured around the parameter α, which
guides our analysis into two distinct cases: the first case where α > 1, and the second where 0 < α ≤ 1.

2.1. Case 1. α > 1

The function f may exhibit either one or two positive fixed points, contingent upon the number
of intersections between its graph and y = x. In Figure 1, the graph of f for two distinct cases is
illustrated. In Figure 1(a,c), there are two positive equilibria, while in Figure 1(b), there is only one
positive fixed point. The next theorem will provide us with the conditions to distinguish between these
different cases.
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Figure 1. Number of intersections between graph of f and y = x

Theorem 1. For the difference Eq (1.2) with α > 1, the following statements are true:

(i) If α = rβ + 1, the Eq (1.2) has two equilibria 0 and one positive equilibrium point x̄ = 1;

(ii) If α , rβ + 1, the Eq (1.2) has three equilibria 0 and two positive equilibria x̄ = 1 and x̃.

Proof. To establish the validity of the theorem, we delve into the solutions of the equation:

x = xαer(1−xβ). (2.2)

It is evident that x = 0 and x = 1 satisfy Eq (2.2). To explore further positive solutions, we introduce
the functions:

f (x) = xαer(1−xβ), (2.3)

and
h(x) = 1 − x(α−1)er(1−xβ). (2.4)

The roots of h(x) coincide with the fixed points of f (x).
The derivative of h(x) is:

h′(x) =
[
rβxβ − α + 1

]
x(α−2)er(1−xβ),

which equals zero when x = β

√
α−1
rβ .
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Given that
h′′(x) = (α − 1)

α+β−3
β r

3−α
β β

3−α+β
β e

rβ−α+1
β > 0

for α > 1. Now, at x = β

√
α−1
rβ , function h has a minimum. For x ∈ (0, β

√
α−1
rβ ), rβxβ − α + 1 < 0,

making h decreasing on (0, β
√
α−1
rβ ). Conversely, for x ∈ ( β

√
α−1
rβ ,∞), rβxβ − α + 1 > 0, indicating h

increases on ( β
√
α−1
rβ ,∞). Hence, at x = β

√
α−1
rβ , there is a global minimum of h. Notably, h(0) = 1 and

limx→∞ h(x) = 1. If h( β
√
α−1
rβ ) = 0, then h(x) > 0 for all x , β

√
α−1
rβ , indicating h possesses one zero only

at x = 1. This condition holds true when

β

√
α − 1

rβ
= 1

which is equivalent to α = rβ + 1. When α = rβ + 1 holds, it implies that h(x) equals zero at

x = β

√
α−1
rβ = 1, thereby completing the proof of part (i).

A similar argument demonstrates that h
(
β

√
α−1
rβ

)
< 0 when α , rβ + 1. It’s noteworthy that 0 < x̃ <

β

√
α−1
rβ < 1 when α < rβ + 1. Conversely, 0 < 1 < β

√
α−1
rβ < x̃ when α > rβ + 1. □

After defining the equilibria of Eq (1.2), the subsequent focus lies in determining their local
asymptotic stability. This entails analyzing the behavior of the system in the vicinity of each
equilibrium point to discern whether small disturbances lead to a return to equilibrium over time.

Theorem 2. Consider the difference Eq (1.2) with α > 1, β > 0, and r > 0. It can be deduced that

(i) The equilibrium at 0 is locally asymptotically stable;

(ii) The equilibrium at 1 is locally asymptotically stable when α−1
β
< r < α+1

β
;

(iii) The equilibrium at x̃ is locally asymptotically stable when 1 < β

√
α−1
rβ < x̃ < β

√
α+1
rβ ;

Proof. Starting with Eq (2.1), we express the derivative f ′(x) as follows:

f ′(x) = (α − rβxβ)x(α−1)er(1−xβ).

Upon evaluation, we find that f ′(0) = 0 < 1, indicating the local asymptotic stability of the equilibrium
at 0. This concludes the proof of part (i).

For part (ii), we examine f ′(1) = α − rβ. The condition −1 < f ′(1) < 1 holds if and only if
α−1
β
< r < α+1

β
.

