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Abstract: Deepfake images are combined media constructed from deep learning (DL) methods, 

usually Generative Adversarial Networks (GANs), to manipulate visual content, often giving rise to 

convincing and fabricating descriptions of scenes or people. The Bayesian machine learning (ML) 

model has made crucial strides over the past two decades, illustrating promise in diverse applications. 

In deepfake images, detection utilizes computer vision (CV) and ML to spot manipulated content by 

analyzing unique artefacts and patterns. Recent techniques utilize DL to train neural networks to 

discriminate between real and fake images, improving the fight against digital manipulation and 

preserving media integrity. These systems can efficiently detect subtle inconsistencies or anomalies 

specific to deepfake creations by learning from large datasets of both real and deepfake images. This 

enables the mitigation of fraudulent content and reliable detection in digital media. We introduce a 

new Coronavirus Herd Immunity Optimizer with a Deep Learning-based Deepfake Image Detection 

and Classification (CHIODL-DIDC) technique. The CHIODL-DIDC technique aimed to detect and 

classify the existence of fake images. To accomplish this, the CHIODL-DIDC technique initially used 

a median filtering (MF) based image filtering approach. Besides, the CHIODL-DIDC technique 

utilized the MobileNetv2 model for extracting feature vectors. Moreover, the hyperparameter tuning 

of the MobileNetv2 model was accomplished using the CHIO method. For deepfake image detection, 
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the CHIODL-DIDC technique implements the deep belief network (DBN) model. Finally, the 

Bayesian optimization algorithm (BOA) was utilized to select the effectual hyperparameter of the DBN 

model. The CHIODL-DIDC method’s empirical analysis was examined using a benchmark fake image 

dataset. The performance validation of the CHIODL-DIDC technique illustrated a superior accuracy 

value of 98.16% over other models under 𝐴𝑐𝑐𝑢𝑦, 𝑃𝑟𝑒𝑐𝑛, 𝑅𝑒𝑐𝑎𝑙, 𝐹𝑆𝑐𝑜𝑟𝑒, and MCC metrics. 

Keywords: deepfake; deep learning; image detection; coronavirus herd immunity optimizer; machine 

learning 
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1. Introduction 

The common accessibility of low-cost digital devices, including laptops, smartphones, digital 

cameras, and desktop computers, has generated the growth of multimedia material (like movies and 

photographs) on the Internet and wireless communication methods [1]. Also, in the past few years, 

social media has permitted people to rapidly communicate recorded multimedia content, resulting in a 

major evolution in multimedia content output and availability. Improved the rapidity with which fake 

and wrong data can be produced and spread, knowing the reality and believing the information has 

become gradually challenging, maybe resulting in terrible consequences [2]. Therefore, a deepfake is 

material produced by the DL model, which seems real in a human’s eyes. The word deepfake is a 

combination of the phrases DL and false, and it normally refers to material made by a deep neural 

network (DNN) that is a subdivision of an ML model. Everybody can use image and video items [3]. 

This has been accessible for numerous years owing to numerous accessible software packages that 

permit video editing, pictures, and audio [4]. The adoption of smartphone applications to perform 

automatic processes, such as audio instrumentation, lip-syncing, and face swaps, has simplified media 

manipulation. Also, DL-driven technological growths have resulted in a slide of AI-driven 

technologies that create influences that are very satisfying and realistic [5]. Each of these methods is a 

beneficial addition to the digital artist toolbox. However, when utilized maliciously to generate false 

media, they may have important negative personal or social suggestions. Deepfakes are a famous 

artificially employed media that has produced severe concern [6]. This frequently spreads false data 

by imitating politicians and dispensing revenge porn. The spread of deepfake tools provides growth to 

many anxieties and possible hazards through many businesses. One major region obstructed is cyber-

security, where the capability to operate facial images strongly increases fears about individuality theft, 

tricks, and illegal access to sensitive information [7]. 

Besides, the general usage of deepfakes poses an extensive danger to community faith, as 

malicious persons can utilize this skill to construct dishonest graphic cues, smudge the reputation of 

others, and spread misinformation. Owing to these problems, academics and researchers have been 

concentrating on developing models to identify and diminish the opposing effects of deepfakes. With 

emerging innovative techniques, the goal is to protect organizations and individuals from the latent 

damages modeled by this developing technology [8]. It contains the development prepared in CV, ML, 

and forensic study to identify vital signs of image processing and efficiently discriminate amongst 

manipulated and authentic facial imageries. Numerous techniques have been proposed to discover 

deepfakes and a major part of trust in DL models. Presently, many prominent methods have been 

proposed for recognizing fake images. However, these approaches frequently display restricted 
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generalized skills, leading to reduced performance when handled with modern manipulation or 

deepfake techniques [9]. The proliferation of affordable digital devices and widespread social media 

use has paved the way for a surge in multimedia content creation and sharing. This rapid increase has 

unfortunately been accompanied by the rise of manipulated media, which can be deceptively realistic. 

As the spread of such altered content becomes more prevalent, distinguishing genuine data from 

falsified material has become increasingly complex, potentially resulting in severe consequences. This 

challenge emphasizes the requirement for advanced detection and classification methods to resist the 

proliferation of misleading or fabricated media [10]. 

We introduce a new coronavirus herd immunity optimizer with a deep learning-based deepfake 

image detection and classification (CHIODL-DIDC) technique. The CHIODL-DIDC technique aims 

to detect and classify the existence of fake images and uses a median filtering (MF) based image 

filtering approach. Besides, the CHIODL-DIDC technique utilizes the MobileNetv2 model for 

extracting feature vectors. Moreover, the hyperparameter tuning of the MobileNetv2 model is achieved 

using the CHIO method. For deepfake image detection, the CHIODL-DIDC technique implements the 

deep belief network (DBN) model. Finally, the Bayesian optimization algorithm (BOA) is utilized to 

select the effectual hyperparameter of the DBN model. The CHIODL-DIDC method’s empirical 

analysis is examined using a benchmark fake image dataset. The major contribution of the CHIODL-

DIDC method is listed below. 

 The CHIODL-DIDC approach utilizes the MF technique to mitigate noise in images, which 

substantially improves the quality of the input data. This preprocessing step confirms that subsequent 

stages receive cleaner, more accurate data for evaluation. As a result, the overall performance of the 

visual recognition process is enhanced. 

 The CHIODL-DIDC methodology employs the MobileNetv2 technique for feature extraction, 

implementing its lightweight and effective architecture to capture robust and high-quality image 

features. This confirms that the extracted features are elaborate and computationally effective, 

improving the accuracy of the visual recognition process. 

