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Abstract: This paper is concerned with almost sure exponential synchronization of multilayer
complex networks with Markovian switching via aperiodically intermittent discrete observation noise.
First, Markovian switching and multilayer interaction factors are taken into account simultaneously,
which make our system more general compared with the existing literature. Meanwhile, the network
architecture may be undirected or directed, and consequently, the adjacency matrix is symmetrical and
asymmetrical. Second, the control strategy is based on aperiodically intermittent discrete observation
noise, where the average control rate is integrated to depict the distributions of work/rest intervals of
the control strategy from an overall perspective. Third, different from the work about pth moment
exponential synchronization of network systems, by utilizing M-matrix theory and various stochastic
analysis techniques including the Itô formula, the Gronwall inequality, and the Borel-Cantelli lemma,
some criteria on almost sure exponential synchronization of multilayer complex networks with
Markovian switching have been constructed and the upper bound of the duration time has been
also estimated. Finally, several numerical simulations are exhibited to validate the effectiveness and
feasibility of our analytical findings.
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1. Introduction

In recent years, an enormous advance of complex networks (CNS) has been witnessed on account of
their extensive applications in many areas such as unmanned aerial vehicles, communication systems,
power systems, transportation networks, ecological networks, and so forth [1–4]. A large number
of interesting achievements about dynamical properties of CNS have sprung up [5–9]. It can be
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observed that CNS in the majority of the above findings are supposed to be single-link. In contrast
to single-link complex, multilayer complex networks (MCNS) can more accurately simulate the real
systems, which are more general and practical due to possessing sophisticated structures. For instance,
a transportation network is composed of highways, ships, railways, and airplanes, and it can be seen
as one type of multilayer complex network. Apparently, the transmission speed and cost are different
among these ways, which signifies that each interaction mode has different weights. On the other hand,
great importance can also be attached to social networks. There are various kinds of contact ways
for people to communicate with others including phone, mail, and internet, which leads to multilayer
networks. Particularly, large group decision-making plays a significant role in social networks. In [10],
large group decision-making with a rough integrated asymmetric cloud model under a multi-granularity
linguistic environment was considered, and large group emergency decision-making with bi-directional
trust in social networks was studied based on a probabilistic hesitant fuzzy integrated cloud approach
in [11], where strong uncertainty and randomness were tackled effectively. Since the MCNS may better
depict the connection and interaction among different layer networks, the investigation of MCNS has
important theoretical and realistic significance.

Synchronization is a typical dynamic characteristic of MCNS, which means all the states of
different nodes of networks can evolve in one common mode with various different initial data, and
plenty of relevant results about MCNS have been reported. Particularly, in [12], global exponential
synchronization of multi-link memristive neural networks with time-varying delays was analyzed by
designing state feedback controllers. In [13], the practical fixed-time synchronization issue of MCNS
was addressed based on an intermittent event-triggered control strategy by utilizing the proposed new
practical fixed-time stability lemma. In [14], bipartite synchronization of multilayer signed networks
was investigated under aperiodic intermittent-based adaptive dynamic event-triggered control, where
the control gains and the triggering parameters were adjusted with the system states. Furthermore, the
discussions of various synchronizations were extended to fractional MCNS with the help of impulsive
control [15, 16]. On the other hand, in the real world, due to the existence of random disturbances
and abrupt variations in systems’ structures and parameters, stochastic Markovian switching systems
were introduced to simulate such systems. Recently, stability and synchronization of stochastic MCNS
with Markovian switching have aroused scholars’ interests [17–23]. In [17], pth moment exponential
stability for a class of stochastic complex multi-link networks with Markovian switching and multi-
delayed impulsive effects was examined by virtue of the Razumikhin approach. In [18], combining
with Kirchhoff’s matrix tree theorem, finite-time synchronization of stochastic MCNS with Markovian
switching was studied via a novel quantized aperiodically intermittent control. Moreover, in [19], the
pth moment exponential synchronization issue of stochastic delayed MCNS with semi-Markov jump
under aperiodically intermittent control was solved based on the Lyapunov method and graph theory,
and several sufficient criteria were derived. Nevertheless, the preceding existing results mainly focus
on pth moment synchronization of stochastic MCNS with Markovian switching rather than almost sure
exponential synchronization, which sparks the appearance of this work.

It is worth noting that stochastic noise can be used as the control input [24, 25]. For instance,
in social networks, by virtue of public opinion control, which can be viewed as noise control,
a certain behavior mode of the entire society can keep the consensus in a special direction [26].
Particularly, white noise was incorporated initially to stabilize the neural networks by Liao and Mao
[27]. Soon afterward, stochastic stabilization of nonlinear systems was considered by utilizing an
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intermittent Brownian noise or aperiodical intermittent Brownian noise in [28, 29]. Meanwhile, when
the discrete-time feedback control was introduced to the drift term of systems, mean-square exponential
stabilization of stochastic nonlinear systems was discussed in [30]. While the discrete-time feedback
control was introduced to the diffusion term of systems, the almost sure exponential stabilization issue
was solved in [31]. Subsequently, the studies about discrete feedback control and noise stabilization
were further developed in [32–34]. Based on the previous findings, a new periodically intermittent
discrete observation control scheme was proposed, by which the issue of mean-square exponential
synchronization of stochastic neural networks was coped with in [35]. Furthermore, under the similar
control strategy in [35], almost sure exponential stabilization of deterministic neural networks and
hybrid neural networks was analyzed in [36, 37]. More recently, aperiodically intermittent discrete
observation noise control (AIDONC) as one kind of discontinuous control scheme was designed
by adjusting the distributions of work/rest intervals. Since feedback control based on intermittent
discrete observations on current states are imposed, the control time and control frequency can
be reduced. Consequently, energy consumption and control cost can be greatly saved. Besides,
efficiency and feasibility of implementation of the control strategy will be improved significantly.
By using aperiodically intermittent discrete observation noise control (AIDONC), synchronization of
complex networks was investigated in [38, 39]. For MCNS, it can be observed that in [21, 22], the
intermittent control was imposed on the drift term and several criteria on pth moment exponential
synchronization were presented. Additionally, in [23], some sufficient conditions on almost sure
exponential synchronization of MCNS were given, but the control strategy AIDONC was not adopted.