Turning to part (iii), let us analyze f ′(x̃) = (α− rβx̃β)x̃(α−1)er(1−x̃β), with the constraint x̃(α−1)er(1−x̃β) =

1. This yields f ′(x̃) = α − rβx̃β.

Now, the condition −1 < f ′(x̃) < 1 translates to β

√
α−1
rβ < x̃ < β

√
α+1
rβ . However, this condition cannot

hold when 0 < x̃ < 1.
To clarify this, note that x̃ and 1 are roots of the function h(x) in Eq (2.3). Moreover, this function

has a global minimum value at β

√
α−1
rβ . Therefore, if this minimum value falls within the interval (0, 1),
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for x̃ to be stable, it should satisfy the inequality β

√
α−1
rβ < x̃ < 1. However, such a scenario contradicts

the nature of the function h(x), which is increasing on the interval ( β
√
α−1
rβ ,∞). As a result, the stability

condition for x̃ can be satisfied when 1 < β

√
α−1
rβ < x̃ < β

√
α+1
rβ . □

From this theorem, it is evident that the equilibrium point x = 1 may lose its stability via a fold
bifurcation when the slope of the tangent at this point is 1. This occurs when α = rβ + 1. On the other
hand, a period-doubling bifurcation can arise when the slope of the tangent is −1, which happens when
α = rβ − 1.

As for the other positive equilibrium point, the potential bifurcation at this point is a period-doubling

bifurcation, occurring at x̃ = β

√
α+1
rβ .

Two Lemmas will now be introduced, playing a pivotal role in the analysis of the basin of attraction
encompassing equilibrium points within the difference equation referenced as (1.2).

Lemma 1. The function f (x) = xαer(1−xβ) is increasing on (0, β
√
α
rβ ) and decreasing on ( β

√
α
rβ ,∞).

Proof. By computing the derivative of f (x):

f ′(x) = (α − rβxβ)x(α−1)er(1−xβ).

The sign of f ′(x) is determined by the sign of α − rβxβ. □

Lemma 2. Consider the difference equation defined by (1.2) with rβ + 1 > α > 1. Under these
conditions, there exists x̂ , x̃ such that f (x̂) = x̃.

Proof. The function f (x) = xαer(1−xβ) achieves a global maximum at x = β

√
α
rβ , where f ( β

√
α
rβ ) > x̃. This

is due to the fact that f is increasing on the interval (0, β
√
α
rβ ) as demonstrated in Lemma 1. Furthermore,

f decreases on ( β
√
α
rβ ,∞), and limx→∞ f (x) = 0. Consequently, by the intermediate value theorem, there

must exist x̂ in the interval ( β
√
α
rβ ,∞) such that f (x̂) = x̃. □

Theorem 3. Let α > 1 and rβ + 1 > α. Consider the difference equation defined by (1.2). Suppose
there exists x̂ , x̃ such that f (x̂) = x̃. Then the basin of attraction of the equilibrium at 0 is the
set [0, x̃) ∪ (x̂,∞).

Proof. Let x0 ∈ [0, x̃). We establish by induction that {xn} remains within [0, x̃). For n = 0, this holds
since x0 ∈ [0, x̃). Assuming it holds for n = k (0 ≤ xk < x̃), we have to prove that 0 ≤ xk+1 < x̃,
as a result of that, we obtain {xn} ∈ [0, x̃) for all integers n. Given that f (x) is increasing on the

interval
(
0, β
√
α
rβ

)
according to Lemma (1), and both 0 and x̃ are equilibrium points, we can establish

the following inequality: f (0) ≤ f (xk) < f (x̃), which is equivalent to 0 ≤ xk+1 < x̃. Furthermore, since
f (x) < x on the interval (0, x̃), it follows that xn+1 = f (xn) < xn, indicating that the sequence xn is
decreasing. As a consequence, since the sequence xn is both bounded and decreasing, it is guaranteed
to converge. Thus,

lim
n→∞

xn = x ∈ [0, x̃),
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and
lim
n→∞

xn+1 = lim
n→∞

xαn er(1−xβn)

x = xαer(1−xβ).

