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1. Introduction

Fuzzy graph theory and intuitionistic fuzzy graph theory incorporate uncertainty and imprecision
into graph-based modeling, both of which are expansions of traditional graph theory. Let us examine
the development of intuitionistic fuzzy graph theory from fuzzy graph theory and who was involved
in its creation [9, 29]. Fuzzy graph theory was developed as an extension of traditional graph theory
to deal with circumstances where node and edge interactions are not always strictly binary (present or
absent), but instead might include degrees of membership [37]. The roots of fuzzy graph theory were
established by academics like Lotfi A. Zadeh [43, 44], who presented the idea of fuzzy sets in 1965.
Fuzzy graph theory has been introduced and improved by a number of researchers. The depiction of
different levels of connectedness or interaction between nodes in a network is possible thanks to fuzzy
graph theory.

As a development of fuzzy sets, Krassimir Atanassov proposed intuitionistic fuzzy sets (IFS) in
the early 1980s [8]. Assigning non-membership, hesitation, and membership degrees to items in
intuitionistic fuzzy sets allows for a more detailed portrayal of doubt and reluctance when determining
membership [26]. To provide even more elaborate means for characterizing uncertainty in a given
environment, inaccuracy in the graph structures, the concept of fuzzy graph theory and intuitionistic
fuzzy sets were established [34]. In the theory of intuitionistic fuzzy graphs, each node and edge of a
graph is warranted an intuitionistic fuzzy set with three degrees: membership, non-membership, and
hesitation. Dr. Atanassov introduced the concept of intuitionistic fuzzy graph theory to the academic
community, drawing on his own expertise. Published in 1992, the book “Intuitionistic Fuzzy Graphs”
built the initial prototype of intuitionistic fuzzy graph theory. Atanassov’s work in graph theory enabled
the utilization of the concepts of IFS, which helped to better illustrate hesitant and unsure connections
in graph topologies. Intuitionistic fuzzy graph theory was further developed by several scholars after
this, which led to the identification of new concepts, processes, and applications in the methods of
decision-making, pattern recognization, image processing, and many other fields [16, 21].

1.1. Topological indices in fuzzy graph theory

Topological indices are numerical values obtained from a graph’s structure that provide light on its
many characteristics. Topological indices are modified in both fuzzy graph theory and intuitionistic
fuzzy graph theory to account for uncertainty and imprecision in the graph’s edges and nodes. Let us
examine the differences between these two theories’ topological indices and talk about their respective
weights [23, 25, 30].

1.1.1. Fuzzy topological indices

Topological indices take into account the idea of fuzzy edges in fuzzy graph theory, where the value
of membership (values between 0 and 1) is used to describe the strength of the link between nodes.
Fuzzy degrees are added to conventional topological indices like degree centrality, closeness centrality,
betweenness centrality, and graph invariants like the Randic index or the Zagreb indices. These indices
take into consideration the ambiguity in edge connections while displaying how closely linked the
central nodes are in a network [1, 2, 17].
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1.1.2. Intuitionistic fuzzy topological indices

By incorporating intuitionistic fuzzy sets, which are made up of membership, non-membership,
and hesitation degrees, intuitionistic fuzzy graph theory goes beyond uncertainty. In intuitionistic
fuzzy graph theory, topological indices, membership, non-membership, and hesitation degrees interact
in more complicated ways for both nodes and edges. Traditional topological indices are expanded
to include intuitionistic fuzzy sets, much like fuzzy graph theory does. This comprises centrality
measurements, connection indices, and degree-based indices [3, 7, 35].

1.1.3. Importance and application

In both theories, the significance of topological indices varies according to the situation and the
particular issue at hand. Fuzzy graph theory and its adjusted topological indices can be adequate
to capture and evaluate the underlying structure in circumstances when the interactions between
nodes are ambiguous but not necessarily reluctant. Instances when hesitation is a substantial issue
and uncertainty is more complex, intuitionistic fuzzy graph theory and its accompanying topological
indices provide a more complete framework. The most important theory will vary depending on the
application and the type of uncertainty in the graph. When dealing with networks whose connections
have different degrees of strength, fuzzy graph theory is helpful; however, intuitionistic fuzzy graph
theory is better applicable when both uncertainty and hesitation play important roles. Since there
is ambiguity in many real-world situations to varied degrees, these theories may not be mutually
incompatible. The theory and related indices that best fit the level of uncertainty in the data and are
consistent with the objectives of the investigation are frequently chosen by researchers. A theory’s or
a collection of topological indices’ significance is ultimately defined by how well it can simulate and
interpret the network structure in a particular situation [4–6, 36].

2. Literature review

Invariants of intuitionistic fuzzy graph theory is interested in fuzzy graphs. Here are a few pertinent
search outcomes: In [11], the ideas of an intuitionistic fuzzy graph’s minimum intuitionistic fuzzy
base and route are discussed. In [19], the work proposes three concepts—intuitional fuzzy threshold,
intuitive fuzzy route, and intuitive fuzzy cycle—and gives a generalization of fuzzy threshold graphs.
In [10], the smallest intuitionistic dominant vertex subset of an intuitionistic fuzzy graph is a topic that
is examined. In [32], the idea of bipolar intuitionistic fuzzy graphs (BIFG), a fuzzy graph extension
that may successfully incorporate uncertain or imprecise information, is introduced. For the purpose
of identifying flood-prone areas, they suggest a decision-making model based on BIFG. In [24],
topological indices in fuzzy graphs were defined. This provides a basis for comprehending topological
indices in fuzzy graphs, although it does not specifically concentrate on uniform intuitionistic fuzzy
topological indices.