Inspired by the above discussions, this paper will investigate the almost sure exponential
synchronization of MCNS with Markovian switching via AIDONC. The main contributions are
summarized below:

1) In this paper, Markovian switching and multilayer interaction factors are taken into account
simultaneously, which make our system more general compared with the networks in literature
[35–39]. Meanwhile, the network architecture may be undirected or directed, and consequently, the
adjacency matrix could be symmetrical and asymmetrical.

2) Different from the work about pth moment exponential synchronization of network systems
in [21, 22], by utilizing M-matrix theory and various stochastic analysis techniques including
the Itô formula, the Gronwall inequality, and the Borel-Cantelli lemma, almost sure exponential
synchronization of multilayer coupled networks with Markovian switching is analyzed and the upper
bound of the duration time is also estimated.

3) Compared with the work in [23], one kind of control strategy based on AIDONC is adopted,
where the average control rate is integrated to depict the distributions of work/rest intervals of the
control strategy from an overall perspective.

The remainder of this article is organized as follows. In Section 2, some necessary preliminaries and
model descriptions are presented. The main findings about almost sure exponential synchronization for
multilayer coupled networks with Markovian switching via aperiodically intermittent noise are derived
in Section 3. In Section 4, a multilayer Chua’s circuits network with Markovian switching is considered
and some numerical simulations are carried out to validate the effectiveness of our theoretical results,
and conclusions are drawn in the last section.

For convenience and simplicity, let us introduce some standard notations utilized in the following
context. Let Rn be the n-dimensional Euclidean space. If x ∈ Rn, then |x| represents the Euclidean
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norm of x. Let IN be an N × N identity matrix. Besides, the superscript T is defined as the transpose
of a vector or a matrix. For any real symmetric matrix, λmax(·) and λmin(·) denote the maximum and
minimum eigenvalues of the given matrix, respectively. Let (Ω,F ,P) be a complete probability space
with a filtration {Ft}t≥0 satisfying the usual condition, and B(t) represents one-dimensional Brownian
motion defined on the above probability space.

2. Preliminaries and model descriptions

In this section, we consider the multilayer coupled networks with Markovian switching and M
nodes as follows:

dδk(t) = [(δk(t), t, r(t)) +
H∑

h=1

M∑
m=1

ρh(r(t))bh
km(r(t))Υδm(t)]dt + uk(t, r(t)), k = 1, 2, · · · · · · ,M, (2.1)

where δk(t) = ((δk1(t), δk2(t), . . . , δkn(t))T ∈ Rn denotes the vector of the kth node at time t. ui(t, r(t)) is
the controller to be devised. G(δk(t), t, r(t)) ∈ Rn : Rn×R+×S→ Rn represents the nonlinear activation
function with G(δk(0), r(0), 0) = 0. ρh(r(t)) > 0 is the coupling strength of the hth layer. Υ stands for
an inner coupling matrix. The adjacency matrix (bh

km)M×M is the outer coupling configuration matrix,
where bh

km > 0 holds if node m directs links to k, and otherwise, bh
km = 0 (k , m). Meanwhile,

the diagonal elements bh
kk = −

M∑
m=1,m,k

bh
km, which leads to

M∑
m=1

bh
km = 0. Let r(t), t ≥ 0 signify a

right-continuous Markov chain on the probability space (Ω,F ,P) with initial date r(0) = r0 ∈ S =

{1, 2, · · · · · · ,N}, and generator Ψ = (ψi j)N×N given by

P(r(t + ∆) = j|r(t) = i) =

ψi j∆ + o(∆), if i , j,

1 + ψi j∆ + o(∆), if i = j,
(2.2)

where ∆ > 0, ψii = −
∑

j,iψi j, and ψi j ≥ 0 denotes the transition rate from i to j.
Subsequently, the isolated node of the network is expressed as

ds(t) = G(s(t), t, r(t))dt, (2.3)

where s(t) = (s1(t), s2(t), . . . , sn(t))T ∈ Rn. Apparently, the isolated node is independent of other
nodes. s(t) can be considered as the equilibrium state or stable objective trajectory, and in multi-agent
dynamics, it stands for the leader. Let ηk(t) = δk(t) − s(t) be the synchronization error. Accordingly,
the error system can be depicted as

dηk(t) = [Ĝ(ηk(t), t, r(t)) +
H∑

h=1

M∑
m=1

ρh(r(t))bh
km(r(t))Υηi(t)]dt + uk(t, r(t)), k = 1, 2, · · · · · · ,M,

(2.4)

where Ĝ(ηk(t), t, r(t)) = G(ηk(t), t, r(t)) − G(s(t), t, r(t)). In order to realize synchronization, the
aperiodically intermittent feedback control based on discrete-time state observations is designed below:

uk(t) =

βk(ηk(µ(t)), t, r(t))dw(t), t ∈ [ti, si),
0, t ∈ [si, ti+1),

(2.5)
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where µ(t) = [t/τ] τ, τ > 0, τ denotes the duration between two consecutive observations, and
βk(ηk(µ(t), t, r(t)) = Ck(r(t))ηk(µ(t)) represents the diffusion coefficient column vector. Time interval
[ti, si) is the working time of the kth period while [si, ti+1) stands for the rest time. Furthermore, under
aperiodically intermittent noise control, error system (2.4) can be rewritten by

dη(t) =
[
G̃(η(t), t, r(t)) +

H∑
h=1

ρh(r(t))
(
Bh(r(t)) ⊗ Υ

)
η(t)

]
dt + β̃(η(µ(t)), t, r(t))dw(t),

t ∈ [ti, si), i = 0, 1, · · · · · ·

dη(t) = G̃(η(t), t, r(t)) +
H∑

h=1

ρh(r(t))
(
Bh(r(t)) ⊗ Υ

)
η(t), t ∈ [si, ti+1), i = 0, 1, · · · · · ·

(2.6)

where η(t) =
(
ηT

1 (t), ηT
2 (t), · · · · · · , ηT

M(t)
)T

, Ĝ(η(t)) =
(
G̃T (η1(t)), G̃T (η2(t)), · · · · · · , G̃T (ηM(t))

)T
∈ RnM,

and β̃(η(µ(t)), t, r(t)) =
(
ηT

1 (µ(t))CT
1 (r(t)), ηT

2 (µ(t))CT
2 (r(t)), · · · · · · , ηT

M(µ(t))CT
M(r(t))

