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1. Introduction

In this paper, we are concerned with the following nonlocal fractional integral boundary value
problem with mean curvature operator.

HDβ
1+( ϕp(H Dα

1+ u(t))
√

1+|ϕp(H Dα
1+ u(t))|2

) = f (t, u(t)), t ∈ (1,T ),

u(1) = HDα
1+u(1) = 0, HDα−1

1+ u(T ) =
m∑

i=1
ζi

RIγi
1+(HDα−1

1+ u(ξi)),
(1.1)

where HDβ
1+ , HDα

1+ are Hadamard fractional derivatives and RIγi
1+ are Riemann-Liouville fractional

integrals, 1 < α < 2, 0 < β < 1, 2 < α + β < 3, γi > 0, ζi > 0, 1 < ξi < T i = 1.2.3, ...,m, m
are positive integers, f : [1,T ] × R→ R is continuous, ϕp is a p-Laplacian operator that for s ∈ R and
s , 0, ϕp(s) = |s|p−2s, ϕp(0) = 0, and its inverse is ϕq, p > 1, q > 1, 1

p + 1
q = 1.
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With the development of the fundamental theory of fractional calculus, fractional order differential
equations have been applied in many practical problems (see [1,2]). For more research on the
qualitative theory of fractional differential equations, it can be found in [3,4] and references therein.
The Hadamard fractional order differential equation that comes from mechanical problems is one of
the more important types of fractional order differential equations. Based on the Dhage-type fixed
point theorem, Ahmad and Ntouyas [5] investigated the existence of solutions for a nonlocal initial
value problem of Hadamard fractional hybrid differential equations as follows: HDα

1+( u(t)
f (t,u(t)) ) = g(t, u(t)), t ∈ [1,T ],

HI1−α
1+ u(t) |t=1= η,

(1.2)

where HDα
1+ is Hadamard fractional derivative, HI1−α

1+ is Hadamard fractional integral, 0 < α ≤ 1,
f ∈ C([1,T ]×R,R \ {0}) and g ∈ C([1,T ]×R,R). Moreover, in [6], they also considered the existence
and uniqueness of solutions to a Hadamard fractional integral boundary value problem via some fixed-
point theorems. Recently, Ahmad and Ntouyas [7] and Ahmad, Alsaedi, Ntouyas, Tariboon [8] further
discussed the existence and uniqueness of solutions to the Hilfer-Hadamard and Hadamard fractional
nonlocal boundary value problems. Subsequently, Pei, Wang, and Sun [9] studied the existence of
solutions for the Hadamard fractional integro-differential equation on infinite domain with a nonlocal
boundary condition by the monotone iterative method. Based on Mawhin’s continuation theorem,
Zhang and Liu [10] considered a Hadamard fractional integral boundary value on an infinite interval
at resonance. Meanwhile, there are many scholars studying boundary value problems of Hadamard
fractional order differential equations by some different methods such as fixed point index (see [11]),
fixed point theorem (see [12–14]), coincidence degree theory (see [15]). Furthermore, for more papers
on the qualitative analysis of fractional order models, please refer to [16–18] and references therein.
On the other hand, in recent years, many scholars have paid more attention to second-order integer
differential equations with mean curvature operators from the perspective of qualitative theory, which
originates from relativity theory (see [19–21]). Therefore, this topic is very meaningful. Recently,
Alves and Torres Ledesma [22] obtained the existence of infinite many solutions to the prescribed
mean curvature equation on the smooth bounded domain via Clark’s theorem. Subsequently, Torres
Ledesma [23] considered the multiplicity of solutions for the following prescribed mean curvature
equations with local conditions by variational methods. −div( 5u√

1+|5u|2
) = f (x, u), in Ω,

u = 0 on ∂Ω,
(1.3)

where Ω ⊂ RN that N ≥ 1 is a smooth bounded domain, f ∈ C(Ω × R,R) and satisfies the local
conditions with respect to u at the origin.

