
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 29031–29052.
DOI: 10.3934/math.20241409
Received: 29 July 2024
Revised: 25 September 2024
Accepted: 09 October 2024
Published: 14 October 2024

Research article

Performance analysis of the convex non-convex total variation denoising
model

Yating Zhu, Zixun Zeng, Zhong Chen, Deqiang Zhou and Jian Zou*

School of Information and Mathematics, Yangtze University, Jingzhou, Hubei, China

* Correspondence: Email: zoujian@yangtzeu.edu.cn.

Abstract: Total variation (TV) regularization is a powerful tool in image denoising, but it often
exhibits limited performance in preserving edges. In contrast, non-convex TV regularization can
more effectively preserve edges and contours, albeit posing challenges when solving. Recently, the
convex non-convex (CNC) strategy has emerged as a potent approach that allows incorporating non-
convex TV regularization terms while maintaining the overall convexity of the objective function. Its
superior performance has been validated through various numerical experiments; however, theoretical
analysis remains lacking. In this paper, we provided theoretical analysis of the performance of the
CNC-TV denoising model. By utilizing the oracle inequality, we derived an improved upper bound
on its performance compared to TV regularization. In addition, we devised an alternating direction
method of multipliers (ADMM) algorithm to address the proposed model and verified its convergence
properties. Our proposed model has been validated through numerical experiments in 1D and 2D
denoising, demonstrating its exceptional performance.
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1. Introduction

Image denoising aims to reduce or eliminate the noise in the image degradation process while
maintaining the basic features of the image [1]. Mathematically, the image degradation process can be
expressed as

y = θ∗ + ε, (1.1)

where θ∗ ∈ Rn is the original image, y ∈ Rn is the observed image, and ε is the additive white
Gaussian noise (AWGN) with variance σ2, i.e., ε ∼ N(0, σ2In). The concept of total variation (TV) is
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a mathematical measure that quantifies the level of variation or change present in an image, measuring
how rapidly the pixel intensities change across neighboring pixels. In cases where an image contains
noise, its pixel intensities exhibit random fluctuations, resulting in high TV values. By minimizing the
TV of an image while preserving crucial features such as edges and textures, we can effectively reduce
noise and enhance its quality [2–7]. The standard TV estimator θ̂ can be mathematically defined as

θ̂ = arg min
θ

1
2n
∥y − θ∥22 + λ∥θ∥TV , (1.2)

where regularization parameter λ > 0 is used to control the trade-off between the fidelity term 1
2n ||y−θ||

2
2

and the TV regularization ||θ||TV . n is the pixel size of the image. By introducing a first-order difference
matrix D ∈ Rn×n, the TV regularization ||θ||TV can be represented by the ℓ1 norm, i.e., ||θ||TV = ||Dθ||1.

Due to the convexity of the ℓ1 norm, the TV denoising model (1.2) possesses several advantages,
such as having an objective function devoid of redundant local minima and ensuring a unique
minimum. However, owing to the inherent property of biased estimation associated with the ℓ1 norm,
this model may also underestimate the magnitude of signal discontinuity [8–10].

The limitations of TV regularization can be overcome by employing non-convex TV regularization,
which not only enhances image texture details but also sharpens edges more effectively [11–13]. This
non-convex TV denoising model can be described as follows:

θ̂ = arg min
θ

1
2n
||y − θ||22 + λΨ

NC(Dθ), (1.3)

where ΨNC(·) is a non-convex function such as the ℓq norm with 0 < q < 1 [14, 15]. However, the
cost function of (1.3) is usually non-convex and often has an extraneous local minimum, which brings
challenges when solving.

Recently, Selesnick and Lanza et al. proposed a novel non-convex TV regularization for signal and
image denoising [9]. This type of non-convex regularization enables the cost function to become
convex by adjusting the non-convex control parameters, thereby addressing the limitations of TV
regularization and avoiding unnecessary local minima in the cost function. The concept, later known
as convex non-convex total variation (CNC-TV) [9, 16, 17], has been widely utilized in various fields
such as medical image reconstruction [18–20], fault diagnosis [21, 22], and computer vision [23, 24].
The advantages of CNC-TV are twofold: First, the utilization of non-convex regularization not only
effectively suppresses noise but also preserves image edge and texture information. Second, by
adjusting the non-convexity control parameters, the global convexity of the objective function can be
ensured, thereby enabling the attainment of the global optimal value through convexity optimization
algorithms [25, 26]. However, to the best of our knowledge, most of the research on CNC-TV focuses
on algorithm design and applications, with a lack of theoretical analysis of performance such as [27].
This motivates us to conduct a thorough analysis on the performance of the CNC-TV estimator to
substantiate that CNC-TV regularization surpasses TV regularization.

In this paper, we consider the following CNC-TV denoising model:

θ̂ = arg min
θ

1
2n
||y − θ||22 + λΨ

CNC
B (Dθ). (1.4)

The matrix parameter B in (1.4) not only controls the non-convexity of the non-convex regularization
term ΨCNC

B (Dθ), but also guarantees the global convexity of the cost function in (1.4).
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Through rigorous theoretical analysis and comprehensive experimental evaluations, we show that
the utilization of non-convex TV regularization significantly enhances the performance of the CNC-TV
estimator, enabling accurate estimation of signal discontinuity. In summary, our contributions can be
succinctly summarized as follows:
• Theoretically, for the CNC-TV denoising model, we first establish the conditions necessary to

ensure global convexity of the cost function. Subsequently, by employing the oracle inequality, we
derive an improved upper bound on performance compared to that of the standard TV denoising model.
• Algorithmically, we derive an ADMM algorithm that ensures convergence to a critical point for

the proposed CNC-TV denoising model.
• Empirically, we demonstrate that the proposed CNC-TV denoising model outperforms the

standard TV denoising model in both 1D and 2D denoising experiments, owing to its utilization of
non-convex regularizations.