)T
. Since multilayer

networks, Markovian switching, and aperiodically intermittent controller based on discrete-time
observation noise exist simultaneously, this makes them more complex to analyze the synchronization
feature. In order to overcome the difficulties, the auxiliary systems with continuous-time observations
are presented below,

dz(t) =
[
G̃(z(t), t, r(t)) +

H∑
h=1

ρh(r(t))
(
Bh(r(t)) ⊗ Υ

)
z(t)

]
dt + β̃(z(t), t, r(t))dw(t),

t ∈ [ti, si), i = 0, 1, · · · · · ·

dz(t) = G̃(z(t), t, r(t)) +
H∑

h=1

ρh(r(t))
(
Bh(r(t)) ⊗ Υ

)
z(t), t ∈ [si, ti+1), i = 0, 1, · · · · · ·

(2.7)

where z(t) = δ(t) − s(t).
In what follows, several necessary definitions and assumptions are provided, which play a

fundamental role in acquiring the theoretical results.
Definition 1. The multilayer coupled networks (2.1) can be almost surely exponentially synchronized
if for any initial data η(t0) = η0, there exists a positive constant satisfying the following inequality

lim
t→∞

sup
1
t

log |η(t)| < −κ, a.s. (2.8)

Assumption 1. Suppose that there exist two positive constants α ∈ (0, 1) and N0 such that

N(t, s) ≥ α(t − s) − N0,∀t > s ≥ t0, (2.9)

where N(t, s) denotes the total control time length on [s, t), and N0 is the elasticity number.
Assumption 2. Suppose that there are positive constants li and σki such that following inequalities
hold

|G(u1, t, i) −G(u2, t, i)| ≤ li |u1 − u2| , (2.10)

for ∀u1, u2 ∈ R
n, and i ∈ S.
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3. Main results

In this section, some novel lemmas are first established by utilizing stochastic analysis techniques.
Based on the derived lemmas, almost sure exponential synchronization of MCNS with Markovian
switching are further examined via AIDONC, and some special cases are also discussed.
Lemma 3.1. Let Q = diag{χ1, χ2, · · · , χN} − Ψ denote an M-matrix, where q ∈ (0, 1), χi = 0.5q

[
(2 −

q)di − σi

]
− qli − q

(
H∑

h=1
ρh(i)λmax

([
Bh(i) ⊗ Υ

]
s

))
, and Ψ = (ψi j)M×M. Under Assumptions 1 and 2, if

ϵ = λ̃α − ζ̃(1 − α) > 0, then the solution z(t) of Eq (2.7) satisfies that

E|z(t)|q ≤ K0E|z0|
qe−ϵt, (3.1)

where σi = max
{
λmax

(
CT

1 (i)C1(i)
)
, λmax

(
CT

2 (i)C2(i)
)
, · · · · · · , λmax

(
CT

M(i)CM(i)
)}
, di =

min
{
λ2

min

(
C1(i)

)
, λ2

min

(
C2(i)

)
, · · · · · · , λ2

min

(
CM(i)

)}
, Qθ = Q(θ1, θ2, · · · · · · , θN)T =

(λ1, λ2, · · · · · · , λN)T > 0, λ̃ = min
1≤i≤N

{
λi
θi

}
> 0, ζi = 0.5q

[
(2 − q)di − σi

]
θi − λi, ζ̃ = max

1≤i≤N

{
ζi
θi

}
> 0,

θm = min
i∈S
{θi}, θM = max

i∈S
{θi}, and K0 =

θMeN0(λ̃+ζ̃)

θm
. In other words, the trivial solution of Eq (2.7) is qth

moment exponentially stable.

Proof. Noting that Q is an M-matrix, there exists a vector θ = (θ1, θ2, · · · · · · , θN)T > 0 such that
Qθ = (λ1, λ2, · · · · · · , λN)T > 0. Choose the Lyapunov function V(z(t), t, i) = θi|z(t)|q, i ∈ S. Obviously,
θm|z(t)|q ≤ V(z(t), t, i) ≤ θM |z(t)|q. By utilizing the Itô formula, when t ∈ [ti, si), i = 0, 1, 2, · · · · · · , and
we have that

LV(z(t), t, i) = qθi|z(t)|q−2zT (t)
[
G̃(z(t), t, i) +

H∑
h=1

ρh(i)
(
Bh(i) ⊗ Υ

)
z(t)

]
+

1
2

qθi|z(t)|q−2|β̃(z(t), t, i)|2

−
1
2

q(2 − q)θi|z(t)|q−4|zT (t)β̃(z(t), t, i)|2 +
N∑

j=1

ψi jθ j|z(t)|q. (3.2)

According to Assumption 2, the following inequalities are calculated:

qθi|z(t)|q−2zT (t)Ĝ(z(t), t, i) ≤ qθi|z(t)|q−1|Ĝ(z(t), i, t)| ≤ qθili|z(t)|q, (3.3)

qθi|z(t)|q−2zT (t)
( H∑

h=1

ρh(i)
(
Bh(i) ⊗ Υ

)
z(t)

)
≤ qθi

( H∑
h=1

ρh(i)λmax

([
Bh(i) ⊗ Υ

]
s

))
|z(t)|q, (3.4)

|z(t)|q−2|β̃(z(t), t, i)|2 ≤ max
(
λmax

(
CT

1 (i)C1(i)
)
, λmax

(
CT

2 (i)C2(i)
)
, · · · , λmax

(
CT

M(i)CM(i)
))
|z(t)|q

= σi|z(t)|q, (3.5)

|z(t)|q−4|zT (t)β̃(z(t), t, i)|2 ≥ min
{
λ2

min

(
C1(i)

)
, λ2

min

(
C2(i)

)
, · · · · · · , λ2

min

(
CM(i)

)}
|z(t)|q = di|z(t)|q. (3.6)
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Substituting inequalities (3.3)–(3.6) into equality (3.2) yields that

LV(z(t), t, i) ≤

qθili + qθi

( H∑
h=1

ρh(i)λmax

([
Bh(i) ⊗ Υ

]
s

))
+

1
2

qθiσi −
1
2

q(2 − q)θidi +

N∑
j=1

ψi jθ j

 |z(t)|q.