Motivated by the works mentioned above, by the coincidence degree theory, which is a classical
method and can be used to deal with the boundary value problems at resonance, the existence of
solutions for a nonlocal boundary value problem of Hadamard fractional order differential equations
with mean curvature operator at resonance (1.1) has been studied. The innovations of our paper
are presented in the following aspects: To begin with, the mean curvature operator is a nonlinear
operator, which is more complex than the linear case and brings some difficulties in the estimation of
the boundedness of solutions. Moreover, our main results provide a perspective for future research of
fractional order differential equations with mean curvature operators.
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2. Preliminaries

For the basic definitions and properties of Hadamard fractional integral and derivative, one can refer
to [1,2].

Definition 2.1. [1,2] The Hadamard-type fractional integral of order α > 0 of a function u : [1,T ] →
R, is defined by

HIα1+u(t) =
1

Γ(α)

∫ t

1
(ln

t
s
)α−1u(s)

ds
s
,

provided the integral exists, where Γ(·) means the well-known Gamma function.

Definition 2.2. [1,2] The Hadamard-type fractional derivative of order α > 0 of a function u : [1,T ]→
R, is defined by

HDα

1+u(t) =
1

Γ(n − α)
(t

d
dt

)
n ∫ t

1
(ln

t
s
)n−α−1u(s)

ds
s
,

provided the integral exists that can be operated by (t d
dt )

n, where n = [α] + 1.

Lemma 2.3. [1] Setting α > 0, n = [α] + 1, the equation HDα
1+u(t) = 0 is valid if and only if

u(t) =

n∑
i=1

ci(lnt)α−i,

where ci ∈ R, i = 1, 2, ..., n.

Lemma 2.4. [1] Letting α > 0, 1 ≤ γ ≤ +∞, then for u ∈ Lγ(1,T )

HDα

1+
HIα1+u = u.

And if HDα
1+u ∈ Lγ(1,T ), one has

HIα1+
HDα

1+u(t) = u(t) +

n∑
i=1

ci(lnt)α−i,

where ci ∈ R, i = 1, 2, ..., n, n − 1 < α < n.
Next, some basic knowledge with regard to coincidence degree theory will be presented, which can

be founded in [24]. Let X and Y be real Banach spaces, and L : dom L ⊂ X → Y be a Fredholm
operator with index zero, which yields that there exist two continuous linear projectors P : X → X,
Q : Y → Y such that Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q and
L|domL

⋂ Ker P : dom L∩Ker P→ Im L is invertible. Let KP represent the inverse of L|dom L
⋂ Ker P.

Definition 2.5. [24] Let L : dom L ⊂ X → Y be a Fredholm operator with index zero. Assuming
that U ⊂ X is an open bounded subset and dom L ∩ U , ∅, if QN : U → Y is bounded and
KP,QN := KP(I − Q)N : U → X is compact, the map N : X → Y is called L−compact on U.

AIMS Mathematics Volume 9, Issue 10, 28895–28905.



28898

Lemma 2.6. [24] Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and N : X → Y be
L−compact on U. Assume that the following conditions are satisfied

(i) Lu , λNu for every (u, λ) ∈ [(dom L \ Ker L) ∩ ∂U] × (0, 1),
(ii) Nu < Im L for every u ∈ Ker L ∩ ∂U,
(iii) deg(JQN |Ker L,Ker L ∩ U, 0) , 0, where Q : Y → Y is a projection such that Im L = Ker Q,

J : Im Q → Ker L is a homeomorphism. Then the equation Lu = Nu admits at least one solution in
dom L ∩ U.

3. Main results

Let Y = C[1,T ] with the norm ‖u‖∞ = maxt∈[1,T ] |u(t)|, X = Cα[1,T ]. Throughout this article,

assume that
m∑

i=1

ζi(ξi−1)γi

Γ(γi+1) = 1 and
m∑

i=1

ζi
Γ(γi)

∫ ξi

1
(ξi−s)γi−1lns ds < lnT . Since HDα

1+u(1) = 0, the problem (1.1)

is equivalent to the following problem.
HDα

1+u(t) = ϕq(
√

1 + |ϕp(HDα
1+u(t))|2HIβ1+ f (t, u(t))), t ∈ (1,T ),

u(1) = 0, HDα−1
1+ u(T ) =

m∑
i=1
ζi

RIγi
1+(HDα−1

1+ u(ξi)).
(3.1)

In fact, on one hand, if HDα
1+u(1) = 0, by Lemma 2.4 and the invertibility of ϕp, we have

HDα

1+u(t) = ϕq(
√

1 + |ϕp(HDα
1+u(t))|2HIβ1+ f (t, u(t))).