The paper is structured as follows. In Section 2, we present some preliminaries and related
works related to non-convex TV regularization, performance analysis results, and convex optimization
algorithms. In Section 3, we give a theoretical analysis of the performance of the CNC-TV denoising
model and further propose an effective ADMM algorithm to solve it. The superiority of the proposed
model is validated in Section 4 through both 1D and 2D denoising experiments. Finally, the
conclusions are summarized in Section 5.

Notation: Throughout this paper, for a matrix A, AT and A† represent its transpose and Moore-
Penrose pseudo-inverse, respectively. σmax and σmin denote the maximum eigenvalue and minimum
eigenvalue of matrix A. ker(A) and ker(A)⊥ denote the kernel space and orthogonal complement space
of matrix A. Moreover, 0 ≺ A indicates that matrix A is positive definite, while 0 ⪯ A implies that
matrix A is positive semi-definite. Then we use the symbolO(n) to indicate the efficiency or complexity
of comparing different algorithms. For a set T ⊂ {1, 2, ..., n}, |T | and T c denote its cardinality and
complement. For θ ∈ Rn, its ℓ1 norm, ℓ2 norm, and ℓ∞ norm can be defined as ∥θ∥1 =

∑n
i=1 |θi|,

∥θ∥2 =
√∑n

i=1 θ
2
i , and ∥θ∥∞ = max1≤i≤n |θi|. For a function f (θ), we use ∇ f (θ) to denote the gradient or

subdifferential of f (θ).

2. Primary and related work

2.1. Non-convex TV regularization

Standard TV denoising can be typically formulated as a convex optimization problem that
incorporates an ℓ1 regularization term. However, it has a drawback in the sense that it tends to
underestimate the magnitudes of abrupt changes in the signal. To address this limitation, non-convex
TVq (0 < q < 1) regularization is proposed, which can be expressed as ∥Dθ∥q (0 < q < 1) [14, 15].
The effectiveness of edge preservation in TVq is further enhanced by incorporating non-convex sparse
regularization. However, due to its non-convex nature, the TVq regularization introduces challenges in
algorithm design as it may lead to convergence toward local optima [28].

By leveraging the advantages of non-convex regularization and convex optimization techniques,
Selesnick and Lanza et al. [9] proposed a CNC design strategy for designing non-convex TV
regularization, thereby ensuring the global convexity of the objective function. In essence, this is
achieved by subtracting its smooth version from the TV regularization, with different smoothing
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techniques yielding distinct forms of non-convex TV regularization [29]. The most notable
among these is the generalized Moreau envelope TV (GME-TV) regularization [9], which can be
mathematically defined as follows:

ΨGME
B (Dθ) = ∥Dθ∥1 − arg min

v

{
∥v∥1 +

1
2
∥B(Dθ − v)∥22

}
. (2.1)

The last term in (2.1), denoted as

S B(Dθ) = arg min
v

{
∥v∥1 +

1
2
∥B(Dθ − v)∥22

}
, (2.2)

represents the generalized Moreau envelope of ∥Dθ∥1, which is a commonly used smoothing technique.
The matrix parameter B is utilized to adjust the smoothness of S B(Dθ) and consequently affects the
non-convexity of ΨGME

B (Dθ). Specifically, when B = 0, then S B(Dθ) = 0, and ΨGME
B (Dθ) reduces to

the TV regularization term ∥Dθ∥1. When BT B is a diagonal matrix, i.e. B =
√

bI, then ΨGME
B (Dθ)

simplifies to the generalized minimax-concave TV (GMC-TV) regularization introduced in [30].

2.2. Performance analysis results

In accordance with the conventions followed in the literature on image denoising [27, 31–33], the
performance of a TV estimator θ̂ is evaluated by the high-probability upper bound on its mean squared
error (MSE), which is defined by

1
n
∥θ̂ − θ∗∥22. (2.3)

The presentation of upper bounds is accomplished through the utilization of oracle inequalities,
which serve as theoretical assurances for the estimator θ̂ in terms of its ability to capture the underlying
structure of θ∗ and adapt accordingly.

Let n represent the total number of pixels in the image. Mammen and Van De Geer [31] first defined
total variation by total derivatives and achieved an estimation rate of order O(n−3/5). Wang et al. [33]
investigated the more comprehensive framework of trend filtering on graphs and obtained a rate
of order O(n−4/5). Hütter and Rigollet [27] established sharp oracle inequalities with a rate of
O(n−1/2). Sadhanala et al. [34] demonstrated that the penalized TVD estimator achieves an optimal
near minimax rate of O(n−1/2). Chatterjee and Goswami [35] analyzed the recovery of piecewise
rectangular images through the constrained version of 2D total variation denoising, providing a rate
of O(n−3/4). Varma et al. [36] determined the statistical error rates associated with first-order stationary
points in graph trend filtering, employing non-convex regularizations like smoothly clipped absolute
deviation (SCAD) and minimax concave penalty (MCP). A more detailed summary of the oracles
results on TV denoising can be found in [37–39].

The analysis of error rates in our study utilizes techniques from [27] that yield precise error rates
through the use of oracle inequalities. Here, we present some basic definitions and conclusions
from [27], which will also be used in the theoretical analysis of this paper.

We first give the definitions of the compatibility factor and inverse scaling factor as follows.
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Definition 2.1. ( [27], Definition 1) Let D be a first-order difference matrix, and the compatibility
factor of D for a set T ⊆ [m] is defined as

κ∅ := 1, κT = κT (D) := inf
θ

√
|T |∥θ∥2
∥(Dθ)T ∥1

for T , ∅. (2.4)

Moreover, the inverse scaling factor of D is defined as

ϱ = ϱ(D) := max
j∈[m]

∥∥∥s j

∥∥∥
2
. (2.5)

Then the sharp oracle inequality for TV denoising in [27] is expressed as Theorem 2.1.

Theorem 2.1. ( [27], Theorem 2) Fix δ ∈ (0, 1),T ⊂ [m], and let D be the first-order difference matrix.
Define the regularization parameter

λ :=
1
n
σϱ

√
2 log

(em
δ

)
. (2.6)

With this choice of λ, and for ∀θ̄ ∈ Rn, the TV estimator θ̂ satisfies

1
n
∥θ̂ − θ∗∥22 ≤ inf

θ̄

{
1
n

∥∥∥θ̄ − θ∗∥∥∥2
+ 4λ

∥∥∥(Dθ̄)T c

∥∥∥
1

}
+

8σ2

n

(
|T |ϱ2

κ2T
log

(em
δ

)
+ log

(e
δ

))
, (2.7)

on the estimation error with a probability of at least 1 − 2δ.