(3.7)

Since Qθ = (λ1, λ2, · · · , λN)T > 0, when t ∈ [ti, si), i = 0, 1, 2, · · · · · · , we have that

LV(z(t), t, i) ≤ −λi|z(t)|q ≤ −
λi

θi
V(z(t), i, t) ≤ − min

1≤i≤N

{λi

θi

}
V(z(t), i, t) = −λ̃V(z(t), i, t). (3.8)

Moreover, when t ∈ [si, ti+1), i = 0, 1, 2, · · · · · · , it can be calculated that

LV(z(t), t, i) ≤
[
0.5q

(
(2 − q)d(i) − σ(i)

)
θi − λi

]
|z(t)|q ≤

ζi

θi
V(z(t), t, i) ≤ max

1≤i≤N

{ζi

θi

}
V(z(t), i, t)

= ζ̃V(z(t), i, t).
(3.9)

Particularly, according to inequality (3.8), if t ∈ [t0, s0), t0 = 0, we can infer that

EV(z(t), t, r(t)) ≤ θME|z0|
qe−λ̃t. (3.10)

Moreover, combining inequalities (3.9) and (3.10), it can be deduced that

EV(z(t), t, r(t)) ≤ θME|z(s0)|qeζ̃(t−s0) ≤ θME|z0|
qe−λ̃(s0−t0)+ζ̃(t−s0). (3.11)

Repeating the iteration leads to the following result,

EV(z(t), t, r(t)) ≤ θME|z0|
qe
−λ̃

i−1∑
j=0

(s j−t j)+ζ̃
i∑

j=1
(t j−s j−1)−λ̃(t−ti)

, t ∈ [ti, si), (3.12)

and

EV(z(t), t, r(t)) ≤ θME|z0|
qe
−λ̃

i∑
j=0

(s j−t j)+ζ̃
i∑

j=1
(t j−s j−1)+ζ̃(t−si)

, t ∈ [si, ti+1), (3.13)

which means that
EV(z(t), t, r(t)) ≤ θME|z0|

qe−λ̃Nc(0,t)+ζ̃Nr(0,t). (3.14)

In light of Assumption 1, one has that Nc(t, 0) ≥ αt − N0 and Nr(t, 0) ≥ (1 − α)t + N0. Consequently,

EV(z(t), t, r(t)) ≤ θME|z0|
qe
−λ̃

[
αt−N0

]
+ζ̃

[
(1−α)t+N0

]
≤ eN0(λ̃+ζ̃)θME|z0|

qe−[λ̃α−ζ̃(1−α)]t. (3.15)

Therefore, one has that
E|z(t)|q ≤ K0E|z0|

qe−ϵt, (3.16)

where K0 =
θMeN0(λ̃+ζ̃)

θm
, and ϵ = λ̃α − ζ̃(1 − α) > 0.
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Lemma 3.2. Let q ∈ (0, 1) and Assumption 2 hold. The following estimations are presented:

E|η(t)|2 ≤ |η0|
2e(2l̂+σ̂)t, (3.17)

E|η(t) − η(µ(t))|2 ≤ K1(τ)e(2l̂+σ̂)t, (3.18)

E |η(t) − z(t)|q ≤ |η0|
q

[
4(l̂ + σ̂)K1(τ)

2l̂ + σ̂

] q
2

|η0|
qe(l̂+σ̂)qt, (3.19)

where l̂ = max
1≤i≤N

{
li +

H∑
h=1

ρh(i)λmax

([
Bh(i) ⊗ Υ

]
s

)}
, σ̂ = max

0≤i≤N
{σi},

σi = max
{
λmax

(
CT

1 (i)C1(i)
)
, λmax

(
CT

2 (i)C2(i)
)
, · · · , λmax

(
CT

M(i)CM(i)
)}

,

K1(τ) =
{

4τ
[(

max
1≤i≤N

{li}

)2
+ H max

1≤i≤N

{
H∑

h=1
ρ2

h(i)λmax

((
Bh(i) ⊗ Υ

)T (
Bh(i) ⊗ Υ

))}]
+ 2σ̂

}
τ.

Proof. Error system (2.6) in matrix form can be formulated as

dη(t) =
[
G̃(η(t), t, r(t)) +

H∑
h=1

ρh(r(t))
(
Bh(r(t)) ⊗ Υ

)
η(t)

]
dt + I(t)β̂(η(µ(t)), t, r(t))dB(t), (3.20)

where I(t) =

1, t ∈ [ti, si),
0, t ∈ [si, ti+1), i = 0, 1, 2, · · · · · · .

By employing the Itô formula, one has that

E|η(t)|2 = |η0|
2 + E

∫ t

0

{
2ηT (s)

[
G̃(η(s), s, r(s)) +

H∑
h=1

ρh(r(s))
(
Bh(r(s)) ⊗ Υ

)
η(s)

]
+

∣∣∣∣∣β̂ (η(µ(s)), s, r(s))
∣∣∣∣∣2I(s)

}
ds

≤ |η0|
2 +

∫ t

0
2 max

1≤i≤N

{
li +

H∑
h=1

ρh(i)λmax

([
Bh(i) ⊗ Υ

]
s

)}
E|η(s)|2ds

+ max
1≤i≤N
{σi}

∫ t

0
E|η(µ(s))|2ds. (3.21)

Moreover, it can be inferred that

sup
0≤s≤t
E|η(s)|2 ≤ |η0|

2 + (2l̂ + σ̂)
∫ t

0

(
sup
0≤s≤t
E|η(s)|2

)
ds. (3.22)

Applying the Gronwall inequality yields that

sup
0≤s≤t
E |η(s)|2 ≤ |η0|

2 e(2l̂+σ̂)t. (3.23)

Accordingly, it can be concluded that

sup
0≤s≤t
E |η(s)|2 ≤ |η0|

2 e(2l̂+σ̂)t, (3.24)
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which indicates that

E |η(t)|2 ≤ |η0|
2 e(2l̂+σ̂)t. (3.25)

Obviously, it follows from Eq (3.20) that

η(t) − η(µ(t)) =
∫ t

µ(t)

G̃(η(s), s, r(s)) +
H∑

h=1

ρh(r(s))
(
Bh(r(s)) ⊗ Υ

) η(s)ds (3.26)

+

∫ t

µ(t)
I(s)β̂(η(µ(s)), s, r(s))dw(s). (3.27)

Together with the Hölder inequality, it can be calculated as

E |η(t) − η(µ(t))|2 ≤ 2E

∣∣∣∣∣∣∣
∫ t

µ(t)

G̃(η(s), s, r(s)) +
H∑

h=1

ρh(r(s))
(
Bh(r(s)) ⊗ Υ

) η(s)ds

∣∣∣∣∣∣∣
2

+ 2E
∫ t

µ(t)