As the only solution to x = xαer(1−xβ) in [0, x̃) is x = 0, {xn} converges to 0 if x0 ∈ [0, x̃).
For x̂ < x0 < ∞, as f (x) is decreasing on (x̂,∞), we have limx→∞ f (x) = 0 < f (x0) < f (x̂) = x̃.

This implies 0 < x1 < x̃, as previously shown to converge to 0. □

Theorem 4. Consider the difference Eq (1.2), where α > 1 and α−1
β
< r < α+1

β
. Let x̂ , x̃ satisfy

f (x̂) = x̃. Then the basin of attraction of the positive equilibrium x̄ is the interval (x̃, x̂).

Proof. Let α > rβ. In this scenario, according to Lemma (1), the global maximum of the function f (x)
exceeds 1. We proceed by dissecting the interval (x̃, x̂) into four sub-intervals to scrutinize the behavior
of the sequence {xn} within each subdivision.

Case 1. x̃ < x0 ≤ 1: We aim to demonstrate that if x0 ∈ (x̃, 1], then {xn} converges to 1. We
employ an inductive argument akin to the proof of Theorem (3). Suppose x0 ∈ (x̃, 1]. We establish,
by induction, that {xn} remains within the interval (x̃, 1]. The case n = 0 is trivial since x0 ∈ (x̃, 1].
Assume the statement holds for n = k, where k is a positive integer, i.e., x̃ < xk ≤ 1. Given that f (x) is
increasing on (0, β

√
α
rβ ) by Lemma (1), we have f (x̃) < f (xk) ≤ f (1), implying x̃ < xk+1 ≤ 1. This proves

{xn} ∈ (x̃, 1] for all integers n. Additionally, since f (x) > x on (x̃, 1], we deduce xn+1 = f (xn) > xn,
rendering {xn} an increasing sequence. As {xn} is both bounded and increasing, it converges. Hence,

lim
n→∞

xn = x ∈ (x̃, 1]

and
lim
n→∞

xn+1 = lim
n→∞

xαn er(1−xβn)

x = xαer(1−xβ).

Given that the sole solution to x = xαer(1−xβ) in (x̃, 1] is x = 1, {xn} converges to 1 if x0 ∈ (x̃, 1].
Case 2. 1 ≤ x0 < β

√
α
rβ : The proof parallels Case 1.

Case 3. β

√
α
rβ < x0 ≤ x⋆ with f (x⋆) = 1:

β

√
α

rβ
< x0 ≤ x⋆

f ( β
√
α

rβ
) > f (x0) ≥ f (x⋆)

β

√
α

rβ
> f ( β
√
α

rβ
) > x1 ≥ 1.

This aligns with Case 2.

AIMS Mathematics Volume 9, Issue 10, 29235–29249.



29241

Case 4. x⋆ ≤ x0 < x̂:
x⋆ ≤ x0 < x̂

f (x⋆) ≥ f (x0) > f (x̂)
1 ≥ x1 > x̃.

Thus, we revert to Case 1.
When α ≤ rβ, the proof can be obtained in a similar approach. □

2.2. Case 2. 0 < α ≤ 1

Theorem 5. Consider the difference Eq (1.2) with parameters satisfying 0 < α ≤ 1, β > 0, and r > 0.
This equation possesses two equilibria: one at 0 and another at the positive value of 1.

Proof. The equilibrium points of the difference Eq (1.2) correspond to the solutions of the following
equation:

x = f (x)

x = xαer(1−xβ)

0 = x − xαer(1−xβ)

0 = x
(
1 − x(α−1)er(1−xβ)

)
.

Hence, the solutions to f (x) = x are x = 0, and the solutions to 1 − x(α−1)er(1−xβ) = 0. Since x , 0,

1 − x(α−1)er(1−xβ) = 0

x(1−α) − er(1−xβ) = 0.