 The CHIODL-DIDC approach integrates the CHIO technique for tuning hyperparameters, which 

refines the model’s performance by optimizing parameter settings. This methodology enhances the 

model’s accuracy and effectiveness, confirming improved outcomes in visual recognition tasks. 

 The CHIODL-DIDC model utilizes the DBN approach for image recognition, employing its DL 

capabilities to classify visual data precisely. This incorporation improves visual recognition accuracy 

by effectively learning and interpreting complex patterns in the images. 

 The CHIODL-DIDC technique implements the BOA method for additional parameter tuning, which 

refines the accuracy and effectiveness of the model. This additional optimization step improves the 

model’s performance by fine-tuning parameters to attain enhanced outcomes in visual recognition tasks. 

 The CHIODL-DIDC method innovatively incorporates diverse advanced techniques into a 

cohesive framework: MF-based preprocessing for noise reduction, MobileNetv2 for feature extraction, 

CHIO and BOA for parameter tuning, and DBN for image recognition. This multi-stage technique 

improves overall performance and effectiveness, setting a new standard by seamlessly integrating these 

techniques to optimize every stage of the visual recognition process. 

The remaining sections of the article are arranged as follows: In Section 2, we provide the 

literature review. In Section 3, we show the proposed method. Then, we provide the results in Section 4. 

In Section 5, we complete the work. 
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2. Related works 

Sushir et al. [11] presented an optimum blind forgery recognition utilizing DL techniques. The 

VGGNet and Hybrid dual-tree complex wavelet trigonometric transform (Hybrid DTT) is employed 

for extraction. The feature dimensional is decreased over improved horse herd optimizer (IHH). At 

last, the hybrid deep convolutional capsule autoencoder (Hybrid DCCAE) structure is employed for 

recognition. In [12], the fisherface linear binary pattern histogram utilizing the DBN (FF-LBPH DBN) 

model has been executed. Deepfake face image operations were analyzed by employing the proposed 

technique, which also formed a higher stage of performance. The function of preprocessing is 

completed by utilizing Kalman filtering to recognize fake imageries in a modified detection. A fusion 

of the FF-LBPH model used the decrease in the dimensionality of features. Ghosh et al. [13] 

proposed a method for removing the imagery content, categorizing it, and confirming digital 

imageries’ reality (genuine or forged). The technique utilizes CNN to identify genuine and fake 

images. The error rate bid information and the DL technique have been employed for additional 

solutions. Hashmi et al. [14] introduced a strong technique for fake news recognition. This method 

combined FastText word embedding with numerous ML and DL models. Particularly, a hybrid method 

uniting CNN and LSTM, supplemented with FastText embedding, exceeded other methods. Moreover, 

advanced transformer-based methods like XLNet, BERT, and RoBERTa are used to improve them 

over hyperparameter alterations. Boyd et al. [15] proposed a ConveY Brain Oversight training 

approach to Raise Generalization (CYBORG). These novel methods include human-annotated 

saliency mapping into the loss function, which directs the model’s learning to concentrate on imagery 

areas. The Class Activation Mapping (CAM) device was employed to inquire about the model’s 

saliency in every training batch and correct huge dissimilarities. 

Li et al. [16] proposed a novel generation technique utilizing a one-class classification method. 

The technique projected in this paper has subsequent features such as numerous filter enhancement 

models; an enhanced Multi-Channel CNN (MCCNN) has been implemented as the foremost system; 

the method increased the data utilizing weakly supervised learning techniques and trained it in dual 

stages. The 1st and 2nd steps used a corresponding dual and one-class classification loss function. 

Dwivedi and Wankhade [17] developed a semantically improved multi-modal fake news recognition 

technique that uses pre-trained language methods to seize contained factual knowledge and openly 

removes visual objects to recognize the deep semantics of multi-modal news better. This method 

removes noticeable features at dissimilar semantic levels, utilizes a text-guided attention mechanism 

to model semantic relations among text and imageries, and combines multi-modal features. The 

authors [18] presented a cooperative DL-based false news recognition method. The proposed method 

utilizes consumer responses to evaluate news faith stages, and news position was defined as dependent 

upon these values. High-ranked content is known as real news, whereas low-ranked news is conserved 

for language processing to safeguard its strength. The CNN technique was employed to turn consumer 

feedback into positions in the layer of DL. Zhang et al. [19] propose a methodology using weighted 

and evolving ensemble models with 3D CNNs and CNN-RNNs. This technique utilizes a Particle Swarm 

Optimization (PSO) approach, which improves network topologies and learning parameters through 

advanced techniques such as Muller’s method and reinforcement learning. Chen et al. [20] introduce a 

DeepFake detection technique that incorporates a Variational Autoencoder (VAE) and a GAN 

model (D-VAEGAN). It also extracts an encoder and decoder to reconstruct clean images from low-

dimensional features. It also uses an additional discriminative network and feature similarity loss to 

enhance image quality and adversarial robustness. 
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Omar et al. [21] present a bagging ensemble classifier to detect manipulated faces in videos by 

utilizing CoAtNet. This methodology integrates depthwise convolution and self-attention layers to 

enhance feature extraction and capture local and global data. The model classifies videos as real or 

fake by training on random data subsets and aggregating predictions. CutMix data augmentation is 

employed to improve generalization and localization. Yang et al. [22] introduce a multi-modal forgery 

detection technique that integrates face recognition, video frame extraction, and rPPG signal analysis 

utilizing 3D and 2D CNNs, incorporated through a stacking approach for enhanced accuracy. Hasanaath 

et al. [23] introduce a Frequency Enhanced Self-Blended Images (FSBI) methodology for deepfake 

detection. It utilizes Discrete Wavelet Transforms (DWT) to extract features from self-blended images, 

which mix an image with its own copy to introduce forgery artefacts. Rangarajan et al. [24] developed 

an AI model by utilizing the DenseNet121 model for detecting fake images. Ilyaset al. [25] present the 

AVFakeNet framework for deepfake detection, utilizing both audio and visual modalities. The model 

features the Dense Swin Transformer Net (DST-Net) method, which incorporates dense layers in the 

input and output blocks and a custom Swin Transformer module for feature extraction. Ige et al. [26] 

propose a versatile framework incorporating DL and Random Forest methodologies to improve 

phishing attack detection through image analysis, speech synthesis from deep fake videos, and natural 

language processing models. Liu et al. [27] introduce a deepfake detector that utilizes a Noise Residual 

Unit (NRU) to emphasize features by comparing Gaussian-noise-degraded images with their high-

pass-filtered versions, generating a Noise Residual Image (NRI). 