2.3. Convex optimization algorithms

For the following optimization problem:

min
β
{ f1(θ) + f2(θ)} , (2.8)

where f1(θ) is convex and differentiable, f2(θ) is a proper closed, convex, but nonsmooth
regularization term. The proximal gradient descent (PGD) [40] and alternating direction method of
multipliers (ADMM) [41] algorithms exhibit excellent performance in solving such problems, with
theoretical guarantees of convergence. The iterative formulas for these algorithms for solving (2.8) are
represented as

θk+1 = proxα f2(θ
k − α∇ f1(θk)), (PGD)

and 
θk+1 = proxα f1(z

k + uk),

zk+1 = proxα f2(θ
k+1 − uk),

uk+1 = uk + θk+1 − zk+1.

(ADMM)

Furthermore, prox f (·) is the proximal operator of f , which is defined as

prox f (θ) = arg min
v

{
f (v) +

1
2
∥θ − v∥22

}
. (2.9)

As a special case, if f (θ) = λ∥θ∥1, then its proximal operator proxλ∥·∥1 is the element-wise soft
thresholding function

proxλ∥·∥1(θi) = sgn(θi) max {|θi| − λ, 0} , (2.10)

where θi is the i-th element of θ.
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3. CNC-TV

In this section, we analyze the CNC-TV denoising model both theoretically and algorithmically. In
particular, we consider the following GME-TV denoising model:

θ̂ = arg min
θ

1
2n
∥y − θ∥22 + λΨ

GME
B (Dθ), (3.1)

where the GME-TV regularization ΨGME
B (Dθ) is defined as (2.1), and the matrix parameter B can

influence the non-convexity of ΨGME
B (Dθ) and further the global convexity of the cost function in (3.1).

We first give the convexity condition of the cost function in (3.1), and then we analyze the
performance of the GME-TV estimator. Finally, we solve the GME-TV denoising model (3.1) by
the ADMM algorithm and prove the convergence.

3.1. Convexity condition

In this subsection, we verify that the cost function in (3.1) can be guaranteed to be convex by
selecting the appropriate non-convex control parameter B.

Theorem 3.1. Let θ ∈ Rn, λ > 0, B ∈ Rp×n, define the loss function of (3.1) as

f GME
B (θ) =

1
2n
∥y − θ∥22 + λ∥Dθ∥1 − λmin

v

{
1
2
∥B(Dθ − v)∥22 + ∥v∥1

}
. (3.2)

Then, f GME
B (θ) is convex if DT BT BD ⪯ (1/λ)I, and f GME

B (θ) is strong convex if DT BT BD ≺ (1/λ)I.

Proof. We first rewrite (3.2) as follows:

f GME
B (θ) =

1
2n
∥θ − y∥22 + λ∥Dθ∥1 − λmin

v

{
∥v∥1 +

1
2
∥B(Dθ − v)∥22

}
=

1
2n
∥θ − y∥22 + λ∥Dθ∥1 +

λ

2
∥BDθ∥22 − λmin

v

{
∥v∥1 +

1
2
∥Bv∥22 − vT BT B(Dθ)

}
=

1
2n
θT (I − λ(BD)T (BD))θ +

1
2n
∥y∥22 −

1
n
θT y + λ∥Dθ∥1

+ λmax
v

{
−∥v∥1 + (Bv)T B(Dθ) −

1
2
∥Bv∥22

}
. (3.3)

Next, we analyze the convexity of each term of the last equation in (3.3). First, −1
nθ

T y is a linear
function with respect to θ, thus it is inherently convex. Second, λ∥Dθ∥1 represents the ℓ1 norm form of
Dθ, which is also known to be convex. Moving on to the last term, since the expression within the curly
braces is affine and therefore convex with respect to θ, and considering that the point-wise maximum
of a set of convex functions remains convex, it can be concluded that this particular term is also convex
when considered in relation to θ. Consequently, the overall convexity of f GME

B (θ) solely relies on the
first term 1

2nθ
T (I − λ(BD)T (BD))θ. If DT BT BD ⪯ (1/λ)I holds true, then I − λ(BD)T (BD) becomes

positive semidefinite and as a result, f GME
B (θ) exhibits convexity. Conversely, if DT BT BD ≺ (1/λ)I,

then I − λ(BD)T (BD) turns out to be positive definite leading to strong convexity being displayed by
f GME
B (θ).
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The convexity conditions mentioned above can be maintained by constructing the matrix
parameter B. Following a similar approach as in [30], one simple way to determine the value of
parameter B is

BD =
ζ
√
λ

I, 0 ≤ ζ ≤ 1. (3.4)

When 0 < ζ < 1, then DT BT BD = (ζ/λ)I satisfies the convexity condition. When ζ = 0, we
have B = 0 and the GME-TV regularization ΨGME

B (Dθ) reduce to the TV regularization ∥Dθ∥1. When
ζ = 1, (3.2) is satisfied with equality, resulting in a ”maximally” non-convex regularization.

According to Theorem 3.1, we can deduce the following corollary, which is useful in our proof of
algorithm convergence.

Corollary 3.1. For all µ ≥ λσmaxI, λΨGME
B (Dθ) + µ2∥Dθ∥

2
2 is convex, where the σmax is the largest

eigenvalue of BT B.

Corollary 3.1 can be derived by replacing µ2∥θ∥
2
2 with 1

2n∥y− θ∥
2
2 in (3.3), following the proof process

of Theorem 3.1.

3.2. Performance analysis

In this subsection, we analyze the performance of the GME-TV estimator (3.1), and use the oracle
inequality to get an upper bound on the error rates, which is better than the upper bound of the standard
TV estimator (1.2).