Define g(x) = x(1−α) − er(1−xβ). We find that g(0) = −er < 0, g(1) = 0, and limx→∞ g(x) = ∞. According
to the intermediate value theorem, since g(x) is continuous and real-valued, it must intersect the line
x = 0 at least once on the interval (0,∞). Therefore, the Eq (1.2) possesses at least one positive
equilibrium. Notice that g′(x) = (1 − α)x−α + rβx(β−1)er(1−xβ). Since 0 < α ≤ 1, g′(x) > 0 for all
x ∈ (0,∞), and g(x) is strictly increasing on (0,∞). Consequently, the Eq (1.2) has exactly one positive
equilibrium at x = 1. □

Theorem 6. Consider the difference Eq (1.2), where 0 < α ≤ 1, β > 0, and r > 0. Then the following
statements are true:

(i) The equilibrium at 0 is unstable.

(ii) If 0 ≤ rβ − 1 < α < rβ + 1, then the positive equilibrium at 1 is locally asymptotically stable.

Proof. Part (i): We compute
f ′(x) = (α − rβxβ)x(α−1)er(1−xβ)

=
α − rβxβ

x(1−α) er(1−xβ).
(2.5)

For 0 < α < 1, f ′(0) is undefined. However, limx→0+ | f ′(x)| = ∞ > 1, indicating that the equilibrium
at 0 is unstable.

When α = 1, f ′(0) = er > 1 for r > 0, hence the equilibrium at 0 is again unstable.
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Part (ii):
| f ′(1)| < 1
−1 < α − rβ < 1

rβ − 1 < α < rβ + 1.

□

The following theorem sheds light on the dynamics of populations by examining the difference
Eq (1.2). This equation serves as a representation of a population model under specific
conditions: 0 < α ≤ 1, β > 0, and r > 0. Capturing the intricate interplay between growth parameters
and environmental factors, it reflects dynamic behaviors pertinent to population dynamics. Through a
thorough analysis of its properties, we can effectively assess its suitability for modeling population
phenomena.

Theorem 7. The difference Eq (1.2) represents a population model when 0 < α ≤ 1, β > 0, and r > 0.

Proof. According to the definition of a population model presented in [1], the model xt+1 = f (xt)
represents a population model when it satisfies the following conditions:

(1) The function f is a continuous function.
(2) f (0) = 0.
(3) The model has a unique positive equilibrium point f (x̄) = x̄.
(4) f (x) > x for 0 < x < x̄ and f (x) < x for x > x̄.
(5) If f (x) has a maximum xM in (0, x̄), then f (x) is monotonically decreasing for x < xM.

It is evident that the model xn+1 = f (xn) = xαn er
(
1−xβn

)
satisfies all the above conditions. □

Theorem 8. The equilibrium point 1 of the difference Eq (1.2), when 0 < α ≤ 1, β > 0, and r > 0,
under the condition 0 ≤ rβ − 1 < α < rβ + 1, is globally stable.

Proof. The global stability of the equilibrium point is established by invoking Theorem 1 part (a)
from Cull’s study [1]. Initially, it is noted that the equilibrium point remains globally stable when
the difference equation (1.2) does not exhibit a maximum point within the interval (0, 1), a condition
satisfied when α > rβ.

Assuming the presence of a maximum point xM = β

√
α
rβ within (0, 1), Theorem 2 part (a1) in Cull’s

work [1] is invoked. This theorem implies that establishing global stability necessitates demonstrating
that f (x) = xαer(1−xβ) maintains consistent concavity within the interval (xM, x). Concavity is
investigated by ascertaining the second derivative and establishing its sign within (xM, x).

The second derivative of f (x) is expressed as:

f ′′(x) = x(α−2)er(1−xβ)
((
β2r2xβ

)2
− rβ(β + 2α − 1)xβ + α2 − α

)
.