The limitations of the existing studies encompass difficulties in handling high-dimensional 

feature spaces and intrinsic backgrounds, which can affect the robustness of forgery recognition. 

Others might encounter high computational costs or require extensive data for efficient training and 

generalization across varied fake image manipulations. Some techniques may face difficulties scaling 

to large datasets or incorporating diverse data types effectually. There are also threats related to the 

detection of growing forgery methods and the accuracy of consumer feedback in cooperative 

approaches. Furthermore, complex frameworks integrating diverse modalities or DL methods may be 

less practical for real-time applications due to their computational demands and integration issues. 

Existing techniques for deepfake detection encounter threats with high-dimensional feature spaces, 

scalability, and the growing behavior of forgery techniques. There is a requirement for more effectual, 

scalable solutions that integrate various data types and adapt to new manipulation methods while 

maintaining real-time applicability.  

3. The proposed model 

This article introduces a new CHIODL-DIDC method. The method aims to detect and classify 

fake images. To obtain this, it comprises several stages: Image preprocessing, MobileNetv2-based 

feature extractor, CHIO-based parameter tuning, DBN-based image recognition, and BOA-based 

parameter tuning. Figure 1 represents the flow from the CHIODL-DIDC technique. 
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Figure 1. Overall workflow of the CHIODL-DIDC technique. 

3.1. Image pre-processing 

Initially, the CHIODL-DIDC technique uses an MF-based image-filtering approach [28]. 

Choosing the MF model for image filtering is justified due to its efficient performance in noise 

reduction while preserving significant image details. Unlike linear filters, the MF method operates 

non-linearly by replacing each pixel with the median value of its neighboring pixels, which is 

specifically effective at removing salt-and-pepper noise without blurring edges. This methodology 

outperforms in situations where other filters, namely Gaussian, might blur the image and lose crucial 

structural details. MF approach is computationally efficient and simple to implement, making it 

appropriate for real-time applications. Furthermore, it maintains the integrity of edge data, which is 

crucial for subsequent processing phases such as feature extraction and classification. Thus, MF-based 

filtering gives a robust balance between noise reduction and detail preservation, making it a 

superior choice for improving image quality in various CV tasks. Figure 2 illustrates the structure 

of the MF model. 
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Figure 2. Structure of the MF model. 

MF is a nonlinear image processing methodology that reduces noise while preserving edges in 

images. It replaces the pixel value with the median value of adjacent pixels within the definite kernel 

window. Unlike linear filters, like mean or Gaussian filtering, MF is beneficial at eliminating salt-and-

pepper noise, where isolated pixels are very dark or brighter than their surroundings. This makes it a 

standard option for optimizing image quality in different applications, such as digital photography, 

medical imaging, and satellite images. 

3.2. MobileNetv2 model 

Next, the CHIODL-DIDC technique applies the MobileNetv2 model to extract feature vectors [29]. 

Applying the MobileNetv2 method for feature vector extraction is advantageous due to its balance 

between effectualness and accuracy. MobileNetv2 approach is designed with depthwise separable 

convolutions, which substantially reduce computational complexity while maintaining high 

performance, making it a precise choice for resource-constrained environments. This lightweight 

architecture enables faster processing and lower latency related to more complex models without 

compromising the quality of feature representation. The model’s efficient utilization of the parameters 

and layers confirms that it can extract detailed and discriminative features from images, which is 

significant for robust visual recognition tasks. Furthermore, MobileNetv2’s pre-trained weights 

provide a strong starting point for transfer learning, improving its feature extraction efficiency across 

diverse applications. Its suitability for deployment on mobile and edge devices underscores its practical 

merit in real-world scenarios. Figure 3 depicts the architecture of the MobileNetv2 method. 

 

Figure 3. Architecture of MobileNetv2 approach. 
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MobileNetV2 model helps as the feature extraction module in the structure, enhanced mainly for 

efficacy in embedded vision, mobile uses, and edge devices. This efficacy was vital for real skin 

disorder tasks of classification where fast analysis is vital, particularly for spreadable disorders such 

as chickenpox, measles, and monkeypox. If a few of these diseases are spreadable, there is a vital need 

for rapid, exact analysis to originate on-time treatment and separation processes. The structure of the 

MobileNetV2 method contains dual vital methods: Inverted residuals and depthwise separable 

convolutions. These methods contribute to their efficacy, making them suitable for real resource-

constrained device studies. Then, the dual essential modules of the MobileNetV2 method are defined. 

The MobileNetV2 method improves efficacy by utilizing depth-wise separable convolution, 

which distinguishes the convolutional procedure into dual layers, decreasing parameters and 

computations. The first layer, depth-wise convolution, uses a filter for every input channel. The second 

layer, pointwise convolution, unites these distinct channel outputs into a novel feature map utilizing 

1x1 convolutional filters. This procedure permits the system to mix data from the dissimilar networks, 

enabling it to learn more compound features. 

This procedure can be signified as below: 

1) Depth-wise Convolution: Uses a filter 𝑓𝑑 individually to every network of the input 𝑋. For every 

channel 𝑐, the output 𝐷 is calculated as: 

(𝐷𝑐)𝑖,𝑗 = ∑ ∑ (𝑛𝑚 𝑓𝑑,𝑐)𝑚,𝑛 ⋅ 𝑋𝑐,𝑖+𝑚,𝑗+𝑛, ∀𝑐 ∈ {1,… , 𝐶},     (1) 

where (𝐷𝑐)𝑖,𝑗 signifies the output for network 𝑐 at location (𝑖, 𝑗), the filter 𝑓𝑑 is used separately for 

every channel 𝑐 of the input. 

2) Pointwise Convolution: Unites the depthwise output utilizing a 1x1  convolutional layer 𝑓𝑝 , 

resulting in the final output 𝑌 as: 

𝑌𝑖,𝑗,𝑘 = ∑ (𝑐
𝑚=1 𝑓𝑝)𝑘,𝑚 ⋅ 𝐷𝑖,𝑗,𝑚, ∀𝑘 ∈ {1, … , 𝐶

′}.      (2) 

Here, 𝑌𝑖,𝑗,𝑘 denotes the final output, uniting the depth-wise output. Correspondingly, C and 𝐶′ 

represent the channel counts in the input and output from the pointwise convolution. 