Fuzzy topological invariants in uniform fuzzy graphs were given in [19]. This work explored three
ideas related to the intuitionistic fuzzy threshold and proposed a generalization of fuzzy threshold
graphs. It examined comparable ideas but did not specifically reference uniform intuitionistic fuzzy
topological indices. In [31], the first and second fuzzy Zagreb indices, the Randic index, and
the harmonic index were studied. It offered insights into fuzzy topological analysis even if it
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did not directly include uniform intuitionistic fuzzy topological indices. In [12, 15, 20, 27, 33, 45],
as an extension of fuzzifying topology, intuitionistic fuzzifying topology was covered. These
give background knowledge on fuzzy topology but do not directly handle uniform intuitionistic
fuzzy topological indices. There are other environments of fuzzy indices in which topological
descriptors are studied like the introduction to topological indices in neutrosophic graphs given by [18].
In neutrosophic graphs, which are graphs that adhere to three-valued logic, this study proposed
topological indices. It explored analogous ideas in the context of fuzzy graphs, but did not particularly
focus on uniform intuitionistic fuzzy topological indices. In [11], the ideas of an intuitionistic fuzzy
graph’s minimum intuitionistic fuzzy base and route were discussed. It discussed pertinent ideas in
intuitionistic fuzzy graphs but did not specifically mention uniform intuitionistic fuzzy topological
indices. Not only used in networking, pure mathematics graph-based modeling is available for
engineering, as well, as was shown in [13, 28, 38, 40]. For additional information on fuzzy indices and
their implementation, one can refer to [14, 22, 39, 41]. For a neural network study, one can visit [42].

Overall, while the search results do not directly provide literature on uniform intuitionistic fuzzy
topological indices, they offer insights into related concepts in fuzzy graphs, fuzzy topological analysis,
and intuitionistic fuzzy graphs. These resources can serve as a foundation for further exploration
and research in uniform intuitionistic fuzzy topological indices. One can use these research articles
to investigate fuzzy invariants of intuitionistic fuzzy graphs and explore the ideas of minimum
intuitionistic fuzzy bases, minimal intuitionistic fuzzy thresholds, minimal intuitionistic fuzzy cycles,
and minimal intuitionistic dominant vertex subsets. To construct and test various intuitionistic fuzzy
graph algorithms and models, one can also utilize Python packages like NetworkX or igraph.

3. Our proposed work and its main results

3.1. The uniform intuitionistic fuzzy graph and its topological indices

In [19], authors presented some fuzzy topological invariants in the environment of uniform fuzzy
graphs. Inspired by this work, we expand the concept of uniform fuzzy graphs to uniform intuitionistic
fuzzy topological indices. By introducing uniform intuitionistic fuzzy topological indices (UIFTIs), the
idea of traditional topological indices is generalized to fuzzy sets allowing a more flexible and detailed
description of structural properties of graphs or networks. Finally, in complex systems in which
structural relations present different degrees of coupling or interference, these indices are particularly
useful because they express uncertainty and fuzziness in the node topology. It is appropriate to check
how some superimposed indices such as first Zagreb, the second Zagreb, the harmonic, and the Randic
index are related to uniform intuitionistic fuzzy topological indices.

3.1.1. The uniform intuitionistic fuzzy graph

A uniform intuitionistic fuzzy graph is a graph where each connection between vertices is
represented with two levels of uncertainty: that is, one measure of how it is connected and another
measure of how it is disconnected, plus a measure of uncertainty. The term “uniform” is used to mean
that these uncertain relations have some consistencies on their rules or properties in the extend of the
graph. Such a type of graph is helpful to represent the conditions, where the relationships are vague or
tend to be in different forms, for instance, in decision-making or complicated networks.
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3.1.2. Uniform intuitionistic fuzzy topological indices

It can be generally observed that the traditional topological indices defined and used in this
work may be systematically enriched with uncertainty and imprecision uniformly by using uniform
intuitionistic fuzzy topological indices. UIFTIs complement exact models within a system-oriented
approach more logically, offering a more realistic and flexible way of modeling the nature of real
systems by incorporating IF sights to describe degrees, distances, or other structural aspects of a
system and its corresponding components. Applying UTIN: Chemoinformatics, bioinformatics, as
well as complex systems analysis are among application areas that may benefit from fuzzy topological
indices. Accompanying these indices, the researcher will be able to analyze and better understand the
inherent contingencies into the studied systems, and perform more detailed and accurate structural and
property evaluations.

3.1.3. First Zagreb index

The first Zagreb index is known as the M1 index, which is a fundamental topological index that sums
the square of degrees of all nodes in the network. Thus, the first Zagreb index may be generalized to
incorporate fuzzy degrees of nodes associated with the context of UIFTIs. In this respect, the degree of
a node may equivalently be deemed as an intuitionistic fuzzy set. This makes it possible to depict node
connection in a more flexible manner and represents the degree of graph uncertainty. The M2 index is
a conventional topological index based on near nodes’ degrees that constitutes the product of pair node
degrees.

3.1.4. Second Zagreb index

As is done with the first Zagreb index, the second Zagreb index can also be generalized to fuzzy
degrees giving a uniform intuitionistic fuzzy second Zagreb index. This fuzzy variation incorporates
spatial relation which considers both concepts of adjacency and degree uncertainty between the node
pairs.