∣∣∣β̂(η(µ(s)), s, r(s))
∣∣∣2 ds

≤ 4τ

(max
1≤i≤N

{li}

)2
+ H max

1≤i≤N

 H∑
h=1

ρ2
h(i)λmax

((
Bh(i) ⊗ Υ

)T (
Bh(i) ⊗ Υ

))
 ∫ t

µ(t)
E|η(s)|2ds

+ 2σ̂
∫ t

µ(t)
E|η(µ(s))|2ds

≤
K1(τ)
τ

∫ t

µ(t)
sup
0≤s≤t
E |η(s)|2 du

≤ K1(τ) |η0|
2 e(2l̂+σ̂)t. (3.28)

On the other hand, by utilizing the Itô formula again, one gets that

E |η(t) − z(t)|2 = 2E
∫ t

0

{ [
η(s) − z(s)

]T
[
Ĝ(η(s), s, r(s)) − Ĝ(z(s), s, r(s))

+

H∑
h=1

ρh(r(s))
(
Bh(r(s)) ⊗ Υ

)
(η(s) − z(s))

]
+

∣∣∣β̂(η(µ(s)), s, r(s)) − β̂(η(s), s, r(s))
∣∣∣2 I(s)

}
ds

≤ 2

max
1≤i≤N

{li} + max
1≤i≤N

 H∑
h=1

ρh(i)λmax

([
Bh(i) ⊗ Υ

]
s

)
 ∫ t

0
E|η(s) − z(s)|2ds

+ max
1≤i≤N

{
λmax

(
CT

1 (i)C1(i)
)
, λmax

(
CT

2 (i)C2(i)
)
, · · · · · · , λmax

(
CT

M(i)CM(i)
)}

×

∫ t

0
E|η(µ(s)) − z(s)|2ds

≤ 2l̂
∫ t

0
E|η(s) − z(s)|2ds + σ̂

∫ t

0
E|η(µ(s) − z(s)|2ds
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≤ (2l̂ + 2σ̂)
∫ t

0
E|η(s) − z(s)|2ds + 2σ̂

∫ t

0
E|η(µ(s) − η(s)|2ds. (3.29)

Recalling assertion (3.18), it can be deduced that∫ t

0
E|η(µ(s) − η(s)|2ds ≤ K1(τ)|η0|

2
∫ t

0
e(2l̂+σ̂)sds ≤

K1(τ)|η0|
2

2l̂ + σ̂

[
e(2l̂+σ̂)t − 1

]
. (3.30)

Substituting inequality (3.30) into inequality (3.29) leads to

E|η(t) − z(t)|2 ≤ (2l̂ + 2σ̂)
∫ t

0
E|η(s) − z(s)|2ds +

2σ̂K1(τ)|η0|
2

2l̂ + σ̂

[
e(2l̂+σ̂)t − 1

]
. (3.31)

Subsequently, by using the Gronwall inequality [38], it can be readily obtained that

E|η(t) − z(t)|2 ≤
2σ̂K1(τ)|η0|

2

2l̂ + σ̂

[
e(2l̂+σ̂)t − 1

]
+

4σ̂(l̂ + σ̂)K1(τ)|η0|
2

2l̂ + σ̂

∫ t

0
e2(l̂+σ̂)(t−s)[e(2l̂+σ̂)s − 1]ds

≤

[
4(l̂ + σ̂)K1(τ)

2l̂ + σ̂

]
|η0|

2e2(l̂+σ̂)t. (3.32)

Hence, in light of the Hölder inequality, one can further acquire the following assertion:

E|η(t) − z(t)|q ≤
(
E|η(t) − z(t)|2

) q
2
≤

[
4(l̂ + σ̂)K1(τ)

2l̂ + σ̂

] q
2

|η0|
qeq(l̂+σ̂)t. (3.33)

Theorem 3.1. Suppose that all of the conditions in Lemma 3.1 are satisfied. Let ξ ∈ (0, 1). τ∗ > 0 is
the unique positive root of the following equation:

ξ + K2(τ)e(l̂+σ̂)q(τ+ 1
ϵ log ( K0

ξ )) = 1, (3.34)

where θm = min
0≤i≤N

{θi}, θM = max
0≤i≤N

{θi}, K2(τ) =
[

4(l̂+σ̂)K1(τ)
2l̂+σ̂

] q
2 , and ϵ, θi, ρ̂, σ̂, K0, and K1 are the same as

in Lemmas 3.1 and 3.2. If 0 < τ < τ∗, then the multilayer complex network system (2.1) can achieve
almost sure exponential synchronization with isolated node (2.3) via aperiodically intermittent noise
control, i.e.,

lim
t→∞

sup
1
t

log |η(t)| ≤ −
2δ̂
5q

< 0, a.s. (3.35)

Proof. For given positive constant ξ ∈ (0, 1), we can choose sufficiently large positive integer m0 such
that

log ( K0
ξ

)

ϵτ
≤ m0 < 1 +

log ( K0
ξ

)

ϵτ
. (3.36)

Combining the above inequality with Lemma 3.1, one gets that

K0e
−m0ϵτ
≤ ξ, E|z(m0τ)|q ≤ K0e

−m0ϵτ
|η0|

q ≤ ξ|η0|
q. (3.37)
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Noting that

ξ + K2(τ)e(l̂+σ̂)qm0τ < ξ + K2(τ)e(l̂+σ̂)q(τ+ 1
ϵ log ( K0

ξ )) = 1, (3.38)

there exists a constant δ̂ > 0 such that

ξ + K2(τ)e(l̂+σ̂)qm0τ < e−δ̂m0τ. (3.39)

For simplicity, let zm0 = z(m0τ, η0, r0) and ηm0 = η(m0τ, η0, r0). Combing Lemma 3.2 and the elementary
inequality (u + v)q ≤ uq + vq, u ≥ 0, v ≥ 0, q ∈ (0, 1), one can compute that

E|ηm0 |
q ≤ E|zm0 |

q + E|ηm0 − zm0 |
q

≤ K0e−m0ϵτ|η0|
q + |η0|

qK2(τ)e(l̂+σ̂)qm0τ

≤ |η0|
q
[
ξ + K2(τ)e(l̂+σ̂)qm0τ

]
≤ |η0|

qe−δ̂m0τ. (3.40)

When t ≥ mτ, it can be deduced that

E
(
|η2m0 |

q|Fm0τ

)
≤ |ηm0 |

qe−δ̂m0τ ≤ |η0|
qe−2δ̂m0τ. (3.41)

Similarly, one can derive that

E|ηim0 |
q ≤ E|η(i−1)m0 |

qe−δ̂m0τ ≤ · · · · · · ≤ E|ηm0 |
qe−δ̂(i−1)m0τ ≤ |η0|

qe−δ̂im0τ i = 1, 2, 3, · · · · · · . (3.42)

Let τ ∈ (0, τ∗). It follows from Eq (3.14) that

η(t) = η0 +

∫ t

0

[
G̃(η(s), s, r(s)) +

H∑
h=1

ρh(r(s))
(
Bh(r(s)) ⊗ Υ

)
η(s)

]
ds + I(s)β̂(η(µ(s)), s, r(s))dB(s).