On the other hand, letting t = 1, one has HIβ1+ f (t, u(t)) |t=1= 0. By the above equation, we have
HDα

1+u(1) = 0.
Let the operator L : dom L ⊂ X → Y be defined by

Lu = HDα

1+u, (3.2)

where

dom L = {u ∈ X|HDα

1+u ∈ Y, u(1) = 0, HDα−1
1+ u(T ) =

m∑
i=1

ζi
RIγi

1+(HDα−1
1+ u(ξi))}.

Let N : X → Y be given by

Nu = ϕq(
√

1 + |ϕp(HDα
1+u)|2HIβ1+ f (t, u)).

Therefore, the problem (3.1) can be convert to the following operator equation.

Lu = Nu, u ∈ dom L.

Next, some important conclusions will be given, which play an important role in proving the main
results.
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Lemma 3.1. Let L be given by (3.2). Then

Ker L =
{
u ∈ X

∣∣∣u (t) = c(ln t)α−1, c ∈ R
}
, (3.3)

Im L =

y ∈ Y

∣∣∣∣∣∣∣
m∑

i=1

ζi
RIγi

1+(HI1
1+y(ξi)) − HI1

1+y(T ) = 0

 . (3.4)

Proof. Based on
m∑

i=1

ζi(ξi−1)γi

Γ(γi+1) = 1, it is not difficult to obtain (3.3). If y ∈ Im L, it follows that there exists

a function u ∈ dom L such that y(t) = HDα
1+u(t). By u(1) = 0, one has

u(t) = HIα1+y(t) + c(ln t)α−1,
HDα−1

1+ u(t) = HI1
1+y(t) + cΓ(α),

which implies that

m∑
i=1

ζi
RIγi

1+(HDα−1
1+ u(ξi)) =

m∑
i=1

ζi
RIγi

1+(HI1
1+y(ξi)) +

m∑
i=1

cΓ(α)ζi(ξi − 1)γi

Γ(γi + 1)
,

where c ∈ R. Based on the boundary condition

HDα−1
1+ u(T ) =

m∑
i=1

ζi
RIγi

1+(HDα−1
1+ u(ξi)),

we have

m∑
i=1

ζi
RIγi

1+(HI1
1+y(ξi)) +

m∑
i=1

cΓ(α)ζi(ξi − 1)γi

Γ(γi + 1)
= HI1

1+y(T ) + cΓ(α).

From
m∑

i=1

ζi(ξi−1)γi

Γ(γi+1) = 1, it follows that

m∑
i=1

ζi
RIγi

1+(HI1
1+y(ξi)) − HI1

1+y(T ) = 0. (3.5)

On the other hand, assuming that y ∈ Y satisfies (3.5) and letting u(t) = HIα1+y(t), we have u ∈ dom L
and Lu(t) = HDα

1+u(t) = y(t), which implies that y ∈ Im L. Thus, (3.4) holds. �

Let P : X → X and Q : Y → Y be the linear continuous operators given by

Pu(t) =
1

Γ(α)
HDα−1

1+ u(1)(ln t)α−1,

Qy(t) = Λ(
m∑

i=1

ζi

Γ(γi)

∫ ξi

1
(ξi − s)γi−1

∫ s

1
y(τ)

dτ
τ

ds −
∫ T

1
y(s)

ds
s

),
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where
Λ =

1
m∑

i=1

ζi
Γ(γi)

∫ ξi

1
(ξi − s)γi−1lns ds − lnT

.