We consider a general GME-TV estimator (3.1), that is, the GME-TV regularization term is non-
convex and does not necessarily satisfy the convexity condition given by Theorem 3.1. Due to the
non-convexity, it is possible that the global minimum of the proposed GME-TV estimator cannot be
achieved. Therefore, it is crucial to comprehensively understand the statistical performance of any first-
order stationary points of the GME-TV estimator, making it more desirable in practical applications.
We define θ̂ ∈ Rp as a stationary point of FGME

B (θ) when it fulfills

0 ∈ ∇θ f GME
B (θ)|θ=θ̂. (3.5)

The compatibility factor, as defined by Definition 2.1, allows us to derive the subsequent oracle
inequality that is relevant to the stationary points of the GME-TV estimator (3.1).

Theorem 3.2. (Sharp oracle inequality for the GME-TV estimator) Let D be the first-order difference
matrix, and σmax and σmin be the maximum and minimum eigenvalues of BT B, respectively. The

regularization parameter λ is set as λ = 1
nσϱ

√
2 log

(
em
δ

)
. For the fixed δ ∈ (0, 1), 0 < µ < 1

n∥D∥22
and T ⊂ [m], the GME-TV estimator θ̂ defined in (3.1) satisfies

1
n
∥θ̂ − θ∗∥22 ≤ inf

θ

{
1
n

∥∥∥θ̄ − θ∗∥∥∥2

2
+ 4λΨGME

√
σmaxI

((Dθ̄)T c) + 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̄)
}

+
16σ2

n(1 − nµ∥D∥22)

(
|T |ϱ2

κ2T
log(

em
δ

) + log(
e
δ

)
)
. (3.6)
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Proof. Since θ̂ is a stationary point of f (θ), according to the definition of a subgradient, we have

0 ∈ ∇θ f (θ)|θ=θ̂ =
1
n

(θ̂ − y) + ∇θΨGME
B (Dθ)|θ=θ̂. (3.7)

Furthermore, by the chain rule, we have

∇θΨ
GME
B (Dθ)|θ=θ̂ = DT sign(Dθ) + DT BT B

(
Dθ −min

v

{
∥v∥1 +

1
2
∥B(Dθ − v)∥22

})
. (3.8)

Then by (3.8), there exist z ∈
{
sign(Dθ) + BT B

(
Dθ −min

v

{
∥v∥1 + 1

2∥B(Dθ − v)∥22
})}

such that

1
n

(y − θ̂) = λDT z. (3.9)

In particular, for ∀θ̄ ∈ Rn, we have

1
n
θ̄T (y − θ̂) = λθ̄DT z = λ

(
Dθ̄

)T
z. (3.10)

Moreover, for a specific θ̂, we have

1
n
θ̂T (y − θ̂) = λ(Dθ̂)T z. (3.11)

By subtracting (3.11) from (3.10) and in accordance with the definition of a subgradient, we obtain

1
n

(y − θ̂)(θ̄ − θ̂)T = λz(Dθ̄ − Dθ̂)T ≤ ΨGME
B (Dθ̄) − ΨGME

B (Dθ̂). (3.12)

Considering the model y = θ∗ + ε and utilizing the polarization equality, i.e., 2xT y = ∥x∥22 + ∥y∥
2
2 −

∥x − y∥22, we can reformulate the left-hand side of (3.12) as

1
n

(θ∗ − θ̂ + ε)(θ̄ − θ̂)T =
1
n

[
(θ̄ − θ̂)T

(
θ∗ − θ̂

)
+ εT (θ̄ − θ̂)

]
=

1
2n
∥θ̄ − θ̂∥22 +

1
2n
∥θ∗ − θ̂∥22 −

1
2n
∥θ̄ − θ∗∥22 +

1
n
εT (θ̄ − θ̂). (3.13)

For ∀θ ∈ Rn, the combination of (3.12) and (3.13) yields

1
2n
∥θ̂ − θ̄∥22 +

1
2n
∥θ̂∗ − θ̂∥22 ≤

1
2n
∥θ̄ − θ∗∥22 +

2
n
εT (θ̄ − θ̂) + λΨGME

B (Dθ̄) − λΨGME
B (Dθ̂). (3.14)

Next, we will analyze each term on the right-hand side of (3.14) separately.
We first address εT (θ̄− θ̂). Let Π and I −Π denote the projection matrices onto ker(D) and ker(D)⊥,

respectively. Moreover, we have D†D = (I −Π). With the the decomposition ε = (Πε)T + ((I −Π)ε)T ,
we have

εT (θ̂ − θ̄) = (Πε)T (θ̂ − θ̄) + ((I − Π)ε)T (θ̂ − θ̄)
= (Πε)T (θ̂ − θ̄) + εT D†D(θ̂ − θ̄)
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≤ ∥Πε∥2∥θ̂ − θ̄∥2 + ∥(D†)Tε∥∞∥D(θ̂ − θ̄)∥1. (3.15)

The last inequality in (3.15) is derived from Hölder’s inequality, i.e., xT y ≤ ∥x∥p + ∥y∥q with 1/p +
1/q = 1.

By using the maximal inequality for Gaussian random variables [42], we have

∥Πε∥2 ≤ 2σ
√

2 log(e/δ), (3.16)

and

∥
(
D†

)T
ε∥∞ ≤ σϱ

√
2 log(em/δ) = λn, (3.17)

with a probability of at least 1 − 2δ.
The substitution of (3.17) into (3.15) yields

2
n
ε⊤(θ̂ − θ̄) ≤ 2λ∥D(θ̂ − θ̄)∥1 +

2
n
∥Πε∥2∥θ̂ − θ̄∥2. (3.18)

By using λ∥Dθ∥1 ≤ λΨGME
√
σmaxI

(Dθ) + µ2∥Dθ∥
2
2 and ∥D(θ̂ − θ)∥22 ≤ ∥D∥

2
2∥θ̂ − θ∥

2
2, we have

2
n
εT (θ̂ − θ̄) ≤ 2λΨGME

√
σmaxI

(D(θ̂ − θ̄)) + µ∥D(θ̂ − θ̄)∥22 +
2
n
∥Πε∥2∥θ̂ − θ̄∥2. (3.19)