By exploiting the Hölder inequality and the Burkholder-Davis-Gundy inequality, it can be estimated
that

E
(

sup
0≤t≤m0τ

|η(t)|2
)
≤ 3|η0|

2 + 3E
{

sup
0≤t≤m0τ

|

∫ t

0
G̃(η(s), s, r(s)) +

H∑
h=1

ρh(r(s))
(
Bh(r(s)) ⊗ Υ)

)
η(s)ds|2

}
+ 3E

{
sup

0≤t≤m0τ

|

∫ t

0
I(s)β̂(η(µ(s)), s, r(s))dB(s)|2

}
≤ 3|η0|

2 + 6mτ
[
(max
1≤i≤N
{li})2 + H max

1≤i≤N

{ H∑
i=1

ρ2
h(i)λmax

(
Bh(i) ⊗ Υ)T (Bh(i) ⊗ Υ)

)}]
.

E
(

sup
0≤t≤m0τ

∫ t

0
|η(s)|2ds

)
+ 12σ̂E

(
sup

0≤t≤m0τ

∫ t

0
|η(µ(s))|2ds

)
≤ 3|η0|

2 + 6m0τ
[
(max
1≤i≤N
{li})2 + H max

1≤i≤N

{ H∑
i=1

ρ2
h(i)λmax

(
(Bh(i) ⊗ Υ)T (Bh(i) ⊗ Υ)

)}
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28839

+ 12σ̂
] ∫ m0τ

0
E
(

sup
0≤t≤s
|η(t)|2

)
ds. (3.43)

Moreover, by the Gronwall inequality, it can be attained that

E
(

sup
0≤t≤m0τ

|η(t)|2
)
≤ 3|η0|

2eK3(τ)m0τ, (3.44)

where K3(τ) = 6m0τ
[
(max
1≤i≤N
{li})2 + H max

1≤i≤N

{∑H
i=1 ρ

2
h(i)λmax

(
(Bh(i) ⊗ Υ)T (Bh(i) ⊗ Υ)

)}
+ 12σ̂

]
. By virtue

of the Hölder inequality, one gets that

E
(

sup
0τ≤t≤m0τ

|η(t)|q
)
≤ 3

q
2 |η0|

qe
qK3(τ)mτ

2 = K4(τ)|η0|
q, (3.45)

where K4(τ) = 3
q
2 e

qK3(τ)mτ
2 . Accordingly, based on the time stationarity of stochastic differential

equations, it can be derived that

E

(
sup

im0τ≤t≤(i+1)m0τ

|η(t)|q|Fim0τ

)
≤ K4(τ)|ηim0τ|

q, i = 0, 1, 2, · · · · · · . (3.46)

Combining (3.42) and (3.46) gives

E

(
sup

im0τ≤t≤(i+1)m0τ

|η(t)|q
)
≤ K4(τ)E|ηim0τ|

q ≤ K4(τ)|η0|
qe−δ̂im0τ. (3.47)

According to the Markov inequality, one gets that

P
{

sup
im0τ≤t≤(i+1)m0τ

|η(t)|q ≥ e−0.4m0δ̂iτ

}
≤ K4(τ)|η0|

qe−0.6m0δ̂iτ, i = 1, 2, · · · · · · . (3.48)

As a result, by the Borel-Cantelli lemma, for almost all ω ∈ Ω, there exists a stochastic integer i0 =

i0(ω) satisfying

sup
i∗m0τ≤t≤(i∗+1)m0τ

|η(t)|q < e−0.4m0δ̂i∗τ, (3.49)

for i∗ > i0(ω). Hence, it can be concluded that

lim
t→∞

sup
1
t

log |η(t)| ≤ −
2δ̂
5q

< 0, a.s. (3.50)

which signifies that the multilayer complex network system (2.1) realizes almost sure exponential
synchronization with isolated node (2.3) via aperiodically intermittent noise control.

Remark 1. Recently, stability and synchronization of multilayer complex networks have been discussed
by developing various control approaches such as state feedback control, event-triggered control,
impulsive control, and intermittent control in [12, 14, 16, 21]. Compared with the previous findings,
this paper has dealt with the almost sure exponential synchronization issue of MCNS by adopting
aperiodically intermittent discrete observation noise control, where the stochastic noise can be viewed
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as control input in the diffusion term rather than the drift term [22]. In the considered control scheme,
the average control rate has been integrated to depict the distributions of work/rest intervals of the
control strategy from an overall perspective. In general, as the average control rate become larger, the
control performance will be better.
Remark 2. Different from the work about pth moment exponential synchronization of network
systems in [21, 22], by utilizing M-matrix theory and various stochastic analysis techniques including
the Itô formula, the Gronwall inequality, and the Borel-Cantelli lemma, almost sure exponential
synchronization of multilayer coupled networks with Markovian switching has been analyzed via
AIDONC. Although some sufficient conditions on almost sure exponential synchronization of MCNS
have been given in [23], the control strategy AIDONC has not been adopted. Additionally, in [35,36],
almost sure exponential synchronization and stabilization of neural networks have been investigated
under AIDONC and the theoretical work has been extended to hybrid neural networks and complex
networks [37–39]. In this paper, Markovian switching and multilayer interaction factors have been
taken into account simultaneously, which make our network system more general.
Remark 3. In this paper, we utilize the stochastic operatorLV and matrix multiplication to investigate
the almost sure exponential synchronization of stochastic multilayer complex networks. Actually,
fast algorithms about matrix multiplication are an interesting and hot topic which can be applied
in contemporary Intel Xeon microprocessors. Particularly, in [40], a broad series of algorithms taking
advantage of the efficiency of fast matrix multiplication algorithms in other mathematical and computer
science operations have been reported. Extending the applications of these algorithms to complex
networks remains a current challenge.