3.1.5. Harmonic index

The topological index called the harmonic index considers the harmonic mean of all node to node
separation in the network. By defining the various distances between the nodes, it is possible to
explain the concept of the harmonic index in the case of UIFTIs, which can characterized the twofold
uncertainty in the graph.

3.1.6. Randić index

The Randić index, to which is added the sum of the reciprocal square roots of the degrees of
neighboring nodes, quantifies the connectivity of a network. The Randic index is the index which
in fuzzy framework may get extended to embrace fuzzy degrees showing the degrees of connection
between nodes.
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3.2. Uniform strong intuitionistic fuzzy

The idea of uniform strong intuitionistic fuzzy (USIF) joins the aspect of “uniformity” with strong
intuitionistic fuzzy sets. Let us define these words: “Uniformity” is the even distribution of the
membership values assigned to a set’s elements when speaking about fuzzy sets. This results in a
balanced and uniform representation since every element in the set has an equal or nearly equal value
of membership.

3.3. Strong intuitionistic fuzzy sets

Thus, in addition to membership degree, there are two additional features to consider, which are
the non-membership degree and the hesitation degree, which represents the level of hesitance in the
defining membership and non-membership values. They are likely to denote some specific kind of
fuzzy set or fuzzy logic, which incorporates into the construct the uniformity quality together with the
notion of strong intuitionistic fuzzy sets. This would mean that the membership values assigned to
the set’s components are not only uniformly distributed (uniform), but also within a proper intuitionist
fuzzy setting taking into consideration the membership, non-membership, and degree of possibility of
reluctance.

3.4. Uniform interval-valued intuitionistic fuzzy

“Uniform interval-valued intuitionistic fuzzy (UIVIF)” refers to a specialized fuzzy set where
membership, non-membership, and hesitation degrees are represented as intervals rather than precise
values, providing a more flexible and nuanced way to capture uncertainty and vagueness. In this
framework, the intervals for membership and non-membership functions are uniformly applied across
the entire domain, ensuring consistency in the degree of uncertainty throughout. This approach is
particularly useful in modeling scenarios where precise numerical values are difficult to ascertain,
offering a robust method for handling imprecise information. Some of the decision-making, pattern
recognition, uncertainty modeling, and other activities that require a better representation of uncertainty
and imprecision may be served better with such a notion. Modifications of the conventional graph
theory where both strong intuitionistic fuzzy sets, strong intuitionistic fuzzy vertices, and uniformity
principles are incorporated are called the uniform strong intuitionistic fuzzy graphs (USIF graphs).
This idea tries to capture the fuzziness of the graph structure and aims at having its maximal, minimal,
and uncertain levels of participation for the nodes be approximately equal. Every node and edge
in a USIF network is associated to an excellent intuitionistic fuzzy set that represents the degrees
of membership, non-membership, and hesitation. The definition of the USIF graph’s structure and
the soft role of fuzzy assignments are applied to calculate the topological indices for uniform strong
intuitionistic fuzzy graphs. These indices provide data regarding many structural and connectivity
properties of the graph while still encompassing uncertainty and imprecision. These indices can only
be computed if strong intuitionistic fuzzy sets associated with nodes and edges exist.

Examples of topological indices for uniform strong intuitionistic fuzzy graphs include the following:
The overall value of the node in the graph is calculated using the strong intuitionistic fuzzy degree
index. It evaluates the connectedness of a node in detail owing to the consideration of the strong
membership degree and the hesitation degree. These indices are able to measure distances between
nodes in terms of strong intuitionistic fuzzy sets similar to the traditional distance-based indices.
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With regard to the paths between nodes, they incorporate the strong membership and hesitation
degrees. The degree to which nodes in a USIF network prefer to cluster together is gauged by the
strong intuitionistic fuzzy clustering coefficient. To evaluate the local clustering pattern, it takes into
account the strong membership, non-membership, and hesitating degrees. Applied to fuzzy sets,
the concept of topological indices is elaborated by using interval-valued intuitionistic fuzzy sets to
deal with uncertainty in the form of intervals in membership and non-membership functions. In
uncertain conditions, this makes it possible to adjust the model more freely on each step. In order
to apply the features of UIFTIs to the mathematical environment specific to fuzzy environments
such as monotonicity and boundedness, enhanced techniques of calculation are used to optimize the
presentation of interval-based data.

These are only a few illustrations, and research is still being done on the creation and use of
topological indices for uniform strong intuitionistic fuzzy graphs. These indices are useful tools for
decision-making, pattern identification, and information modeling because they offer a mechanism to
assess and comprehend the structural characteristics of complex systems while taking uncertainty and
imprecision into account.