The depth-wise separable convolution efficiently reduces computation weight while holding the 

capability to procedure compound features. The complete process is stated as follows: 

𝑌𝑖,𝑗,𝑘 = ∑ (𝑐
𝑚=1 𝑓𝑝)𝑘,𝑚 ⋅ (∑ ∑ (𝑏𝑎 𝑓𝑑)𝑎,𝑏 ⋅ 𝑋𝑚,𝑖+𝑎,𝑗+𝑏).     (3) 

MobileNetV2 presents inverted residuals, conflicting with classical residual networks’ 

transformation, expansion, and contraction bottleneck plans. This technique tracks a series of 

expansion, depth-wise convolution, and projection, improving the efficacy and feature of model 

protection. It is conveyed below: 

𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 → 𝐷𝑒𝑝𝑡ℎ𝑤𝑖𝑠𝑒 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 → 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛.    (4) 

This series in MobileNetV2 inverts the convention residual block technique, concentrating on 1st 

increasing and improving the feature networks for improved efficacy and feature representation. The 

facts of these procedures are defined below: 

1) Expansion: An inverted residual block that is responsible for growing the number of networks in 

the feature maps. When 𝐶 is the channel count in the feature of input maps 𝑋, the layer of expansion, 

the channel quantity turns into 𝛼 × 𝐶. Furthermore, 𝛼 denotes the expansion factor (generally larger 

than one). This process is signified below: 

𝑋 → 𝑋𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 (𝑆ℎ𝑎𝑝𝑒: 𝛼 × 𝐶 × 𝐻 ×𝑊).      (5) 
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2) Depth-wise Convolution: Executed on the extended feature maps. This outcome in a novel feature 

maps 𝐷 with a similar quantity of channels 𝛼 × 𝐶 but classically with decreased spatial sizes 𝐻′ ×𝑊′. 

The process is mathematically signified as: 

𝐷𝑖,𝑗,𝑚 = ∑ ∑ (𝑏𝑎 𝑓𝑑)𝑎,𝑏 ⋅ 𝑋𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑,𝑖+𝑎,𝑗+𝑏,𝑚, ∀𝑚 ∈ {1,… , 𝛼 × 𝐶}.   (6) 

3) Projection: 𝐴 1x1 (pointwise convolution) plans the feature maps into a low-dimension space with 

𝐶′ networks. This process may be denoted as: 

𝐹𝑖,𝑗,𝑘 = ∑ 𝐷𝑖,𝑗,𝑚
𝛼×𝐶
𝑚=1 ⋅ (𝑓𝑝)𝑘,𝑚, ∀𝑘 ∈ {1,… , 𝐶

′}.      (7) 

Here, 𝐹 denotes the last feature maps with sizes 𝐶′ ×𝐻′ ×𝑊′. 

3.3. CHIO-based hyperparameter tuning 

Here, the hyperparameter tuning of the MobileNetv2 model is performed using the CHIO 

method [30]. In this segment, the mathematical method of the CHIO method was demonstrated at the 

levels mentioned below. Utilizing the CHIO method for hyperparameter tuning is highly advantageous 

due to its innovative optimization approach inspired by herd immunity dynamics. CHIO leverages a 

unique mechanism that simulates the spread of immunity in a population, enabling it to explore and 

exploit the hyperparameter space efficiently. This method balances exploration and exploitation 

effectively, leading to better convergence on optimal parameter settings. The ability of CHIO to escape 

local minima and adaptively fine-tune parameters enhances the model’s performance and 

generalization. Its robust performance in optimizing complex models makes it particularly valuable 

for DL tasks, where precise hyperparameter tuning is crucial for achieving high accuracy and reliability. 

The CHIO model’s efficiency in handling large search spaces and its novel approach provide 

significant advantages over traditional optimization techniques. Figure 4 demonstrates the structure of 

the CHIO model. 

 

Figure 4. Architecture of the CHIO technique. 
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3.3.1. Initialize parameters 

𝑚𝑖𝑛𝑓(𝑥)       𝑥 ∈ [𝑙𝑏, 𝑢𝑏].        (8) 

Moreover, 𝑓(𝑥) denotes the objective function (rate of immunity) intended for every case. 

𝑥 = (𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛),        (9) 

wherein, 𝑥𝑖 indicates the gene graded by 𝑖, and 𝑛 signifies the entire quantity of the decision variable. 

𝑥𝑖 ∈ [𝑙𝑏𝑖 , 𝑢𝑏𝑖].         (10) 

Now, 𝑙𝑏𝑖 and 𝑢𝑏𝑖 represent the lower and upper limit of the gene 𝑥𝑖, respectively. 

The algorithm of CHIO contains dual control parameters: 

 Basic reproduction rate (𝐵𝑅𝑟): It manages the operators of CHIO by distributing the virus between 

persons. 

 Maximum diseased case age (𝑀𝑎𝑥𝐴𝑔𝑒 ): Decide the diseased case position. If a case attains 

𝑀𝑎𝑥𝐴𝑔𝑒, then it is retrieved or deceased.  

The CHIO procedure contains an additional four parameters: 

 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟: Signifies the highest iteration count. 

 𝐶0: This value embodies the quantity of main diseased cases that generally are one. 

 𝐻𝐼𝑆: Denotes the dimension of population. 

 𝑛: Signifies the size of the problem. 

3.3.2. Producing a herd immunity population (HIP) 

CHIO produces a group of individual cases, such as 𝐻𝐼𝑆. The group of produced individuals was 

kept as a dual-dimension matrix of 𝑛 × 𝐻𝐼𝑆 in the 𝐻𝐼𝑃 as below: 

𝐻𝐼𝑃 = [

𝑥1
1 𝑥2

1 ⋯ 𝑥𝑛
1

𝑥1
2 𝑥2

2 ⋯ 𝑥𝑛
2

𝑥1
𝐻𝐼𝑆 𝑥2

𝐻𝐼𝑆 ⋯ 𝑥𝑛
𝐻𝐼𝑆

],       (11) 

whereas every row signifies 𝑥𝑗 , which is computed as below: 

𝑥𝑖
𝑗
= 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑈(0,1)      ∀𝑖 = 1,2,3, … . , 𝑛. 

∀𝑗 = 1,2,3, … . , 𝐻𝐼𝑆.         (12) 

The objective function was computed for every case utilizing Eq (8).  