In particular, when τ = 0 and H = 1, the multilayer networks are reduced to the following single-
layered networks.

dδk(t) = [G(δk(t), t, r(t)) + ρ(r(t))
M∑

m=1

bkm(r(t))Υδm(t)]dt + uk(t, r(t)), k = 1, 2, · · · · · · ,M. (3.51)

Corollary 1. Let Q = diag{χ1, χ2, · · · · · · , χN} − Ψ denote an M-matrix, where q ∈ (0, 1), χi =

0.5q
(
(2−q)d(i)−σ(i)

)
−qli−q

(
ρ(i)λmax

([
B(i)⊗Υ

]
s

))
, andΨ = (ψi j)N×N . Under Assumptions 1 and 2, if

ϵ = λ̃α−ζ̃(1−α) > 0, complex network (3.51) can achieve almost sure exponential synchronization with
the isolated node (2.3), whereσi = max

{
λmax

(
CT

1 (i)C1(i)
)
, λmax

(
CT

2 (i)C2(i)
)
, · · · · · · , λmax

(
CT

M(i)CM(i)
)}

,

di = min
{
λ2

min

(
C1(i)

)
, λ2

min

(
C2(i)

)
, · · · · · · , λ2

min

(
CM(i)

)}
, Qθ = Q(θ1, θ2, · · · · · · , θN)T =

(λ1, λ2, · · · · · · , λN)T > 0, λ̃ = min
1≤i≤N

{
λi
θi

}
> 0, ζi = 0.5q

[
(2 − q)di − σi

]
θi − λi, ζ̃ = max

1≤i≤N

{
ζi
θi

}
> 0,

θm = min
i∈S
{θi}, θM = max

i∈S
{θi}, and K0 =

θMeN0(λ̃+ζ̃)

θm
.

In particular, when θ = (θ1, θ2, · · · · · · , θn)T = (1, 1, · · · · · · , 1)T and H = 1, immediately, we acquire
the following assertion.
Corollary 2. Let all the conditions in Theorem 1 hold except (λ1, λ2, · · · · · · , λn)T = (1, 1, · · · · · · , 1)T ,

χi = 0.5q
[
(2 − q)di − σi

]
− qli − q

(
ρ(i)λmax

([
B(i) ⊗ Υ

]
s

))
, and l̂ = max

1≤i≤N

{
li + ρ(i)λmax

(
[B(i) ⊗ Υ]s

)}
. If

0 < τ < τ∗, then the multilayer coupled network system (3.51) can achieve almost sure exponential
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synchronization with isolated node (2.3) via aperiodically intermittent noise control, i.e.,

lim
t→∞

sup
1
t

log |η(t)| ≤ −
2δ̂
5q

< 0, a.s. (3.52)

Remark 4. Fractional differences can be seen as generalization or as an extension of classical calculus
while fractional order derivatives are non-locally distributed, which can describe the memory and
hereditary effects of complex processes and materials accurately. In recent years, many mathematical
models in engineering and biological sciences have been proposed by using discrete or continuous
fractional equations [41–45]. Particularly, in [41, 42], some dynamic behaviors such as the existence
and stability of solutions of worms in a wireless sensor model in the sense of the fractal fractional
and fractional nabla difference COVID-19 model have been analyzed through function analysis and
the Ulam-Hyers stability technique. Furthermore, some properties such as existence, uniqueness,
controllability, stability of solutions of some equations including Hilfer fractional evolution equations,
ABC-fuzzy-Volterra integro-differential equations, and coupled pantograph discrete fractional order
difference equations have been discussed in [43–45]. Actually, fractional complex networks have been
a current attractive topic. In the future, our work can be further extended to stochastic fractional
complex networks.

4. Numerical example

In order to exhibit the feasibility of our theoretical findings, a famous Chua’s circuits network is
considered here, which has been extensively applied to various areas as an essential nonlinear electronic
oscillator model. Initially, the single Chua’s circuit is described as follows:

V̇1(t) = −
1

R1C∗1
V1(t) +

1
R1C∗1

V2(t) −
1

C∗1
Γ(V1(t));

V̇2(t) =
1

R1C∗2
V1(t) −

1
R1C∗2

V2(t) +
1

C∗2
I3(t);

İ3(t) = −
1
L0

(V2(t) + R2I3(t));

(4.1)

where V1(t) and V2(t) denote the voltages across the capacitors C∗1 and C∗2. Meanwhile, I3 signifies
the current through the inductance L0, and R1 and R2 stands for the linear resistors. Γ(V1(t)) denotes
the current through the nonlinear resistor NR1 , which can be recasted as Γ(V1(t)) = ϖ1V1 + 0.5(ϖ2 −

ϖ1)(|V1 + 1| − |V1 − 1|), ϖ1 = −0.05, ϖ2 = −0.07. Soon afterward, we consider a multilayer coupled
network of Chua’s circuits with Markovian switching as follows:

dδk1(t)
dδk2(t)
dδk3(t)

 =

F̃11(r(t)) F̃12(r(t)) 0
F̃21(r(t)) F̃22(r(t)) F̃23(r(t))

0 F̃32(r(t)) F̃33(r(t))



δk1(t)
δk2(t)
δk3(t)

 dt +


Γ̃k(r(t))

0
0

 dt

+

H∑
h=1

M∑
m=1

ρh(r(t))bh
km(r(t))Υδm(t)dt + uk(t, r(t)),

(4.2)

where δk(t) = (δk1(t), δk2(t), δk3(t))T = (Vk1,Vk2, Ik3)T , (k = 1, 2, 3, 4, 5, 6), F̃11(r(t)) =

− 1
R1(r(t))C∗1(r(t)) , F̃12(r(t)) = −F̃11(r(t)), F̃21(r(t)) = 1

R1(r(t))C∗2(r(t)) , F̃22(r(t)) = − 1
R1(r(t))C∗2(r(t)) , F̃23(r(t)) =

AIMS Mathematics Volume 9, Issue 10, 28828–28849.
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1
C∗2(r(t)) , F̃32(r(t)) = − 1

L0(r(t)) , F̃33(r(t)) = −R2(r(t))
L0(r(t)) , and Γ̃k(r(t)) = −Γ(δk1(t))

C∗1(r(t)) . Accordingly, the isolated
node of the network is expressed as

ds(t) = G(s(t), t, r(t))dt. (4.3)

Meanwhile, controller uk(t, r(t)) is designed as

uk(t) =

Ck(r(t))ηk(µ(t))dw(t), t ∈ [ti, si),
0, t ∈ [si, ti+1),

(4.4)

where ηk(t) = δk(t) − s(t) and µ(t) = [t/τ] τ, τ > 0, and τ denotes the duration between two consecutive
observations. It is supposed that Markov jump r(t) ∈ S = {1, 2} with generator

Ψ =

(
−4 4
1 −1

)
.