3.5. Interval-valued intuitionistic fuzzy graphs and their types

Definition 3.1. An IVIFG is of the form G =< V, E > where V = {v1, v2, v3, . . . , vn} such that[
ζL

1 (vi), ζU
1 (vi)

]
⊆ [0, 1] and

[
ηL

1(vi), ηU
1 (vi)

]
⊆ [0, 1] denote the value of membership and non-

membership of the element vi ∈ V, respectively, where ζ1(vi)L and ζU
1 (vi) represent the lower and upper

bound of the membership degree of vi, and similarly ηL
1(vi) and ηU

1 (vi) represent the lower and upper
bound of the non-membership degree of vi. These satisfy

0 ≤ ζL
1 (vi) ≤ ζU

1 (vi) ≤ 1,
0 ≤ ηL

1(vi) ≤ ηU
1 (vi) ≤ 1,

0 ≤ ζU
1 (vi) + ηU

1 (vi) ≤ 1,

for every vi ∈ V(i = 1, 2, 3, . . . , n).
E ⊆ V × V where ζ2(vi, v j) =

[
ζL

2 (vi, v j), ζU
2 (vi, v j)

]
⊆ [0, 1] and η2(vi, v j) =

[
ηL

2(vi, v j), ηU
2 (vi, v j)

]
⊆

[0, 1] denote the value of membership and non-membership of the element for every (vi, v j) ∈ E. These
satisfy the following conditions:

ζU
2 (vi, v j) ≤min[ζU

1 (vi), ζU
1 (v j)],

ηL
2(vi, v j) ≤max[ηL

1(vi), ηL
1(v j)],

0 ≤ ζU
2 (vi,v j) + ηU

2 (vi, v j) ≤ 1,

for every (vi, v j) ∈ E(i, j = 1, 2, 3, . . . , n).
Note. Consider ζU

1i = ζU
1 (vi), ηL

1i = ηL
1(vi), ζU

2i j = ζU
2 (vi, v j) and ηL

2i j = ηL
2(vi, v j).

Definition 3.2. An IVIFG =< V, E > is said to have a strong IVIFG if ζU
2i j = min{ζU

1i , ζ
U
1 j} and

ηL
2i j = max{ηL

1i, η
L
1 j} for all (vi, v j) ∈ E. This definition is depicted in Figure 1.
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V1([0.4,0.5],[0.3,0.4]) ([0.1,0.3],[0.3,0.4]) V2([0.1,0.3],[0.1,0.2])

V3([0.2,0.3],[0.1,0.6]) V4([0.4,0.6],[0.2,0.7])

([0.1,0.3],[0.2,0.7])([0.2,0.3],[0.3,0.6])

([0.2,0.3],[0.2,0.7])

([0.4,0.5],[0.3,0.7])

Figure 1. An example of a strong interval-valued intuitionistic fuzzy graph.

Definition 3.3. A UDMS IVIFG =< V, E > is said to have a uniform value of membership strong
IVIFG if ζU

1i = ζU
1 j = t, ζU

2i j = min(t, t) = t, 0 ≤ t ≤ 1, and ηL
2i j = max(ηL

1i, η
L
1 j) for all (vi, v j) ∈ E. This

definition is depicted in Figure 2.

V1([t,t],[0.3,0.4]) ([t,t],[0.3,0.4]) V2([t,t],[0.1,0.2])

V3([t,t],[0.1,0.6]) V4([t,t],[0.2,0.7])

([t,t],[0.2,0.7])([t,t],[0.3,0.6])

([t,t],[0.2,0.7])

([t,t],[0.3,0.7])

Figure 2. An example of a uniform degree of membership of a strong interval-valued
intuitionistic fuzzy graph.

Definition 3.4. A UDNMS IVIFG =< V, E > is said to have a uniform degree of non-membership
strong IVIFG if ζU

2i j = min(ζU
1i , ζ

U
1 j), η

L
1i = ηL

1 j = s, ηL
2i j = max(s, s) = s, and 0 ≤ s ≤ 1 for all

(vi, v j) ∈ E. This definition is depicted in Figure 3.

V1([0.4,0.5],[s,s]) ([0.1,0.3],[s,s]) V2([0.1,0.3],[s,s])

V3([0.2,0.3],[s,s]) V4([0.4,0.6],[s,s])

([0.1,0.3],[s,s])([0.2,0.3],[s,s])

([0.2,0.3],[s,s])

([0.4,0.5],[s,s])

Figure 3. An example of a uniform degree of non-membership of a strong interval-valued
intuitionistic fuzzy graph.
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Definition 3.5. A UDMNMSIVIFG G =< V, E > is said to have a uniform value of membership and
non-membership strong IVIFG if ζU

1i = ζU
1 j = t , ζU

2i j = min(t, t) = t , ηL
1i = ηL

1 j = s , ηL
2i j = max(s, s) =

s, 0 ≤ t ≤ 1, and 0 ≤ s ≤ 1, t , s, for all (vi, v j) ∈ E. This definition is depicted in Figure 4.

V1([t,t],[s,s]) ([t,t],[s,s]) V2([t,t],[s,s])

V3([t,t],[s,s]) V4([t,t],[s,s])

([t,t],[s,s])([t,t],[s,s])

([t,t],[s,s])

([t,t],[s,s])

Figure 4. An example of a uniform degree of membership and non-membership of a strong
interval-valued intuitionistic fuzzy graph.

Definition 3.6. A TUDS IVIFG G =< V, E > is said to have a total uniform degree of strong IVIFG
if ζU

1i = ζU
1 j = ηL

1i = ηL
1 j = r, ζU

2i j = ηL
2i j = min{r, r} = max{r, r} = r, and 0 ≤ r ≤ 1, for all (vi, v j) ∈ E.

This definition is depicted in Figure 5.

V1([r,r],[r,r]) ([r,r],[r,r]) V2([r,r],[r,r])

V3([r,r],[r,r]) V4([r,r],[r,r])

([r,r],[r,r])([r,r],[r,r])

([r,r],[r,r])

([r,r],[r,r])

Figure 5. An example of a total uniform degree of a strong interval-valued intuitionistic
fuzzy graph.