The fitness for every searching agent has been fixed as below: 

𝑆𝑗 = 0     ∀𝑗 = 1,2,3,… . , 𝐻𝐼𝑆, 

𝐴𝑗 = 0    ∀𝑗 = 1,2,3, … . , 𝐻𝐼𝑆, 

whereas 𝑆 denotes the vector of status. 
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3.3.3. Corona-virus herd immunity progress 

In this segment, the foremost development loop of CHIO was introduced. The gene (𝑥𝑖
𝑗
 ) of the 

case (𝑥𝑗) also endures the similar or turns into categorized as a diseased, immune, or vulnerable case 

as per the ratio of 𝐵𝑅𝑟 as below: 

𝑥𝑖
𝑗
(𝑡 + 1) ←

{
 
 

 
 𝑥𝑖

𝑗(𝑡)           𝑟 ≥ 𝐵𝑅𝑟

𝐶 (𝑥𝑖
𝑗(𝑡))       𝑟 <

1

3
× 𝐵𝑅𝑟 ∕∕ 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑎𝑠𝑒

𝑁 (𝑥𝑖
𝑗(𝑡))       𝑟 <

2

3
× 𝐵𝑅𝑟 ∕∕ 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 𝑐𝑎𝑠𝑒

𝑅 (𝑥𝑖
𝑗(𝑡))       𝑟 < 𝐵𝑅𝑟 ∕∕ 𝑖𝑚𝑚𝑢𝑛𝑒𝑑 𝑐𝑎𝑠𝑒 }

 
 

 
 

.   (13) 

Here, 𝑟 refers to a randomly generated value between 0 and 1. 

For diseased cases: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝐶 (𝑥𝑖

𝑗(𝑡)), 

𝐶 (𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑐(𝑡)).      (14) 

Now, 𝑥𝑖
𝑗(𝑡 + 1) signifies the novel gene, and 𝑥𝑖  (𝑡) is nominated at random reliant on the vector 

status (𝑆) from the case of unhealthy 𝑥𝑐  as 𝑐 = {𝑖|𝑆𝑖 = 1}, and 𝑟 denotes the arbitrarily produced 

value between 0 and 1. 

For vulnerable cases: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝑁 (𝑥𝑖

𝑗(𝑡)), 

𝑁 (𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑚(𝑡)),     (15) 

whereas, 𝑥𝑖
𝑗(𝑡 + 1) represents the novel gene, and 𝑥𝑖

𝑚(𝑡) is selected at random dependent upon the 

vector of status (𝑆) from every case of vulnerable 𝑥𝑚 as 𝑚 = {𝑖|𝑆𝑖 = 0}, and 𝑟 refers to the randomly 

formed among 𝑧𝑒𝑟𝑜 and 𝑜𝑛𝑒. 

For immune cases: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝑅 (𝑥𝑖

𝑗(𝑡)), 

𝑅 (𝑥𝑖
𝑗(𝑡)) = 𝑥𝑖

𝑗(𝑡) + 𝑟 × (𝑥𝑖
𝑗(𝑡) − 𝑥𝑖

𝑦(𝑡)),     (16) 

wherein 𝑥𝑖
𝑗(𝑡 + 1) refers to the novel gene and the value 𝑥𝑖

𝑦
(𝑡) is selected arbitrarily dependent upon 

the vector of status (𝑆) from any case of immune 𝑥𝑦 as 𝑓(𝑥𝑣) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑗{𝑘|𝑆𝑘=2}𝑓(𝑥
𝑗). 

3.3.4. Upgrade the HIP 

For every produced case 𝑥𝑗(𝑡 + 1), the rate of immunity 𝑓 (𝑥𝑖
𝑗(𝑡 + 1)) is computed, and when 

the produced case 𝑥𝑗(𝑡 + 1) is superior to the existing one 𝑥𝑗(𝑡) like  𝑓 (𝑥𝑗(𝑡 + 1)) < 𝑓 (𝑥𝑗(𝑡)), the 

existing one is substituted by the produced one. 

When the status vector (𝑆𝑗 = 1), the age vector (𝐴𝑗) was enlarged by 1. 
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Depending upon the threshold of herd immunity, every case 𝑥𝑗(𝑡) of (𝑆𝑗) was upgraded as 

follows: 

𝑆𝑗 ←

{
 

 1  𝑓 (𝑥𝑗(𝑡 + 1)) <
𝑓(𝑥𝑗(𝑡+1))

∆𝑓(𝑥)
⋀𝑆𝑗 = 0 ⋀ 𝑖𝑠_ 𝐶𝑜𝑟𝑜𝑛𝑎(𝑥

𝑗(𝑡 + 1))  

2                                        𝑓 (𝑥𝑗(𝑡 + 1)) >
𝑓(𝑥𝑗(𝑡+1))

𝑓(𝑥)
⋁ 𝑆𝑗 = 1 }

 

 
.  (17) 

Following calculation: If, ∆𝑓(𝑥) =
∑ 𝑓(𝑥𝑖)
𝐻𝐼𝑆
𝑖=1

𝐻𝐼𝑆
. 

Whereas, 𝑖𝑠_𝐶𝑜𝑟𝑜𝑛𝑎 (𝑥𝑗(𝑡 + 1)) signifies a dual value equivalent to one in the novel 𝑥𝑗(𝑡 + 1), 

which obtained values from the diseased case, and ∆𝑓(𝑥) embodies the mean value. 

3.3.5. Fatality cases 

Suppose the rate of immunity (𝑓 (𝑥𝑗(𝑡 + 1))) of the existing diseased cases does not increase 

for a precise iteration period. In that case, it is definite by the parameters 𝑀𝑎𝑥_𝐴𝑔𝑒  like 𝐴𝑗 ≥

𝑀𝑎𝑥_𝐴𝑔𝑒, and then it was measured deceased. Where it is restored from scratch utilizing the below-

given expression: 

𝑥𝑖
𝑗(𝑡 + 1) = 𝑙𝑏𝑖 + (𝑢𝑏𝑖 − 𝑙𝑏𝑖) × 𝑈(0,1).      (18) 

If ∀𝑖 = 1,2, … . , 𝑛, 𝑆𝑗 and 𝐴𝑗 are fixed to 0. 

3.3.6. Stop criterion 

CHIO repeats the major loop till the highest iteration count is attained. The complete immune 

cases count furthermore to the vulnerable cases expertise the population and the diseased persons 

vanish. 