It implies that

P2u(t) =
1

Γ(α)
HDα−1

1+ (Pu(t)) |t=1 (ln t)α−1 = Pu(t),

Q2y(t) = Λ(
m∑

i=1

ζi

Γ(γi)

∫ ξi

1
(ξi − s)γi−1

∫ s

1
Qy(τ)

dτ
τ

ds −
∫ T

1
Qy(s)

ds
s

) = Qy(t).

So, the operators P and Q are idempotent, which yields that they are projector operators. It
is obvious that X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q. Since dim Im Q = 1, we can
obtain dim Ker L = codim Im L = 1, and L is a Fredholm operator of index zero. Define
KP : Im L→ dom L∩Ker P by KPy = HIα1+y, which implies that its inverse is L|dom L

⋂ Ker P. Based
on the continuity of f and the standard arguments, it follows that N is L-compact on U.

Theorem 3.2. Assume that the following conditions hold.
(G1) There exists a positive function ψ ∈ X such that | f (t, u)| ≤ ψ(t) for any (t, u) ∈ [1,T ] × R.
(G2) For any u ∈ dom L, there exist constants A > 0, 1 < κ < T such that if |u(t)| > A for any

t ∈ [κ,T ], either

sgn{u(t)}QN(u(t)) > 0,

or
sgn{u(t)}QN(u(t)) < 0.

Then the problem (1.1) admits at least one solution, provided that

(ln T )2β‖ψ‖2∞
(Γ(β + 1))2 < 1. (3.6)

Proof. Define

U1 = {u ∈ dom L \ Ker L | Lu = λNu, λ ∈ (0, 1)}.

If u ∈ U1, it follows Nu ∈ Im L. In view of Im L = Ker Q, one has QNu = 0. Based on (G2), we can
find a constant η ∈ [κ,T ] such that |u(η)| ≤ A. Since u(1) = 0, it implies

u(t) = HIα1+
HDα

1+u(t) + c(ln t)α−1,

where c ∈ R, which leads to

|c| ≤
1

(ln η)α−1 [|u(η)| +
1

Γ(α)

∫ η

1
(ln η − ln s)α−1|HDα

1+u(s)|
ds
s

]
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≤
1

(ln η)α−1 (A +
(ln η)α

Γ(α + 1)
‖HDα

1+u‖∞),

and

‖u‖∞ ≤
2(ln T )α

Γ(α + 1)
‖HDα

1+u‖∞ + A(
ln T
ln κ

)α−1. (3.7)

In view of Lu = λNu, one has

HDα

1+u(t) = λϕq(
√

1 + |ϕp(HDα
1+u(t))|2HIβ1+ f (t, u(t))),

which leads to

|ϕp(HDα

1+u(t))|2 = λ2p−2[(1 + |ϕp(HDα

1+u(t))|2)(HIβ1+ f (t, u(t)))2]. (3.8)

Since

|HIβ1+ f (t, u(t))| ≤
(ln T )β‖ψ‖∞

Γ(β + 1)
,

and |ϕp(HDα
1+u(t))|2 = |HDα

1+u(t)|2p−2, from (3.8), it follows

|HDα

1+u(t)|2p−2 ≤ (1 + |HDα

1+u(t)|2p−2)
(ln T )2β‖ψ‖2∞
(Γ(β + 1))2 . (3.9)

Since (ln T )2β‖ψ‖2∞
(Γ(β+1))2 < 1, there exists a constant r1 > 0 such that ‖HDα

1+u‖∞ < r1. From (3.7), we have

‖u‖∞ ≤
2(ln T )αr1

Γ(α + 1)
+ A(

ln T
ln κ

)α−1, (3.10)

which means that U1 is bounded.
Define

U2 = {u|u ∈ Ker L, Nu ∈ Im L}.

If u ∈ U2, it follows u(t) = c(ln t)α−1, c ∈ R and Nu ∈ Im L, which imply QN[c(ln t)α−1] = 0. By (G2),
we can find that |c| ≤ A

(ln κ)α−1 . which means that U2 is bounded.
Define J−1 : Ker L→ Im Q by J−1(c(ln t)α−1) = c, c ∈ R , t ∈ [1,T ]. Set

U3 = {u ∈ Ker L|λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]}.