Parameters M and H can be selected as M = 6 and H = 3. When r(t) = 1, let C∗1(1) = 2, C∗2(1) = 4,
R∗1(1) = 2, R∗2(1) = 0.5, L∗0(1) = 4, ρ1(1) = 0.6, ρ2(1) = 0.5, and ρ3(1) = 0.4. When r(t) = 2, let
C∗1(2) = 4, C∗2(2) = 2, R∗1(2) = 2.5, R∗2(2) = 1, L∗0(2) = 5, ρ1(2) = 0.4, ρ2(2) = 0.6, and ρ3(2) = 0.5. The
values of six adjacency matrices B1(1), B2(1), B3(1), B1(2), B2(2), and B3(2) are given as

B1(1) =



−0.3 0.1 0.1 0 0 0.1
0 −0.2 0.1 0 0.1 0
0 0 −0.1 0.1 0 0

0.1 0.1 0 −0.3 0.1 0
0.1 0 0 0 −0.2 0.1
0 0 0.1 0.1 0 −0.2


, B2(1) =



−0.2 0.1 0 0.1 0 0
0 −0.3 0.1 0 0.1 0.1

0.1 0 −0.2 0.1 0 0
0 0.1 0 −0.2 0 0.1

0.1 0 0 0 −0.1 0
0.1 0 0.1 0.1 0 −0.3


,

B3(1) =



−0.4 0.1 0.1 0 0.1 0.1
0.1 −0.3 0 0.1 0.1 0
0 0 −0.2 0.1 0 0.1
0 0 0 −0.1 0.1 0

0.1 0 0.1 0 −0.2 0
0 0.1 0 0.1 0 −0.2


, B1(2) =



−0.3 0.1 0 0.1 0 0.1
0 −0.2 0.1 0 0.1 0

0.1 0 −0.3 0.1 0 0.1
0 0.1 0 −0.2 0.1 0
0 0 0.1 0 −0.1 0

0.1 0 0.1 0.1 0 −0.3


,

B2(2) =



−0.3 0.1 0 0.1 0 0.1
0 −0.1 0.1 0 0 0
0 0 −0.2 0.1 0.1 0
0 0.1 0.1 −0.3 0.1 0

0.1 0 0 0 −0.2 0.1
0 0.1 0 0.1 0 −0.2


, B3(2) =



−0.2 0 0.1 0 0.1 0
0.1 −0.3 0 0 0.1 0.1
0.1 0 −0.2 0.1 0 0
0 0.1 0 −0.2 0.1 0

0.1 0 0.1 0 −0.3 0.1
0 0.1 0 0.1 0 −0.2


.
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Furthermore, choose q = 0.5,Υ = 0.5I, α = 0.8,Ck(r(t)) = 2I, ξ = 0.9, and N0 = 0.01. By
calculation, we can obtain l1 = 0.3215, l2 = 0.3561, l̂ = 0.3633, σ̂ = 4, χ1 = 0.3349, χ2 = 0.3184,
λ1 = λ2 = 1, θ1 = 3.1009, θ2 = 3.1105, λ̂ = 0.3215, ζ̂ = 0.1785, and ϵ = λ̃α − ζ̃(1 − α) = 0.2215 >

0. According to ξ + K2(τ)e(l̂+σ̂)q(τ+ 1
ϵ log ( K0

ξ )) = 1, the upper bound of duration time τ is estimated as
τ < τ∗ = 3.6213 × 10−5. Therefore, all of the conditions of Theorem 1 are satisfied, and the almost
sure exponential synchronization between network Eq (4.2) and isolated node Eq (4.3) is realized.
Figure 1 shows a right continuous Markov chain with initial data r(0) = 2. Meanwhile, Figures
2–4 illustrate the synchronization sample trajectories ηi1, ηi2, ηi3, (i = 1, 2, 3, 4, 5, 6) between network
Eq (4.2) and isolated node Eq (4.3), respectively. It can be observed from Figures 2–4 that the error
system is stable under aperiodically intermittent discrete observation noise control, which means that
almost sure exponential synchronization is achieved. Therefore, the numerical simulations validate
the effectiveness of the theoretical findings. By increasing the average control rate and the control
intensity, the synchronization performance including the exponential convergent rate will be further
improved. In comparison, this method is one discontinuous control, which can save cost and promote
efficiency.
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Figure 1. The Markov chain.
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Figure 2. Synchronization errors ηi1(t) between network Eq (4.2) and isolated node Eq (4.3).
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Figure 3. Synchronization errors ηi2(t) between network Eq (4.2) and isolated node Eq (4.3).
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Figure 4. Synchronization errors ηi3(t) between network Eq (4.2) and isolated node Eq (4.3).

5. Conclusions

In this paper, almost sure exponential synchronization of multilayer complex networks with
Markovian switching via AIDONC is investigated. Different from the work about pth moment
exponential synchronization of network systems in [21, 22], by utilizing M-matrix theory and various
stochastic analysis techniques including the Itô formula, the Gronwall inequality, and the Borel-
Cantelli lemma, some criteria on almost sure exponential synchronization of multilayer coupled
networks with Markovian switching are constructed and the upper bound of the duration time is also
estimated. It is noted that the control strategy is based on aperiodically intermittent discrete observation
noise, where the average control rate is integrated to depict the distributions of work/rest intervals of
the control strategy from an overall perspective. Finally, some numerical simulations are exhibited
to illustrate the effectiveness and feasibility of our analytical findings. Although the aperiodically
intermittent discrete observation noise control strategy can reduce energy consumption and save
control cost, the derived algebraic criteria on almost sure exponential synchronization generally are
comparatively difficult to calculate. Meanwhile, the duration time is comparatively small, and its
length needs to be extended by designing several optimization algorithms in order to demonstrate
the feasibility in practise. In the future, based on the work in [46, 47], the issue of stabilization
and synchronization of coupled networks with semi-Markovian switching based on AIDONC will
be further explored.
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