Substituting (3.19) into (3.14), we obtain

1
n
∥θ̂ − θ̄∥22 +

1
n
∥θ̂∗ − θ̂∥22 ≤

1
n
∥θ̄ − θ∗∥22 +

2
n
∥Πε∥2∥θ̂ − θ̄∥2 + µ∥D∥22∥θ̂ − θ̄∥

2
2

+ 2λΨGME
√
σmaxI

(D(θ̂ − θ̄)) + 2λΨGME
B (Dθ̄) − 2λΨGME

B (Dθ̂). (3.20)

For the GME-TV regularization ΨGME
B (Dθ̄), we have

ΨGME
B (Dθ̄) = ∥Dθ̄∥1 −min

v

{
∥v∥1 +

1
2
∥B(Dθ̄ − v)∥22

}
≤ ΨGME

√
σminI

(Dθ̄), (3.21)

and

ΨGME
B (Dθ̂) = ∥Dθ̂∥1 −min

v

{
∥v∥1 +

1
2
∥B(Dθ̂ − v)∥22

}
≥ ΨGME

√
σmaxI

(Dθ̂). (3.22)

After substituting (3.21) and (3.22) into (3.20), we can rewrite (3.20) as

1
n
∥θ̂ − θ̄∥22 +

1
n
∥θ̂∗ − θ̂∥22 ≤

1
n
∥θ̄ − θ∗∥22 +

2
n
∥Πε∥2∥θ̂ − θ̄∥2 + µ∥D∥22∥θ̂ − θ̄∥

2
2

+ 2λΨGME
√
σmaxI

(D(θ̂ − θ̄)) + 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̂)

=
1
n
∥θ̄ − θ∗∥22 +

2
n
∥Πε∥2∥θ̂ − θ̄∥2 + µ∥D∥22∥θ̂ − θ̄∥

2
2

+ 2λΨGME
√
σmaxI

(D(θ̂ − θ̄)) + 2λΨGME
√
σmaxI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̂)

+ 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̄). (3.23)
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Note that for any T , ΨB(Dθ) = ΨB((Dθ)T ) + ΨB((Dθ)T c). Consequently, by utilizing the triangular
inequality and subadditivity and symmetry of ϱ, we obtain

ΨGME
√
σmaxI

(D(θ̂ − θ̄)) + ΨGME
√
σmaxI

(Dθ̄) − ΨGME
√
σmaxI

(Dθ̂)

≤ΨGME
√
σmaxI

((D(θ̂ − θ̄))T ) + ΨGME
√
σmaxI

((Dθ̄)T c) + ΨGME
√
σmax

((Dθ̂)T c)

+ ΨGME
√
σmaxI

(Dθ̄) − ΨGME
√
σmaxI

((Dθ̂)T ) − ΨGME
√
σmaxI

((Dθ̂)T c)

=ΨGME
√
σmaxI

((D(θ̂ − θ̂))T ) + 2ΨGME
√
σmaxI

((Dθ)T c) + ΨGME
√
σmaxI

((Dθ)T ) − ΨGME
√
σmaxI

((Dθ̂)T )

≤ 2ΨGME
√
σmaxI

((D(θ̂ − θ̄))T ) + 2ΨGME
√
σmaxI

((Dθ̄)T c). (3.24)

For ΨGME
√
σmaxI

((D(θ̂ − θ̄))T ) in (3.24), we have

ΨGME
√
σmaxI

((D(θ̂ − θ̄))T ) ≤ ∥D(θ̂ − θ̄)T∥1 ≤ κ−1
T

√
|T |∥θ̂ − θ̄∥2. (3.25)

The last inequality is based on the definition of a compatibility factor in Definition 2.1.
Next, through the integration of (3.23)–(3.25), we can derive

1
n
∥θ̂ − θ̄∥22 +

1
n
∥θ̂∗ − θ̂∥22 ≤

1
n
∥θ̄ − θ∗∥22 +

2
n
∥Πε∥2∥θ̂ − θ̄∥2 + µ∥D∥22∥θ̂ − θ̄∥

2
2 + 4λκ−1

T

√
|T |∥θ̂

− θ̄∥2 + 4λΨGME
√
σmaxI

((Dθ̄)T c) + 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̄). (3.26)

By utilizing Young’s inequality, i.e., 2xy ≤ x2

m + my2 for m > 0, with x = 1
n∥Πε∥2 + 2κ−1

T

√
|T |, y =

∥θ̂ − θ̄∥2, and m = 1
n − µ∥D∥

2
2 (with the requirement of µ < 1

n∥D∥22
), we can rewrite (3.26) as

2(
1
n
∥Πε∥2 + 2κ−1

T

√
|T |)∥θ̂ − θ̄∥2 ≤

1
m

(
1
n
∥Πε∥2 + 2λκ−1

T

√
|T |)2 + m∥θ̂ − θ̄∥22

≤
2

1
n − µ∥D∥

2
2

(
1
n2 ∥Πε∥

2
2 + 4λ2κ−2

T |T |). (3.27)

The substitution of (3.27) into (3.26) results in the following equation:

1
n
∥θ̄ − θ̂∥22 +

1
n
∥θ∗ − θ̂∥22 ≤

1
n
∥θ̄ − θ∗∥22 +

1
n
∥θ̂ − θ̄∥22 + 4λΨGME

√
σmaxI

((Dθ̄)T c)

+
2n

1 − nµ∥D∥22
(

1
n2 ∥Πε∥

2
2 + 4λ2κ−2

T |T |)

+ 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̄). (3.28)

The cancellation of 1
n∥θ̂ − θ̄∥

2
2 on both sides of (3.28) yields

1
n
∥θ̂ − θ∗∥22 ≤

1
n
∥θ̄ − θ∗∥22 + 4λΨGME

√
σmaxI

((Dθ̄)T c) + 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̄)

+
2n

1 − nµ∥D∥22

(
1
n2 ∥Πε∥

2
2 + 4λ2κ−2

T |T |
)
. (3.29)
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By substituting ∥Πε∥2 ≤ 2σ
√

2 log e/δ and σϱ
√

2 log em /δ = λn into (3.29), we obtain

1
n
∥θ̂ − θ∗∥22 ≤ inf

θ

{
1
n
∥θ̄ − θ∗∥22 + 4λΨGME

√
σmaxI

((Dθ̄)T c) + 2λΨGME
√
σminI

(Dθ̄) − 2λΨGME
√
σmaxI

(Dθ̄)
}

+
16σ2

n(1 − nµ∥D∥22)

(
|T |ϱ2

κ2T
log(

em
δ

) + log(
e
δ

)
)
. (3.30)

This completes the proof of Theorem 3.2.