4. Interval-valued intuitionistic fuzzy topological invariants

Definition 4.1. Let G =< V, E > be an IVIFG, and the degree of vertex of vi is defined by degG(vi) =

(degζG(vi), degηG(vi)), where degζG(vi) =
(∑

ζU
2i j,

∑
ζL

2i j

)
, degηG(vi) =

(∑
ηU

2i j,
∑
ηL

2i j

)
.

Definition 4.2. Let G =< V, E > be an IFG, and the sum of the value of membership and the degree of
non-membership elements of adjacent vertices is taken into consideration to determine the first Zagreb
index, which is provided as follows:
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IFM1 =
∑

(degG(vi) + degG(v j))

=
∑(

(degζG(vi), degηG(vi)) + (degζG(v j), degηG(v j))
)

=
∑(

(degζG(vi) + degζG(v j)), (degηG(vi) + degηG(v j))
)

=
(∑

(degζG(vi) + degζG(v j)),
∑

(degηG(vi) + degηG(v j))
)
.

Definition 4.3. Let G =< V, E > be an IFG, and the IF second Zagreb index is defined as

IFM2 =
∑

(degG(vi) × degG(v j)) =
(∑

(degζG(vi) × degζG(v j)),
∑

(degηG(vi) × degηG(v j))
)
.

Definition 4.4. Let G =< V, E > be an IFG, and the IF Randic index is defined as

IFRα =
∑

(degG(vi) × degG(v j))α =
(∑

(degζG(vi) × degζG(v j))α,
∑

(degηG(vi) × degηG(v j))α
)
.

Definition 4.5. Let G =< V, E > be an IFG, and the IF harmonic index is defined as

IFH =
∑ 2

(degG(vi) + degG(v j))
=

∑ 2

(degζG(vi) + degζG(v j))
,
∑ 2

(degηG(vi) + degηG(v j))

 .
4.1. Results for a uniform degree of membership of a strong interval-valued intuitionistic fuzzy graph

Theorem 4.1. For any UDMS IVIFG, the degree of a vertex vi is degG(vi) = (d(vi) [t, t] , degηG(vi)),
where d(vi) is the degree of the vertex of a crisp graph and t is a uniform membership degree of vi.

Proof. Let G =< V, E > be a UDMS IVIFG. Further, let the number of edges in G be finite. Each edge
has two IVIF vertices. The membership and non-membership value of each vi ∈ V(G) is represented
by (ζU

1i , ζ
L
1i), (η

U
1i, η

L
1i) and every edge (vi, v j) ∈ E(G) as (ζU

2i j, ζ
L
2i j), (η

U
2i, η

L
2i). The degree of the vertex is

represented by degG(vi) = (degζG(vi), degηG(vi)), since UDMS IVIFG has the same value of membership
ζU

1i = ζU
1 j = t, so we get ζU

2i j = min{t, t} = t for all i, j, where 0 ≤ t ≤ 1. As degζG(vi) is the sum of the
membership values of all those edges that are incident on vertex vi.

degζG(vi) =
(∑

ζU
2i j,

∑
ζL

2i j

)
= [t + t + t . . . t, t + t + t . . . t]
= (number o f edges incident with vi)(t, t),

degζG(vi) = d(vi)([t, t] ,

degG(vi) =
(
d(vi) [t, t] , degηG(vi)

)
.

�

Theorem 4.2. For a uniform degree of membership of a strong interval-valued intuitionistic fuzzy
graph, we have

IFM1(UDMS IVIFG) =
(
[t, t] M1,

∑
(degηG(vi) + degηG(v j))

)
,
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IFM2(UDMS IVIFG) =
([

t2, t2
]

M2(G),
∑

(degηG(vi) × degηG(v j))
)
,

IFRα(UDMS IVIFG) =
(
[tα, tα] Rα(G),

∑
(degηG(vi) × degηG(v j))α

)
,

IFH(UDMS IVIFG) =

([
1
t
,

1
t

]
H(G),

∑ 2
(degηG(vi) + degηG(v j))

)
.

Proof. The proof of this theorem is obvious. One can get intiutionistic fuzzy topological invariants of
UDMS IVIFG by using Theorem 4.1. �

4.2. Results for the uniform degree of non-membership of a strong interval-valued intuitionistic fuzzy
graph

Theorem 4.3. For any UDNMS IVIFG, the degree of a vertex vi is degG(vi) = (degζG(vi), [s, s] d(vi))
where d(vi) is the degree of the vertex of a crisp graph and s the uniform non-membership degree of vi.

Proof. The preceding Theorem 4.1 serves as an obvious proof for this one. �

Theorem 4.4. For a uniform degree of non-membership of a strong interval-valued intuitionistic fuzzy
graph, we have

IFM1(UDNMS IVIFG) =
(∑

(degηG(vi) + degηG(v j), [s, s] M1(G)
)
),

IFM2(UDNMS IVIFG) =
(∑

(degηG(vi) × degηG(v j),
[
s2, s2

]
M2(G)

)
,

IFRα(UDNMS IVIFG) =
(∑

(degηG(vi) × degηG(v j))α, [sα, sα] Rα(G)
)
,

IFH(UDNMS IVIFG) =

(∑ 2
(degηG(vi) + degηG(v j))

,

[
1
s
,

1
s

]
H(G)

)
.