It follows

λc + (1 − λ)Λ[
m∑

i=1

ζi

Γ(γi)

∫ ξi

1
(ξi − s)γi−1

∫ s

1
ϕq(HIβ1+ f (τ, c(ln τ)α−1))

dτ
τ

ds

−

∫ T

1
ϕq(HIβ1+ f (s, c(ln s)α−1))

ds
s

] = 0. (3.11)
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From the first assumption of (G2), if λ = 0, one has |c| ≤ A
(ln κ)α−1 . Let λ ∈ (0, 1], it follows |c| ≤ A

(ln κ)α−1 .
Otherwise, if |c| > A

(ln κ)α−1 , based on the first assumption of (G2), we can obtain

λsgn[c(ln t)α−1]c

+(1 − λ)Λsgn[c(ln t)α−1][
m∑

i=1

ζi

Γ(γi)

∫ ξi

1
(ξi − s)γi−1

∫ s

1
ϕq(HIβ1+ f (τ, c(ln τ)α−1))

dτ
τ

ds

−

∫ T

1
ϕq(HIβ1+ f (s, c(ln s)α−1))

ds
s

] > 0, (3.12)

for any t ∈ [κ,T ]. By choosing t = T , it is in direct contradiction to (3.11). So, U3 is bounded.
Define

U′3 = {u ∈ Ker L| − λJ−1u + (1 − λ)QNu = 0, λ ∈ [0, 1]}.

By the same way, from the second assumption of (G2), U′3 is bounded.
Define U = {u ∈ X|‖u‖∞ <

2(ln T )αr1
Γ(α+1) + A( ln T

ln κ )α−1 + 1}, which implies that the conditions (i) and (ii) of
Lemma 2.6 is satisfied. Let

F(u, λ) = ±λJ−1(u) + (1 − λ)QNu.

It follows F(U, λ) , 0 for U ∈ Ker L ∩ ∂U. So, we have

deg(JQN |Ker L,U ∩ Ker L, 0) = deg(F(·, 0),U ∩ Ker L, 0)
= deg(F(·, 1),U ∩ Ker L, 0)
= deg(±I,U ∩ Ker L, 0) , 0,

which tell us that the condition (iii) of Lemma 2.6 is fulfilled. Hence, we know that Lu = Nu admits at
least one solution in dom L ∩ U. Then the problem (1.1) has at least one solution. �

Example. The following example was given to verify our main results.
HD

3
4
1+(

H D
3
2
1+ u(t)√

1+|H D
3
2
1+ u(t))|2

) = 1
2 ln t + 1

24 sin(u(t)) + 1
24 , t ∈ (1, e),

u(1) = HD
3
2
1+u(1) = 0, HD

1
2
1+u(e) = RI1

1+(HD
1
2
1+u(2)),

(3.13)

where α = 3
2 , β = 3

4 , T = e, m = 1, p = q = 2, γ1 = 1, ζ1 = 1, ξ1 = 2, f (t, u(t)) = 1
2 ln t+ 1

24 sin(u(t))+ 1
24 .

It follows that

m∑
i=1

ζi(ξi − 1)γi

Γ(γi + 1)
=

1
Γ(2)

= 1,

and
m∑

i=1

ζi

Γ(γi)

∫ ξi

1
(ξi − s)γi−1lns ds =

∫ 2

1
lns ds = 2ln2 − 1 < 1.

Let ψ(t) = 2
3 lnt + 1

12 , t ∈ [1, e], which implies that the (G1) of Theorem 3.2 is satisfied and

(ln T )2β‖ψ‖2∞
(Γ(β + 1))2 =

9
16

(Γ( 7
4 ))2
≈ 0.67 < 1.
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28903

Set κ = 3
2 . For t ∈ [κ, e], we have

QN(u(t)) =
1

2ln2 − 2
(
∫ 2

1

∫ s

1

√
1 + |HD

3
2
1+u(τ)|2HI

3
4
1+(

1
2

ln τ +
1

24
sin(u(τ)) +

1
24

)
dτ
τ

ds

−

∫ T

1

√
1 + |HD

3
2
1+u(s)|2HI

3
4
1+(

1
2

ln s +
1

24
sin(u(s)) +

1
24

)
ds
s

)