The roots of f ′′(x) coincide with those of the following equation:(
xβ
)2
β2r2 − rβ(β + 2α − 1)xβ + α2 − α = 0. (2.6)
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These roots are expressed as:

x = β

√√
1
rβ

α + β2 − 1
2
±

√
4βα + (β − 1)2

2

. (2.7)

It is demonstrated that the roots (2.7) lie outside the interval (xM, 1) through proof by contradiction.
Assuming:

α

rβ
<

β

√√
1
rβ

α + β2 − 1
2
+

√
4βα + (β − 1)2

2

 < 1,

α < α +
β

2
−

1
2
+

√
4βα + (β − 1)2

2
< rβ,

0 <
β

2
−

1
2
+

√
4βα + (β − 1)2

2
< rβ − α < 1,

β

2
−

1
2
+

√
4βα + (β − 1)2

2
< 1,√

4βα + (β − 1)2 < 1 − β.

This last inequality is invalid for positive parameter values. Similarly, the same approach reveals that
the other root cannot reside in the interval (xM, 1). Thus, the function maintains its concavity within
the specified interval, establishing the theorem. □

3. Bifurcation analysis and numerical simulations

In this section, we embark on a comprehensive exploration of potential bifurcations inherent in
our discrete difference Eq (1.2). Initially, guided by Theorem (1), we observe the occurrence of a
fold bifurcation, where a pair of equilibrium points collide and subsequently vanish as the parameter
undergoes variation. This collision event reduces the equilibrium count to two, but as the parameter
evolves further, a new pair of equilibrium points emerges, restoring the equilibrium count to three. This
phenomenon is visually represented in Figure 1, where the diagonal y = x tangentially intersects the
function f (x) = xαer(1−xβ), precisely occurring when α = rβ + 1.

From Theorem 2, we further analyze the behavior of the equilibrium point x = 1 under different
parameter regimes. When α < rβ+1, the slope of the tangent at x = 1 can reach −1, leading to a period-
doubling bifurcation. Figure 2 presents a bifurcation diagram, illustrating how parameter variations r,
α, and β induce transitions from stable equilibria to periodic orbits and chaotic dynamics. The diagram
clearly shows how the equilibrium point x = 1 transitions from stability to a period-2 orbit, followed
by higher-order periodic orbits, ultimately culminating in chaos, a characteristic feature of nonlinear
dynamical systems.

Additionally, a period-doubling bifurcation may also occur at the other positive equilibrium point,
x̃. A similar approach can be applied to analyze the system’s behavior near this equilibrium point,
analogous to the analysis we will conduct for equilibrium point 1.
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3.1. Bifurcation Diagrams (Figure 2)

Figure 2 offers a detailed view of the system’s bifurcation structure as r increases. Initially,
the system remains stable at the equilibrium point, but as r approaches a critical value, a
period-doubling bifurcation occurs. This leads to a cascade of period-doubling bifurcations,
progressing through period-4, period-8, and eventually chaotic behavior. The bifurcation diagram is a
crucial tool that highlights how the system’s qualitative dynamics shift as parameters vary, confirming
theoretical predictions of period-doubling and chaos.

(a) for parameter r (b) for parameter α (c) for parameter β
with α = 4.5, β = 1.2 with r = 4.5, β = 1.2 with r = 2, α = 4.5

Figure 2. Bifurcation diagram of equilibrium point 1.

3.2. Cobweb Diagrams (Figure 3)

The cobweb diagrams in Figure 3 provide further insight into the iterative behavior of the system,
particularly the transition from stability to chaos as r increases. As shown, the stable equilibrium at
r = 4 transitions through a series of period-doubling bifurcations as r increases, eventually leading to
chaotic behavior beyond r = 5.07. These diagrams offer a step-by-step visual demonstration of how
the system’s dynamics unfold, with particular emphasis on the parameter sensitivity and cascading
bifurcations.

3.3. Time Series (Figure 4)

Figure 4 presents time series diagrams for the same parameter values as the bifurcation and cobweb
diagrams, providing a temporal perspective on the system’s behavior. The time series reinforce the
bifurcation and cobweb findings by showing how the state variable xn evolves over time. For smaller r,
the system remains stable, but as r increases, periodic and chaotic oscillations emerge, clearly linking
the time-domain behavior to the bifurcation phenomena discussed earlier.