The oracle inequality remains valid for any θ̂ that satisfies the first-order optimality condition,
even in the case of non-convex regularization. This mild requirement imposed on θ̂ represents a
significant divergence from previous findings, such as Theorem 2 of [27], which is suitable for global
minimization but challenging to ensure when employing non-convex regularizations.

The error bound to the right-hand side of (3.6) can be optimized through careful choice of θ̄ and T .
When we set θ̄ = θ∗, then

1
n
∥θ̂ − θ∗∥22 ≤ inf

θ

{
4λΨGME

√
σmaxI

((Dθ∗)T c) + 2λΨGME
√
σminI

(Dθ∗) − 2λΨGME
√
σmaxI

(Dθ∗)
}

+
16σ2

n(1 − nµ∥D∥22)

(
|T |ϱ2

κ2T
log(

em
δ

) + log(
e
δ

)
)
. (3.31)

When we set T as the empty set, i.e., T = ∅, then

1
n
∥θ̂ − θ∗∥22 ≤ inf

θ

{
4λΨGME

√
σmaxI

(Dθ∗) + 2λΨGME
√
σminI

(Dθ∗) − 2λΨGME
√
σmaxI

(Dθ∗)
}

+
16σ2

n(1 − nµ∥D∥22)
log(

e
δ

). (3.32)

The error bound for the GME-TV estimator is now compared with Theorem 2.1 in the special case
of setting T = ∅, i.e., (3.32). First, due to the non-convex nature of ΨGME

B (Dθ), it imposes particularly
strict constraints when Dθ∗ contains large coefficients. Therefore, we have ΨGME

√
σmaxI

(Dθ∗) ≪ ∥Dθ∗∥1 and
ΨGME
√
σminI

(Dθ∗)−ΨGME
√
σmaxI

(Dθ∗) ≪ ∥Dθ∗∥1. Consequently, the first term in (3.32) is upper bounded by that
of Theorem 2.1. Moreover, the second term in (3.32) includes n(1−nµ∥D∥22) in the denominator, which
establishes it as an upper bound for the second term mentioned in Theorem 2.1. In summary, the error
bound of GME-TV is the upper bound from Theorem 2.1.

On the other hand, the above error gap can be reduced by adjusting the matrix parameter B. When
we adjust B such that ΨGME

B (Dθ) trends to ||Dθ||1, the improvement in the first term of the bound can
be erased.

In conclusion, the proposed GME-TV estimator ensures strong statistical guarantees for any
stationary point, despite its non-convex nature.

3.3. ADMM algorithm

In this subsection, we solve the GME-TV denoising model (3.1) by using the ADMM algorithm
and prove the convergence.
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By introducing an auxiliary variable z, problem (3.1) can be rewritten as

arg min
θ

1
2n
∥y − θ∥22 + λΨ

GME
B (z)

s.t. z = Dθ.
(3.33)

Furthermore, its augmented Lagrangian form can be expressed as

L(θ, z, u) =
1

2n
∥θ − y∥22 + λΨ

GME
B (z) + uT (Dθ − z) +

ρ

2
∥z − Dθ∥22, (3.34)

where u represents the Lagrange multiplier and ρ > 0 serves as a penalty parameter.
According to ADMM iteration, solving the minimization problem (3.34) involves addressing three

subproblems.
Step 1. Update θk+1 while keeping zk and uk fixed.

θk+1 = arg min
θ

{
1

2n
∥θ − y∥22 + (uk)T Dθ +

ρ

2
∥z − Dθ∥22

}
= arg min

θ

{
1

2n
∥θ − y∥22 +

ρ

2
∥Dθ − (zk −

ρ

2
uk)∥22

}
= (

1
n

I + ρDT D)−1(
1
n

y + ρDT zk − DT zkuk). (3.35)

Step 2. Update zk+1 while keeping θk+1 and uk fixed.

zk+1 = arg min
z

{
λΨGME

B (z) + (uk)T z +
ρ

2
∥z − Dθk+1∥22

}
= arg min

z

{
λΨGME

B (z) +
ρ

2
∥z − Dθk+1 +

1
ρ

uk∥22

}
. (3.36)

Equation (3.36) can be considered as the proximal operator of ΨGME
B (z). Although this operator

does not have an explicit expression, we obtain its iterative solution through the PGD iteration.
By substituting ΨGME

B (z) into (3.36), we can reformulate equation (3.36) as

zk+1 = arg min
z

{
λ∥z∥1 − λmin

v

{
∥v∥1 +

1
2
∥B(z − v)∥22

}
+
ρ

2
∥z − Dθk+1 +

1
ρ

uk∥22

}
. (3.37)

Let f1(z) = ρ2∥z − Dθk+1 + 1
ρ
uk∥22 − λmin

v

{
∥v∥1 + 1

2∥B(z − v)∥22
}

and f2(z) = λ∥z∥1. The update of zk+1 can
be obtained through the PGD algorithm as follows:

zk+1 = proxα f2(z
k − α▽ f1(zk))

= proxαλ∥·∥1(z
k − α f1(zk)), (3.38)

where α is the step size. The main challenge of (3.38) is how to solve the gradient ∇ f1(z). According
to Lemma 3 in [16], the last term of f1(z) is differentiable with respect to z. Furthermore, the gradient
of f (z) can be expressed as

∇ f1(z) = ρ(z − θk+1 +
uk

ρ
) − λ

(
BT B

(
z − arg min

v

{
1
2
∥B(z − v)∥22 + ∥v∥1

}))
. (3.39)

AIMS Mathematics Volume 9, Issue 10, 29031–29052.