3.4. Deepfake image detection using DBN and BOA models 

Finally, the CHIODL-DIDC technique uses the DBN model for deepfake image detection. DBN 

is a multilayer probability-based generalization model widely used in complicated datasets’ 

classification and feature learning [31]. Selecting DBNs and BOA models for deepfake image 

detection utilizes their unique strengths. DBNs, with their layered structure, outperform in learning 

complex features from large datasets, making them greatly efficient for detecting subtle patterns 

indicative of deepfakes. Their capability to capture hierarchical features and model high-dimensional 

data improves the accuracy of the detection. On the contrary, BOA is employed for optimizing 

hyperparameters, which substantially enhances the model’s performance by effectually navigating the 

parameter space to find the best configuration. This methodology confirms that the DBN model 

operates at its highest potential. Compared to other techniques, the DBN model presents robust feature 

extraction capabilities, while the BOA model provides a systematic method for parameter tuning, 

delivering greater detection accuracy and effectualness. 

DBN effectively combines the features of NNs with probabilistic graphical models, enabling the 

processing of high‐dimensional and nonlinear information. DBNs are generalization modules that 

differentiate themselves by learning the joint distribution of information—an ability that exceeds 
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classification in the new data sample generation. The DBN architecture includes numerous hidden 

layers (HLs) that learn distinct representations and features of the data. This renders DBN especially 

useful in extracting features from complicated structures of data. The training method of DBN is a 

multi‐stage system, which maximizes the characterization and capture of the input dataset. The layer‐

wise pretraining and global finetuning are the two processes of DBN. Figure 5 demonstrates the 

structure of DBN. 

 

Figure 5. Architecture of the DBN model. 

The Restricted Boltzmann Machines (RBMs) have multiple layers that capture features from 

different input datasets and are independently trained during layer‐wise pretraining. This enables us to 

concentrate solely on learning feature representation from the input received. RBM’s succeeding layer 

utilizes the previous layer’s output as an input. As a result, the RBM in the bottom layer of the network 

is proficient at learning essential features. The top layer gradually extracts complex and abstract feature 

representations. 

ℎ𝑗 = 𝑤𝑖𝑗𝑣𝑖 + 𝑏𝑗, 

𝑣𝑖 = 𝑤𝑖𝑗ℎ𝑗 + 𝑎𝑖,          (19) 

where ℎ𝑗  and 𝑏𝑗 are the 𝑗𝑡ℎ neurons output and bias of HL; 𝑣𝑖 and 𝑎𝑖 are the 𝑖𝑡ℎ neurons input and the 

visible layer (VL) bias; and 𝑤𝑖𝑗 refers to the weight connecting among the neurons of the VL and HL. 
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𝐸(𝜈, ℎ) = −∑ 𝑎𝑖
𝑛
𝑖=1 𝜈𝑖 − ∑ 𝑏𝑗

𝑚
𝑗=1 ℎ𝑗 − ∑ ∑ 𝜈𝑗

𝑚
𝑗=1

ℎ
𝑖=1 𝑤𝑖𝑗ℎ𝑗,    (20) 

𝑃(𝑣) =
∑ 𝑒−𝐸(𝑣,ℎ)ℎ

∑ 𝑒−𝐸(𝜈,ℎ) 
𝜈,ℎ

,         (21) 

where 𝑃(𝑣)  and 𝐸(𝜈, ℎ) are the probability distribution functions of VL of each layer in the RBM, ℎ 

and 𝑚 are the number of neurons in the VL and HLs, correspondingly. 

𝑃(𝑣𝑖 = 1|ℎ) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑎𝑖 + ∑ ℎ𝑗
𝑚
𝑖=1 𝑤𝑖𝑗).     (22) 

Assume the neuron’s independence within the similar layer; it can evaluate the probability related 

to the weight 𝑣𝑖 = 1 

𝑃(ℎ𝑗 = 1|𝑣) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑏𝑗 +∑ 𝑣𝑗
𝑛
𝑖=1 𝑤𝑖𝑗).     (23) 

Likewise, the probability related to the activation function ℎ𝑗 = 1 is evaluated: 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)  =
1

1+exp(−𝑥)
.       (24) 

𝜃∗ = argmax∑ 𝐼𝑛𝑝 (𝑣𝑡)𝑇
𝑡=1 .       (25) 

The RBM pretraining aims to attain optimum parameters, represented as parameters 𝜃 , to 

accomplish the DBN architecture with the fitting effect. Here, the model‐generated probability and the 

sample statistical probability within the DBN are maximized. In Eq (25), 𝑇  indicates the overall 

training instances. 

Global finetuning involves the complete transformation of a DBN based on the Backpropagation (BP) 

model, following the pretraining of each layer. This stage aims to correct the biases and weights 

through the network, which enables better data prediction and representation. The BP model updates 

the parameter from the topmost layer Using the error gradient, thus improving the predictive 

capabilities of the network. The importance of the finetuning stage lies in its incorporation of single-

layer learning, which ensures the effective representations of the DBN’s data. The DBN obtains initial 

parameters after pre‐training. The finetuning stage focuses on enhancing the model’s fitting 

performance. Finetuning is used to adjust the initial parameter layer-wise downwards via a less labeled 

dataset attained during pretraining, beginning at the top layer of DBN. The SoftMax function is 

typically applied as the last classification by the BP model, which performs the finetuning process. 

Once the DBN model includes 𝑙 RBMs, the output of pretraining is given below: 

𝑢𝑙(𝑥) =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑎𝑙 + 𝑤𝑙𝑢(𝑙−1)(𝑥)).      (26) 

The SoftMax function defines the DBN output by detecting the class with the maximum likelihood 

as the prediction classes. This efficiently transforms the output into the distribution probability through 

the predicted class, which facilitates the classifier task by highlighting the possible classes. 

Initially, the DBN is determined. Next, the optimal selection of weight and threshold in the DBN 

model is randomized, which directly connects the iteration time to the network parameters and 

negatively affects the global search ability. This technique consistently navigates the optimization of 

DBN parameters in the training module, improving the predictive accuracy and the model’s learning 

efficiency. 

Next, the hyperparameter tuning of the DBN model takes place with the use of BOA. BOA is 

commonly utilized in ML, DL hyperparameter tuning, neural network structure search, engineering 

design optimizer, automatic ML, etc. [32]. Owing to its capability to discover the optimum 
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hyperparameter formation in moderately some iteration, hence securing computational sources, it is 

repeatedly used for issues that comprise discovering the finest hyperparameter setting. In this paper, 

to improve the hyperparameter of the forecast method, the BO is applied to optimize a parameter. 

During the state of a new function, the BO values the subsequent objective function distribution 

depending upon recognized data and preceding distribution and picks the subsequent sample point 

depending upon the distribution.  