3.4. Interpretation and Link to Theoretical Results

The numerical simulations across Figures 2–4, combined with the theoretical insights, offer a
robust understanding of the system’s dynamics. The fold bifurcation observed early in the analysis is
followed by a series of period-doubling bifurcations, eventually leading to chaos, a result that aligns
well with the predictions from Theorem (1). By using these diagrams as analytical tools, rather than
mere illustrations, we highlight the critical role of parameter variation in controlling system stability
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and behavior. This comprehensive exploration of bifurcations not only confirms the theoretical
framework but also deepens our understanding of the system’s complex dynamics.
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Figure 3. Cobweb diagram for various values of parameter r from 4 to 5.55.
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Figure 4. Time series diagram for various values of parameter r from 4 to 5.55.
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4. Conclusions

In conclusion, the generalized discrete Ricker map introduced in this paper extends the conventional
Ricker map by incorporating additional parameters, enhancing its versatility and applicability across
various fields. Through a comprehensive analysis of equilibria, stability conditions, and bifurcation
diagrams, we have illuminated the intricate dynamics of the generalized Ricker map, showcasing its
behavior across different parameter regimes.

Our investigation revealed that the map’s behavior is highly contingent upon the values of
parameters α, β, and r, with distinct stability properties emerging under varying parameter
combinations. The existence of multiple equilibria and their respective stability conditions underscore
the rich dynamical landscape of the generalized Ricker map, aligning with findings in the literature
while also introducing novel dynamics not previously explored in similar models.

Furthermore, our exploration of basins of attraction elucidated the regions of phase space where
trajectories converge to specific equilibria, providing crucial insights into the long-term behavior of
the system. This analysis not only enhances understanding of transient and asymptotic dynamics but
also resonates with prior studies on basin behavior, establishing a connection between our findings and
established theories in dynamical systems.

By comparing our results with previous studies that examine bifurcation structures and chaotic
dynamics in related models, we highlight the unique contributions of the generalized Ricker map.
Our results reveal new bifurcation scenarios and parameter interactions, enriching the existing body of
knowledge and suggesting implications for modeling complex systems.

Moving forward, future research endeavors may investigate extensions and refinements of the
generalized Ricker map, delving deeper into its chaotic properties, exploring higher-dimensional
analogues, and examining its applications in emerging fields such as network dynamics and machine
learning. Additionally, comparing our findings with those involving the Allee effect and other related
phenomena could further enhance the understanding of its dynamics.

In summary, the generalized discrete Ricker map stands as a testament to the enduring relevance and
utility of iterated maps in modeling complex systems, offering a rich tapestry of dynamical phenomena
ripe for exploration and discovery. By situating our findings within the broader context of existing
literature, we not only highlight the contributions made by this study but also lay the groundwork for
future research.

Author contributions

M. Y. Hamada: Investigation, Writing-original draft, Validation, Writing-review and editing; H.
El-Metwally: Conceptualization, Methodology, Investigation, Supervision; Ibraheem M. Alsulami:
Writing-original draft, Writing-review and editing. All authors have read and approved the final version
of the manuscript for publication.

Acknowledgements

We would like to thank the editor and the anonymous referees for their valuable comments and
helpful suggestions, which have led to a great improvement of the initial version.

AIMS Mathematics Volume 9, Issue 10, 29235–29249.



29248

Conflict of interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

References

1. P. Cull, Global stability of population models, Bull. Math. Biol., 43 (1981), 47–58.
https://doi.org/10.1016/S0092-8240(81)80005-5

2. P. Cull, K. Walsh, J. Wherry, Stability and instability in one dimensional pop ulation models, Sci.
Math. Japon., 67 (2008), 105–124.

3. L. Dai, Nonlinear dynamics of piecewise constant systems and implementation of piece wise
constant arguments, Singapore: World Scientific, 2008.