Proof. The proof of this theorem is obvious. One can get intiutionistic fuzzy topological invariants of
UDNMS IVIFG by using Theorem 4.3. �

4.3. Results for the uniform degree of membership and non-membership of a strong interval-valued
intuitionistic fuzzy graph

Theorem 4.5. For any UDMNMSIVIFG, the degree of a vertex vi is degG(vi) = ([t, t] d(vi), [s, s] d(vi)),
where d(vi) is the degree of the vertex of the crisp graph, [t, t] is the uniform interval-valued
membership degree of vi and [s, s] is the uniform interval-valued non-membership degree of vi.

Proof. The preceding Theorem 4.1 serves as an obvious proof for this one. �

Theorem 4.6. For a uniform degree of membership and non-membership of a strong interval-valued
intuitionistic fuzzy graph, we have

IFM1(UDMNMS IVIFG) = M1(G) ([t, t] , [s, s]) ,

IFM2(UDMNMS IVIFG) = M2(G)
([

t2, t2
]
,
[
s2, s2

])
,

IFRα(UDMNMS IVIFG) = Rα(G) ([tα, tα] , [sα, sα]) ,

IFH(UDMNMS IVIFG) = H(G)
([

1
t
,

1
t

]
,

[
1
s
,

1
s

])
.
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Proof. The proof of this theorem is obvious. One can get intiutionistic fuzzy topological invariants of
UDMNMS IVIFG by using Theorem 4.5. �

4.4. Results for the total uniform degree of a strong interval-valued intuitionistic fuzzy graph

Theorem 4.7. For any TUDS IVIFG, the degree of a vertex vi is degG(vi) = ([r, r] d(vi), [r, r] d(vi)),
where d(vi) is the degree of the vertex of the crisp graph and r is a uniform interval-valued membership
degree of vi.

Proof. The preceding Theorem 4.1 serves as an obvious proof for this one. �

Theorem 4.8. For a total uniform degree of a strong interval-valued intuitionistic fuzzy graph, we have

IFM1(TUDS IVIFG) = rM1(G) ([1, 1] , [1, 1]) ,
IFM2(TUDS IVIFG) = r2M2(G) ([1, 1] , [1, 1]) ,
IFRα(TUDS IVIFG) = rαRα(G) ([1, 1] , [1, 1]) ,

IFH(TUDS IVIFG) =
1
r

H(G) ([1, 1] , [1, 1]) .

Proof. The proof of this theorem is obvious. One can get intiutionistic fuzzy topological invariants of
TUDS IVIFG by using Theorem 4.7. �

5. Application

An additional useful characteristic of the indices is the fact that UIFTIs are capable of modeling
complicated, stochastic, and vague parameters and, therefore, are useful in chemical and biochemical
fields of informatics. In chemical informatics, by definition, UIFTIs can be applied to supplement
the molecular structure assessment, where the fuzziness of bond lengths, angles, and interactions is
ideal to be described using fuzzy sets. By applying UIFTIs, researchers are also able to derive better
systems for establishing QSAR and optimizing many chemical properties and reactivity indices. As
for the applications in bioinformatics, one can utilize the UIFTIs for studying interactome such as PPI
or gene regulatory networks. The cellular neural network will be taken into account as a cellular
neural interval-valued intuitionistic fuzzy graph in this section for a set of membership and non-
membership values. Through this endeavour, we will be able to discuss an analysis of interval-valued
intuitionistic fuzzy topological invariants. This fuzzy intuitionistic graph will be called a uniform
interval-value of membership and non-membership strong interval-valued intuitionistic fuzzy graph
(UDMNMSIVIFG). We have IF topological invariants of the UDMNMS IF cellular neural graph
narrated from Theorem 4.6 as follows:

IFM1(UDMNMS IVIFG) =
[
64pq − 78(p + q) + 92

]
([t, t] , [s, s]) ,

IFM2(UDMNMS IVIFG) =
[
256pq − 414(p + q) + 656

] ([
t2, t2

]
,
[
s2, s2

])
,

IFR−1(UDMNMS IVIFG) =

[
1

16
(pq +

93(p + q)
100

+
39
50

] ([
1
t
,

1
t

]
,

[
1
s
,

1
s

])
,

IFR
−1
2 (UDMNMS IVIFG) =

[
pq
2

+ (
3
√

10
−

39
40

)(p + q) + (
2
√

6
−

16
√

10
+

8
√

15
+

43
20

)
]
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×

([
1
√

t
,

1
√

t

]
,

[
1
√

s
,

1
√

s

])
,

IFR
1
2 (UDMNMS IVIFG) =

[
32pq + (12

√
10 − 78)(p + q) + 8(

√
6 − 8

√
10 +

√
15 + 25)

]
×

([√
t,
√

t
]
,
[√

s,
√

s
])
,

IFH(UDMNMS IVIFG) =

[
pq
2
−

27
520

(p + q) −
131

2860

] ([
1
t
,

1
t

]
,

[
1
s
,

1
s

])
.

5.1. Computed results of IFTIs over UDMNMSIVIFG

In this part, we will offer the computational output findings of all of the IFTIs deduced above
over UDMNMSIVIFG by varying the size of the cellular neural network. This mathematical study
will be useful in designing a powerful computing paradigm for complex systems with various
ambiguities and fuzziness. Tables 1–6 show the computed results of IFTIs for increasing dimensions
of UDMNMSIVIFG.