29043

Note that (3.39) contains an ℓ1 regularization problem:

vk+1 = arg min
v

{
1
2
∥B(z − v)∥22 + ∥v∥1

}
, (3.40)

which can be regarded as a proximal operator of the ℓ1 norm, i.e.,

vk+1 = prox∥·∥1(v
k + B(z − vk)), (3.41)

where prox∥·∥1(·) can be simply solved by the soft-thresholding operator (2.10).
By substituting (3.41) and (3.39) into (3.38), we can succinctly summarize the update of zk+1

as follows: 
vk+1 = prox∥·∥1{v

k + B(zk − vk)},
wk+1 = (1 − αρ + αλBT B)zk + αρDθk+1 − αuk − αλBT Bvk+1,

zk+1 = proxαλ∥·∥1(w
k+1).

(3.42)

Step 3. Update uk+1.

uk+1 = uk + ρ(Dθk+1 − zk+1). (3.43)

Finally, the ADMM algorithm for GME-TV regularization can be obtained as Algorithm 1 through
the rearrangement of Eqs (3.35), (3.42), and (3.43).

Algorithm 1. ADMM for the GME-TV denoising model

Require: y, θ0, z0, u0, B, λ, ρ, α
Ensure: θ

1: while ’stopping criterion is not met’ do
2: θk+1 = ( 1

n I + ρDT D)−1( 1
ny + ρDT zk − DT zkuk);

3: vk+1 = prox∥·∥1{v
k + B(zk − vk)};

4: wk+1 = (1 − αρ + αλBT B)zk + αρDθk+1 − αuk − αλBT Bvk+1;
5: zk+1 = proxαλ∥·∥1(w

k+1);
6: uk+1 = uk + ρ(Dθk+1 − zk+1).
7: end while

The total computational complexity of Algorithm 1 mainly depends on the θ-subproblem, which
involves the matrix inversion (1

n I + ρDT D)−1 with a computation complexity of O(n3) for D ∈ Rn×n

and θ ∈ Rn. Fortunately, under the periodic boundary conditions for θ, DT D can be represented as
a block circulant matrix with circulant blocks. In this scenario, solving the θ-subproblem becomes
feasible through one forward fast Fourier transform (FFT) and one inverse FFT, each requiring a cost
of O(n log n) [43]. Consequently, the total computational complexity of Algorithm 1 is significantly
reduced to O(n log n), representing a substantial improvement compared to its original complexity of
O(n3).

Algorithm 1 showcases the utilization of an ADMM update with the Lagrangian introduced in
Eq (3.34). Additionally, we offer convergence assurance for Algorithm 1.
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Theorem 3.3. By selecting the appropriate parameter ρ, then the primal residual rk = θk − zk and the
dual residual sk+1 = ρ(zk+1 − zk) of Algorithm 1 satisfy that lim

k→∞
∥rk∥22 = 0 and lim

k→∞
∥sk∥22 = 0.

Proof. The proof follows the idea of proving Proposition 1 in [44] and Theorem 3 in [36].
Considering the augmented Lagrangian L(θ, z, u) with respect to z, while assuming the other

variables are fixed, we can derive

L(θ, z, u) =
1

2n
∥θ − y∥22 + λΨ

GME
B (z) + uT (z − Dθ) +

ρ

2
∥z − Dθ∥22

=
1

2n
∥θ − y∥22 + λΨ

GME
B (z) − uT z +

ρ

2
∥z∥22 −

ρ

2
∥Dθ∥22 − ρu

T (Dθ). (3.44)

As stated in Corollary 3.1, there exists µ > 0 such that λΨGME
B (Dθ)+ µ2∥Dθ∥

2
2 is convex. Additionally,

it should be noted that the term 1
2n∥θ−y∥22−

ρ

2∥Dθ∥
2
2−ρu

T (Dθ) is independent of z. Therefore, by choosing
ρ ≥ µ, we can observe the convexity of L(θ, z, u) with respect to each variable θ, u, and z. The property
enables us to effectively apply Theorem 5.1 in [45]. Consequently, Algorithm 1 converges toward the
limit points θ∗, z∗, and u∗. This implies that for the dual residual, we have

lim
k→∞
∥sk∥22 = ∥ρD

T (z∗ − z∗)∥22 = 0. (3.45)

For the primal residual, it is worth noting that the update step for u in Algorithm 1 implies that
∀k, t ≥ 0,

uk+t = uk +

t∑
i=1

(Dθk+i − zk+i). (3.46)

For fixed t and as k → ∞, we have

u∗ = u∗ + t(Dθ∗ − z∗), (3.47)

where ∀t ≥ 0, and thus, Dθ∗ − z∗ = 0. Therefore, it follows that

lim
k→∞
∥rk∥22 = ∥Dθ

∗ − z∗∥22 = 0. (3.48)

Theorem 3.3 establishes the convergence of Algorithm 1 toward achieving both primal and dual
feasibility in the limit. It also demonstrates the equivalence between the augmented Lagrangian
form (3.34) with fixed z and u, and the original form (3.33). Each iteration of Algorithm 1 yields
a stationary point θ for (3.34) with fixed z and u, thereby implying that θ∗ is also a stationary point
for (3.33).