4. R. Devaney, An introduction to chaotic dynamical systems, London: CRC press, 2018.

5. H. El-Metwally, A. Q. Khan, M. Y. Hamada, Allee effect in a ricker type discrete time
predator–prey model with holling type-ii functional response, J. Biol. Syst., 31 (2023), 591–610.
https://doi.org/10.1142/S0218339023500201

6. S. N. Elaydi, An introduction to difference equations, New York: Springer, 2005.

7. S. N. Elaydi, Discrete chaos: with applications in science and engineering, New York: Chapman
and Hall/CRC, 2007. https://doi.org/10.1201/9781420011043

8. M. Y. Hamada, T. El-Azab, H. El-Metwally, Allee effect in a ricker type predator-prey model, J.
Math. Comput. Sci., 29 (2022), 239–251. http://dx.doi.org/10.22436/jmcs.029.03.03

9. M. Y. Hamada, T. El-Azab, H. El-Metwally. Bifurcations and dynamics of a discrete predator-prey
model of ricker type, J. Appl. Math. Comput., 69 (2022), 113–135. https://doi.org/10.1007/s12190-
022-01737-8

10. M. Y. Hamada, T. El-Azab, H. El-Metwally, Bifurcation analysis of a two-dimensional
discrete-time predator-prey model, Math. Meth. Appl. Sci., 46 (2023), 4815–4833.
https://doi.org/10.1002/mma.8807

11. R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976),
459–467. https://doi.org/10.1038/261459a0

12. J. R. Pounder, T. D. Rogers, Global stability in population models, Math. Model., 3 (1982), 207–
214. https://doi.org/10.1016/0270-0255(82)90025-2

13. A. G. Radwan, On some generalized discrete logistic maps, J. Adv. Res., 4 (2013), 163–171.
https://doi.org/10.1016/j.jare.2012.05.003

14. W. E. Ricker, Stock and recruitment, J. Fisher. Board Can., 11 (1954), 559–623.
https://doi.org/10.1139/f54-039

15. A. Sarkovskii, Coexistence of cycles of a continuous map of a line to itself, Ukr. Mat. Z., 16 (1964),
61–71.

AIMS Mathematics Volume 9, Issue 10, 29235–29249.

https://dx.doi.org/https://doi.org/10.1016/S0092-8240(81)80005-5
https://dx.doi.org/https://doi.org/10.1142/S0218339023500201
https://dx.doi.org/https://doi.org/10.1201/9781420011043
https://dx.doi.org/http://dx.doi.org/10.22436/jmcs.029.03.03
https://dx.doi.org/https://doi.org/10.1007/s12190-022-01737-8
https://dx.doi.org/https://doi.org/10.1007/s12190-022-01737-8
https://dx.doi.org/https://doi.org/10.1002/mma.8807
https://dx.doi.org/https://doi.org/10.1038/261459a0
https://dx.doi.org/https://doi.org/10.1016/0270-0255(82)90025-2
https://dx.doi.org/https://doi.org/10.1016/j.jare.2012.05.003
https://dx.doi.org/https://doi.org/10.1139/f54-039


29249

16. A. Stewart, S. Dean, J. Boffenmyer, B. Willie, The existence and stability of Equilibria of the
generalized Ricker’s model, LSU Summer Math Integrated Learning Experience, 2010.

17. S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering, Lendon: CRC press, 2018.

18. S. Wiggins, M. Golubitsky, Introduction to applied nonlinear dynamical systems and chaos, New
York: Springer, 1990. http://dx.doi.org/10.1007/978-1-4757-4067-7

19. S. Willson, Explorations into global stability of population models, 1995, 144–153.

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 29235–29249.

https://dx.doi.org/http://dx.doi.org/10.1007/978-1-4757-4067-7
https://creativecommons.org/licenses/by/4.0

	Introduction
	Fixed points: existence and stability
	Case 1. >1
	Case 2. 0<1

	Bifurcation analysis and numerical simulations
	Bifurcation Diagrams (Figure 2)
	Cobweb Diagrams (Figure 3)
	Time Series (Figure 4)
	Interpretation and Link to Theoretical Results

	Conclusions