The exact steps are given below: 

1) Make the initial sample point at random in the optimizer limit of the hyperparameter model. Input 

this step into the Gaussian procedure and train the subsequent method. Estimate and alter the 

Gaussian method built on the value of loss output by the objective function of models, permitting 

the method for estimating the accurate function distribution; 

2) once the Gaussian method is assessed and adapted, utilize the sample function to select the 

subsequent set of sample points to input into the technique for training. Acquire novel values of output 

for the model’s loss of objective function by upgrading the Gaussian method and the sample sets; 

3) when the loss value of nominated sample points of new encounters the needs, end the procedure 

and yield the presently nominated finest parameter sequence beside by the equivalent loss value 

of the objective function; 

4) when the loss value of the nominated sample points of new doesn’t meet the needs, upgrade the 

sample point in the sample sets and go back to Stage 2. Then, go again to assess and alter the 

Gaussian method until the conditions are met. 

The BOA method derives an FF to obtain better classification results. It defines a positive integer 

to characterize the candidate solution’s best performances. Now, the decline of the classifier error rate 

can be implicit by FF.  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100.     (27) 

4. Experimental validation 

The performance analysis of the CHIODL-DIDC model is studied using 140k real and fake faces 

datasets from the Kaggle repository [33]. The dataset holds 2500 real and 2400 fake images, as defined 

in Table 1. Figure 6 portrays the sample of real and fake images.  

Table 1. Details on database. 

Classes No. of samples 

Real 2500 

Fake 2400 

Total samples 4900 
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Figure 6. Sample images (a) real and (b) fake. 

Figure 7 depicts the confusion matrices created by the CHIODL-DIDC method on different epoch 

counts. The outcome shows that the CHIODL-DIDC method effectively detects the real and fake 

samples under each class label. The outcomes portray the performance of the technique across diverse 

epochs. At Epoch 500, the “Real” class has a TP of 99.06% and an FN of 0.47%, while the “Fake” 

class has a TP of 97.22% and an FN of 1.39%. By Epoch 1000, the “Real” class TP improves to 99.66% 

with an FN of 0.16%, and the “Fake” class TP is 94.96% with an FN of 2.59%. Epoch 1500 shows 

similar trends with TP for the “Real” class at 99.57%. At Epoch 2500, TP for “Real” is 99.70% with 

an FN of 0.20%, and TP for “Fake” is 94.17% with an FN of 3.02%. By Epoch 3000, TP for “Real” is 

99.65% with an FN of 0.14%, while TP for “Fake” ranges from 91.68% to 93.26%, with FNs between 

3.53% and 4.43%. 
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Figure 7. Confusion matrices of CHIODL-DIDC model (a–f) Epochs 500–3000. 

In Table 2 and Figure 8, extensive fake image detection results of the CHIODL-DIDC technique 

are reported. The results stated that the CHIODL-DIDC technique reaches effectual performance under 

all epochs. With 500 epoch counts, the CHIODL-DIDC methodology obtains an average 𝑎𝑐𝑐𝑢𝑦 of 

98.16%, 𝑝𝑟𝑒𝑐𝑛 of 98.14%, 𝑟𝑒𝑐𝑎𝑙 of 98.16%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.14%, and MCC of 96.30%. Additionally, 

with 1000 epochs, the CHIODL-DIDC method obtains an average 𝑎𝑐𝑐𝑢𝑦 of 97.29%, 𝑝𝑟𝑒𝑐𝑛 of 97.31%, 

𝑟𝑒𝑐𝑎𝑙 of 97.29%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 97.24%, and MCC of 94.60%. Besides, with 1500 epochs, the CHIODL-

DIDC method obtains an average 𝑎𝑐𝑐𝑢𝑦  of 96.87%, 𝑝𝑟𝑒𝑐𝑛  of 96.92%, 𝑟𝑒𝑐𝑎𝑙  of 96.87%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 

96.82%, and MCC of 93.79%. Likewise, with 2000 epoch counts, the CHIODL-DIDC approach gains 

an average 𝑎𝑐𝑐𝑢𝑦  of 96.18%, 𝑝𝑟𝑒𝑐𝑛  of 96.28%, 𝑟𝑒𝑐𝑎𝑙  of 96.19%, 𝐹𝑠𝑐𝑜𝑟𝑒  of 96.12%, and MCC of 

92.48%. Last, with 3000 epochs, the CHIODL-DIDC method obtains an average 𝑎𝑐𝑐𝑢𝑦 of 95.49%, 

𝑝𝑟𝑒𝑐𝑛 of 95.67%, 𝑟𝑒𝑐𝑎𝑙 of 95.49%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 95.41%, and MCC of 91.16%.  
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Table 2. Fake image detection outcome of CHIODL-DIDC technique under various epochs.  

Classes 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 MCC 

Epoch-500 

Real 97.28 99.06 97.28 98.16 96.30 

Fake 99.04 97.22 99.04 98.12 96.30 

Average 98.16 98.14 98.16 98.14 96.30 

Epoch-1000 

Real 94.92 99.66 94.92 97.23 94.60 

Fake 99.67 94.96 99.67 97.26 94.60 

Average 97.29 97.31 97.29 97.24 94.60 

Epoch-1500 

Real 94.08 99.66 94.08 96.79 93.79 

Fake 99.67 94.17 99.67 96.84 93.79 

Average 96.87 96.92 96.87 96.82 93.79 

Epoch-2000 

Real 92.80 99.57 92.80 96.07 92.48 

Fake 99.58 93.00 99.58 96.18 92.48 

Average 96.19 96.28 96.19 96.12 92.48 

Epoch-2500 

Real 93.08 99.70 93.08 96.28 92.87 

Fake 99.71 93.26 99.71 96.38 92.87 

Average 96.39 96.48 96.39 96.33 92.87 

Epoch-3000 

Real 91.32 99.65 91.32 95.30 91.16 

Fake 99.67 91.68 99.67 95.51 91.16 

Average 95.49 95.67 95.49 95.41 91.16 
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Figure 8. Average outcome of CHIODL-DIDC technique (a–f) Epochs 500–3000. 

The classifier outcomes of the CHIODL-DIDC method are graphically shown in Figure 9 for 

validation accuracy (VALA) and training accuracy (TRAA) curves over dissimilar epoch counts. The 

figure shows valuable insight into the behavior of the CHIODL-DIDC method over different epochs, 

demonstrating its generalization abilities and learning process. Notably, the figure indicates the 

consistent development in the TRAA and VALA with maximum epoch counts. It confirms the wide-

ranging nature of the CHIODL-DIDC approach within the pattern recognition technique on both 

datasets. The increasing tendency in VALA describes the capability of the CHIODL-DIDC model for 

adapting the TRA dataset. Also, it outshines in providing the correct classifier of the unseen dataset, 

indicating robust generalization ability. 
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Figure 9. 𝐴𝑐𝑐𝑢𝑦 curve of CHIODL-DIDC technique (a–f) Epochs 500–3000. 