4. Numerical experiments

In this section, we will compare the denoising performance of the proposed GME-TV regularization
with the standard TV regularization [46] and MC-TV regularization [9, 17] through 1D and 2D
denoising experiments.
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4.1. 1D denoising

In this experiment, we evaluate the performance of different regularizations for 1D signal denoising.
Initially, a piecewise constant 1D signal with a length of n = 180 is generated, degraded by the AWGN
with a noise level of σ = 0.9. Subsequently, GME-TV, MC-TV, and standard TV regularization are
applied for the purpose of denoising. The denoising accuracy is quantified using the root mean squared
error (RMSE), which is defined as

RMSE =

√√
1
n

n∑
i=1

(θ̂i − θ∗i )2. (4.1)

The regularization parameter λ and the non-convex control matrix parameter B play a crucial role
in determining the denoising performance of GME-TV. We establish these two hyperparameters as
follows: First, we plot the curve of RMSE with respect to λ, and subsequently select the optimal value
of λ that exhibits the lowest RMSE value. Second, based on (3.4), the matrix parameter B is determined
by ζ. Therefore, once λ is determined, we proceed to plot the curve of RMSE with respect to ζ and then
choose the optimal value of ζ that exhibits the lowest RMSE value. The remaining hyperparameters
α and ρ in Algorithm 1 are simply set as α = 1, and ρ = 1, following the strategy proposed in [9].
The hyperparameters λ and ζ for MC-TV are set up in the same manner as for GME-TV. For TV, since
there is no non-convex control parameter, we set λ in the same way as for GME-TV. The remaining
hyperparameters of MC-TV and TV are set by default according to [9] and [46], respectively.

The changes in RMSE values of different denoising models with λ and ζ are illustrated in Figure 1.
It can be observed that the denoising performance of the models varies with different hyperparameter
values. Moreover, GME-TV demonstrates superior denoising performance compared to other models.

(a) (b)

Figure 1. (a) RMSE as a function of the regularization parameter λ; (b) RMSE as a function
of the non-convex control parameter ζ.

We set the hyperparameters of different denoising models according to the results of Figure 1,
and show the denoising results of different models in Figure 2. As depicted in Figure 2, TV
regularization effectively mitigates noise. However, it tends to underestimate the magnitude of certain
jump-type discontinuities and lacks the piecewise constant characteristics of the original noiseless
signal. In contrast, GME-TV and MC-TV regularization provide a more precise estimation of segment
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points in piecewise constant signals and demonstrate superior denoising performance compared to TV
regularization. The RMSE values also substantiate the inherent superiority of GME-TV regularization.

Figure 2. 1D signal denoising using different regularizations.

4.2. 2D denoising

In this experiment, we test the performance of different regularizations on image denoising. Four
commonly used denoising test images, namely “Lena”, “Man”, “QRcode”, and “Geometric”, were
utilized as shown in Figures 3(a), 4(a), 5(a), and 6(a). All images have a size of 512 × 512 with
grayscale values ranging from 0 to 255. Subsequently, all images are degraded by additive white
Gaussian noise with noise level σ = 0.9. The noisy images are shown in Figures 3(e), 4(e), 5(e),
and 6(e).

The image denoising accuracy is quantified by the peak signal-to-noise ratio (PSNR), which is
defined as

PSNR = 10 × log10

(
MAX2

MSE

)
, (4.2)

where MAX = 255 is the maximum value of the images, and

MSE =
1

M × N

M∑
i=1

N∑
j=1

(θ∗i j − θ̂i j)2, (4.3)

where θ∗i j and θ̂i j are the pixel values of the original image θ∗ and the denoised image θ̂, respectively,
with all images having a size of M = N = 512. The higher the PSNR value, the smaller the difference
between the denoised image and the original image.

We employ the same strategy as the 1D denoising experiment to determine the hyperparameter
values of different denoising models, and show the denoising results of each model in Figures 3–6. To
enhance the visual contrast, in addition to enlarging a small patch of the local image, we also highlight
the difference between the denoised image and the original one. As shown in Figures 3–6, all three
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denoising models can remove noise well. Compared with TV denoising results, MC-TV and GME-TV
not only enhance image texture and other intricate details but also sharpen edges more efficiently for a
superior visual outcome. Moreover, the PSNR values further demonstrate the superior performance of
GME-TV regularization, as evidenced by the improved PSNR values for all four images compared to
TV regularization and MC-TV regularization.

Figure 3. Image denoising using different regularizations. (a) Original image; (b) TV
denoising result, PSNR = 32.0488 dB; (c) MC-TV denoising result, PSNR = 33.5046 dB; (d)
GME-TV denoising result, PSNR = 36.4250 dB; (e) Noisy image; (f) Difference between (a)
and (b); (g) Difference between (a) and (c); (h) Difference between (a) and (d).

Figure 4. Image denoising using different regularizations. (a) Original image; (b) TV
denoising result, PSNR = 32.0488 dB; (c) MC-TV denoising result, PSNR = 33.5046 dB; (d)
GME-TV denoising result, PSNR = 36.4250 dB; (e) Noisy image; (f) Difference between (a)
and (b); (g) Difference between (a) and (c); (h) Difference between (a) and (d).
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Figure 5. Image denoising using different regularizations. (a) Original image; (b) TV
denoising result, PSNR = 41.5842 dB; (c) MC-TV denoising result, PSNR = 44.0425 dB; (d)
GME-TV denoising result, PSNR = 54.2998 dB; (e) Noisy image; (f) Difference between (a)
and (b); (g) Difference between (a) and (c); (h) Difference between (a) and (d).

Figure 6. Image denoising using different regularizations. (a) Original image; (b) TV
denoising result, PSNR = 41.1239 dB; (c) MC-TV denoising result, PSNR = 41.3220 dB; (d)
GME-TV denoising result, PSNR = 43.1082 dB; (e) Noisy image; (f) Difference between (a)
and (b); (g) Difference between (a) and (c); (h) Difference between (a) and (d).

5. Conclusions

In this paper, we propose CNC-TV regularization as a valuable alternative to TV regularization.
This approach effectively addresses the issue of underestimation of signal discontinuity while ensuring
the global convexity of the objective function. Empirical evidence is provided to demonstrate the
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superior performance of CNC-TV regularization compared to TV regularization. Furthermore, our
theoretical analysis establishes a foundation for a deeper understanding of the estimation properties
associated with CNC-TV regularization. Additionally, we demonstrate that the CNC-TV regularization
exhibits superior performance on both 1D and 2D denosing experiments.

In this work, we mainly focus on the theoretical analysis of CNC-TV. In fact, these findings suggest
its potential significance in future applications such as image denoising, image reconstruction, seismic
data processing, etc. Furthermore, there are also some challenges in the implementation of the CNC-
TV model, such as the setting strategy of the non-convex control matrix parameter B, which will be
further studied in our following work.
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