=
1

2ln2 − 2
(
∫ 2

1

∫ s

1

√
1 + |HD

3
2
1+u(τ)|2HI

3
4
1+(

1
2

ln τ +
1

24
sin(u(τ)) +

1
24

)
dτ
τ

ds

−

∫ 2

1

∫ e

1

√
1 + |HD

3
2
1+u(τ)|2HI

3
4
1+(

1
2

ln τ +
1
24

sin(u(τ)) +
1

24
)
dτ
τ

ds) > 0.

Letting A = 2, if u(t) > 2, the first part of (G2) in Theorem 3.2 is satisfied. Moreover, if u(t) < −2, the
second part of (G2) in Theorem 3.2 is fulfilled. Thus, from Theorem 3.2, the problem (3.13) admits at
least one solution.

4. Conclusions

In this paper, we are concerned with the existence of solutions for Hadamard fractional nonlocal
boundary value problems with mean curvature operator at resonance via the coincidence degree theory.
By constructing the continuous linear projectors and performing spatial decomposition, we obtained
some new results. Formally, we have extended the form of the integer order equation in [22,23] to the
Hadamard fractional order case. Methodologically, we use the coincidence degree theory to study the
existence of solutions to nonlocal boundary problems of Hadamard fractional order mean curvature
equations, while [22,23] use the variational method to study the existence of solutions to Dirichlet
boundary value problems of integer order mean curvature equations. Moreover, our results may
provide a perspective for future research of fractional order differential equations with mean curvature
operators. Furthermore, in the future, we will attempt to investigate the multiplicity and stability of
solutions to such fractional boundary value problems with mean curvature operators.
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20. P. Jebelean, J. Mawhin, C. Şerban, Multiple periodic solutions for perturbed relativistic pendulum
systems, P. Am. Math. Soc., 143 (2015), 3029–3039. https://doi.org/10.1090/S0002-9939-2015-
12542-7

21. D. Arcoya, C. Sportelli, Relativistic equations with singular potentials, Z. Angew. Math. Phys., 74
(2023), 91. https://doi.org/10.1007/s00033-023-01977-z

22. C. Alves, C. T. Ledesma, Multiplicity of solution for some slasses of prescribed mean
curvature equation with Dirichlet boundary condition, J. Geom. Anal., 32 (2022), 262.
https://doi.org/10.1007/s12220-022-01010-1

23. C. T. Ledesma, Multiplicity of solutions for some classes of prescribed mean curvature equations
with local conditions, Mediterr. J. Math., 20 (2023), 215. https://doi.org/10.1007/s00009-023-
02418-x

24. J. Mawhin, Topological degree and boundary value problems for nonlinear differential equations in
topological methods for ordinary differential equations, Lect. Notes Math., 1537 (1993), 74–142.
https://doi.org/10.1007/BFb0085076

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 28895–28905.

https://dx.doi.org/https://doi.org/10.1515/9783111334387
https://dx.doi.org/https://doi.org/10.1016/j.chaos.2022.112975
https://dx.doi.org/https://doi.org/10.1137/1209038
https://dx.doi.org/https://doi.org/10.1007/s10473-019-0118-5
https://dx.doi.org/https://doi.org/10.1016/j.jde.2007.05.014
https://dx.doi.org/https://doi.org/10.1090/S0002-9939-2015-12542-7
https://dx.doi.org/https://doi.org/10.1090/S0002-9939-2015-12542-7
https://dx.doi.org/https://doi.org/10.1007/s00033-023-01977-z
https://dx.doi.org/https://doi.org/10.1007/s12220-022-01010-1
https://dx.doi.org/https://doi.org/10.1007/s00009-023-02418-x
https://dx.doi.org/https://doi.org/10.1007/s00009-023-02418-x
https://dx.doi.org/https://doi.org/10.1007/BFb0085076
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Main results
	Conclusions