Figure 10 exhibits a detailed review of the validation loss (VALL) and training loss (TRLA) 

results of the CHIODL-DIDC technique across several epoch counts. The gradual decrease in TRLA 

underlines the CHIODL-DIDC technique’s improvement in the weights and lowering of the 

classification error on both datasets. The figure clearly shows the CHIODL-DIDC methods’ 

association with the TRA dataset, which emphasizes its capacity for capturing patterns within both 

data. The CHIODL-DIDC method frequently improves its parameters in minimizing the discrepancies 

between the real TRA and prediction classes. 
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Figure 10. Loss curve of CHIODL-DIDC method (a–f) Epochs 500–3000. 

Examining the PR analysis, as shown in Figure 11, the outcomes confirmed that the CHIODL-

DIDC technique gradually achieves the maximum PR performance through all the classes over various 

epochs. It confirms the better capabilities of the CHIODL-DIDC method in detecting numerous class 

labels, showing the ability to recognize classes.  

Moreover, in Figure 12, the ROC investigation produced by the CHIODL-DIDC method 

outperforms the classifier of different labels over different epochs. It offers a complete review of the 

trade-off between FRP and TPR over epoch counts and threshold values. This figure emphasizes the 

superior classification outcomes of the CHIODL-DIDC technique at each class label, describing the 

efficiency of responding to various classifier problems. 
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Figure 11. PR curve of CHIODL-DIDC technique (a–f) Epochs 500–3000. 

 

Figure 12. ROC curve of CHIODL-DIDC method (a–f) Epochs 500–3000. 

The deepfake image detection results of the CHIODL-DIDC technique are compared with 

existing studies in Table 3 and Figure 13 [34,35]. The results highlighted that the Cooccurrence model 
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has reached poor performance, whereas the GRAMNet model has gained slightly boosted results. 

Moreover, the ResNet50V2, DenseNet201, and MMGANGuard models have obtained closer 

performance. However, the CHIODL-DIDC technique surpassed existing models with a maximum 

𝑎𝑐𝑐𝑢𝑦 of 98.16%, 𝑝𝑟𝑒𝑐𝑛 of 98.14%, 𝑟𝑒𝑐𝑎𝑙 of 98.16%, and 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.14%. 

Table 3. Comparative analysis of CHIODL-DIDC technique with existing approaches [34,35]. 

Model 𝐴𝑐𝑐𝑢𝑦 𝑃𝑟𝑒𝑐𝑛 𝑅𝑒𝑐𝑎𝑙 𝐹𝑆𝑐𝑜𝑟𝑒 

GRAM Net 94.61 93.02 97.02 95.02 

Cooccurrence 92.61 91.01 94.02 93.01 

ResNet50V2 96.01 98.02 95.01 96.02 

DenseNet201 96.02 95.01 98.02 96.01 

MMGANGuard 97.01 96.02 98.02 97.02 

Xception 92.29 93.74 97.16 96.70 

DSP-FWA 93.62 95.32 93.55 93.58 

B4ATT 92.37 93.47 97.14 96.54 

E-TAD 93.45 93.51 93.96 97.73 

MCX-API 97.80 96.83 97.37 92.75 

CHIODL-DIDC 98.16 98.14 98.16 98.14 

 

Figure 13. Comparative analysis of CHIODL-DIDC technique with existing approaches. 

The comparative computational time (CT) examination of the CHIODL-DIDC method with 

existing studies is shown in Table 4 and Figure 14. The outcomes highlighted that the co-occurrence 

method has obtained poor performance. In contrast, the GRAMNet model has obtained slightly lesser 

outcomes. Moreover, the ResNet50V2, DenseNet201, and MMGANGuard techniques have attained 

closer performance. However, the CHIODL-DIDC method surpassed existing approaches with a 
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minimum CT of 6.71s. Additionally, techniques such as Xception, DSP-FWA, B4ATT, E-TAD, and 

MCX-API portrayed moderate outcome of 8.64s, 11.42s, 11.56s, 9.26s, and 9.03s. Thus, the CHIODL-

DIDC method is employed for a superior detection process. 

Table 4. CT analysis of CHIODL-DIDC technique with existing approaches. 

Model CT (Sec) 

GRAM Net 8.64 

Cooccurrence 11.42 

ResNet50V2 11.56 

DenseNet201 9.26 

MMGANGuard 9.03 

Xception 8.64 

DSP-FWA 11.42 

B4ATT 11.56 

E-TAD 9.26 

MCX-API 9.03 

CHIODL-DIDC 6.71 

 

Figure 14. CT analysis of CHIODL-DIDC technique with existing approaches. 

5. Conclusions 

In this study, a new CHIODL-DIDC method is introduced. The CHIODL-DIDC method aims to 

detect and classify the existence of fake images. To perform this, the CHIODL-DIDC approach 

contains various stages, namely image preprocessing, MobileNetv2-based feature extractor, CHIO-

based parameter tuning, and DBN-based image detection. Initially, the CHIODL-DIDC technique uses 
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an MF-based image filtering approach. Besides, the CHIODL-DIDC technique utilizes the 

MobileNetv2 model for extracting feature vectors. Moreover, the hyperparameter tuning of the 

MobileNetv2 technique is performed using the CHIO model. For deepfake image detection, the 

CHIODL-DIDC technique uses the DBN model. Finally, the DBN technique uses the BOA model for 

effectual hyperparameter selection. The empirical analysis of the CHIODL-DIDC technique is 

examined by utilizing a benchmark fake image dataset. The performance validation of the CHIODL-

DIDC technique illustrates a superior accuracy value of 98.16% over other models. The limitations of 

the CHIODL-DIDC approach comprise potential threats with high-dimensional data and varying 

image quality, which may affect the accuracy of preprocessing and feature extraction stages. 

Furthermore, the dependence on specific tuning methods could pave the way to suboptimal 

accomplishment in diverse scenarios. Researchers should concentrate on improving the adaptability of 

the methodology to handle a wider range of image qualities and conditions and exploring alternative 

optimization methods to enhance overall system robustness and effectualness. Expanding the 

technique to comprise more advanced ML methods and integrating real-time processing capabilities 

may improve its applicability. 
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