Table 1. IFM1(TUDS IVIFG) for t = 0.1, s = 0.2.

p/q 3 4 5
8 770([0.1,0.1],[0.2,0.2]) 1204([0.1,0.1],[0.2,0.2]) 1638([0.1,0.1],[0.2,0.2])
9 884([0.1,0.1],[0.2,0.2]) 1382([0.1,0.1],[0.2,0.2]) 1880([0.1,0.1],[0.2,0.2])
10 998([0.1,0.1],[0.2,0.2]) 1560([0.1,0.1],[0.2,0.2]) 2122([0.1,0.1],[0.2,0.2])
11 1112([0.1,0.1],[0.2,0.2]) 1738([0.1,0.1],[0.2,0.2]) 2364([0.1,0.1],[0.2,0.2])
12 1226([0.1,0.1],[0.2,0.2]) 1916([0.1,0.1],[0.2,0.2]) 2606([0.1,0.1],[0.2,0.2])

Table 2. IFM2(TUDS IVIFG) for t = 0.1, s = 0.2.

p/q 3 4 5
8 2246([0.01,0.01],[0.04,0.04]) 3880([0.01,0.01],[0.04,0.04]) 5514([0.01,0.01],[0.04,0.04])
9 2600([0.01,0.01],[0.04,0.04]) 4490([0.01,0.01],[0.04,0.04]) 6380([0.01,0.01],[0.04,0.04])
10 2954([0.01,0.01],[0.04,0.04]) 5100([0.01,0.01],[0.04,0.04]) 7246([0.01,0.01],[0.04,0.04])
11 3308([0.01,0.01],[0.04,0.04]) 5710([0.01,0.01],[0.04,0.04]) 8112([0.01,0.01],[0.04,0.04])
12 3662([0.01,0.01],[0.04,0.04]) 6320([0.01,0.01],[0.04,0.04]) 8978([0.01,0.01],[0.04,0.04])

Table 3. IFR−1(TUDS IVIFG) for t = 0.1, s = 0.2.

p/q 3 4 5
8 2.19([10,10],[5,5]) 2.75([10,10],[5,5]) 3.30([10,10],[5,5])
9 2.43([10,10],[5,5]) 3.05([10,10],[5,5]) 3.68([10,10],[5,5])
10 2.68([10,10],[5,5]) 3.37([10,10],[5,5]) 4.05([10,10],[5,5])
11 2.93([10,10],[5,5]) 3.67([10,10],[5,5]) 4.42([10,10],[5,5])
12 3.17([10,10],[5,5]) 3.98([10,10],[5,5]) 4.79([10,10],[5,5])
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Table 4. IFR−1/2(TUDS IVIFG) for t = 0.4, s = 0.3.

p/q 3 4 5
8 11.68([3.16,3.16],[2.27,2.27]) 15.66([3.16,3.16],[2.27,2.27]) 19.63([3.16,3.16],[2.27,2.27])
9 13.16([3.16,3.16],[2.27,2.27]) 17.63([3.16,3.16],[2.27,2.27]) 22.10([3.16,3.16],[2.27,2.27])
10 14.63([3.16,3.16],[2.27,2.27]) 19.60([3.16,3.16],[2.27,2.27]) 24.58([3.16,3.16],[2.27,2.27])
11 16.10([3.16,3.16],[2.27,2.27]) 21.58([3.16,3.16],[2.27,2.27]) 27.05([3.16,3.16],[2.27,2.27])
12 17.58([3.16,3.16],[2.27,2.27]) 23.55([3.16,3.16],[2.27,2.27]) 29.53([3.16,3.16],[2.27,2.27])

Table 5. IFR1/2(TUDS IVIFG) for t = 0.1, s = 0.1.

p/q 3 4 5
8 376([0.32,0.32],[0.45,0.45]) 592([0.32,0.32],[0.45,0.45]) 807.51([0.32,0.32],[0.45,0.45])
9 432([0.32,0.32],[0.45,0.45]) 680([0.32,0.32],[0.45,0.45]) 927.46([0.32,0.32],[0.45,0.45])
10 488([0.32,0.32],[0.45,0.45]) 768([0.32,0.32],[0.45,0.45]) 1047.40([0.32,0.32],[0.45,0.45])
11 544([0.32,0.32],[0.45,0.45]) 856([0.32,0.32],[0.45,0.45]) 1167.35([0.32,0.32],[0.45,0.45])
12 600([0.32,0.32],[0.45,0.45]) 944([0.32,0.32],[0.45,0.45]) 1287.30([0.32,0.32],[0.45,0.45])

Table 6. IFH(TUDS IVIFG) for t = 0.1, s = 0.2.

p/q 3 4 5
8 11.38([10,10],[5,5]) 15.331([10,10],[5,5]) 19.28([10,10],[5,5])
9 12.83([10,10],[5,5]) 17.28([10,10],[5,5]) 21.73([10,10],[5,5])
10 14.28([10,10],[5,5]) 19.23([10,10],[5,5]) 24.18([10,10],[5,5])
11 15.73([10,10],[5,5]) 21.18([10,10],[5,5]) 26.62([10,10],[5,5])
12 17.18([10,10],[5,5]) 23.12([10,10],[5,5]) 29.07([10,10],[5,5])

Now we have IF topological invariants of the TUDS IVIFG cellular neural graph narrated from
Theorem 4.7 as follows:

IFM1(TUDS IVIFG) = r
[
64pq − 78(p + q) + 92

]
([1, 1] , [1, 1]) ,

IFM2(TUDS IVIFG) = r2 [
256pq − 414(p + q) + 656

]
([1, 1] , [1, 1]) ,

IFR−1(TUDS IVIFG) =
1
r

[
1

16
(pq +

93(p + q)
100

+
39
50

)
]

([1, 1] , [1, 1]) ,

IFR
−1
2 (TUDS IVIFG) =

1
√

r

[
pq
2

+ (
3
√

10
−

39
40

)(p + q) + (
2
√

6
−

16
√

10
+

8
√

15
+

43
20

)
]

× ([1, 1] , [1, 1]) ,

IFR
1
2 (TUDS IVIFG) =

√
r
[
32pq + (12

√
10 − 78)(p + q) + 8(

√
6 − 8

√
10 +

√
15 + 25)

]
× ([1, 1] , [1, 1]) ,

IFH(TUDS IVIFG) =
1
r

[
pq
2
−

27
520

(p + q) −
131

2860

]
([1, 1] , [1, 1]) .
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5.2. Computed results of IFTIs over TUDSIVIFG

In this part, We will offer the computational output findings of all of the IFTIs deduced above
over TUDSIVIFG by varying the size of the cellular neural network. This mathematical study will be
useful in designing a powerful computing paradigm for complex systems with various ambiguities and
fuzziness. Tables 7–12 show the computed results of IFTIs for increasing dimensions of TUDSIVIFG.

Table 7. IFM1(TUDS IVIFG) for r = 0.4.

p/q 3 4 5 6
8 308([1,1],[1,1]) 481.6([1,1],[1,1]) 655.2([1,1],[1,1]) 828.8([1,1],[1,1])
9 353.6([1,1],[1,1]) 552.8([1,1],[1,1]) 752([1,1],[1,1]) 951.2([1,1],[1,1])
10 399.2([1,1],[1,1]) 624([1,1],[1,1]) 848.8([1,1],[1,1]) 1073.6([1,1],[1,1])
11 444.8([1,1],[1,1]) 695.2([1,1],[1,1]) 945.6([1,1],[1,1]) 1196([1,1],[1,1])
12 490.4([1,1],[1,1]) 766.4([1,1],[1,1]) 1042.4([1,1],[1,1]) 1318.4([1,1],[1,1])

Table 8. IFM2(TUDS IVIFG) for r = 0.4.

p/q 3 4 5 6
8 359.36([1,1],[1,1]) 620.8([1,1],[1,1]) 882.24([1,1],[1,1]) 1143.68([1,1],[1,1])
9 416([1,1],[1,1]) 718.4([1,1],[1,1]) 1020.8([1,1],[1,1]) 1323.2([1,1],[1,1])
10 472.64([1,1],[1,1]) 816([1,1],[1,1]) 1159.36([1,1],[1,1]) 1502.72([1,1],[1,1])
11 529.28([1,1],[1,1]) 913.6([1,1],[1,1]) 1297.92([1,1],[1,1]) 1682.24([1,1],[1,1])
12 585.92([1,1],[1,1]) 1011.2([1,1],[1,1]) 1436.48([1,1],[1,1]) 1861.76([1,1],[1,1])

Table 9. IFR−1(TUDS IVIFG) for r = 0.4.

p/q 3 4 5 6
8 3.4598([1,1],[1,1]) 4.3423([1,1],[1,1]) 5.2247([1,1],[1,1]) 6.1072([1,1],[1,1])
9 3.8481([1,1],[1,1]) 4.8294([1,1],[1,1]) 5.8107([1,1],[1,1]) 6.792([1,1],[1,1])
10 4.2365([1,1],[1,1]) 5.3166([1,1],[1,1]) 6.3967([1,1],[1,1]) 7.4769([1,1],[1,1])
11 4.6249([1,1],[1,1]) 5.8038([1,1],[1,1]) 6.9828([1,1],[1,1]) 8.1617([1,1],[1,1])
12 5.0132([1,1],[1,1]) 6.291([1,1],[1,1]) 7.5688([1,1],[1,1]) 8.8465([1,1],[1,1])

Table 10. IFR
−1
2 (TUDS IVIFG) for r = 0.4.

p/q 3 4 5 6
8 7.389([1,1],[1,1]) 9.9022([1,1],[1,1]) 12.4154([1,1],[1,1]) 14.9285([1,1],[1,1])
9 8.321([1,1],[1,1]) 11.1504([1,1],[1,1]) 13.9799([1,1],[1,1]) 16.8093([1,1],[1,1])
10 9.2531([1,1],[1,1]) 12.3987([1,1],[1,1]) 15.5443([1,1],[1,1]) 18.69([1,1],[1,1])
11 10.1851([1,1],[1,1]) 13.647([1,1],[1,1]) 17.1088([1,1],[1,1]) 20.5707([1,1],[1,1])
12 11.1172([1,1],[1,1]) 14.8952([1,1],[1,1]) 18.6733([1,1],[1,1]) 22.4514([1,1],[1,1])
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Table 11. IFR
1
2 (TUDS IVIFG) for r = 0.4.

p/q 3 4 5 6
8 939.0367([1,1],[1,1]) 1478.905([1,1],[1,1]) 2018.773([1,1],[1,1]) 2558.642([1,1],[1,1])
9 1078.905([1,1],[1,1]) 1698.773([1,1],[1,1]) 2318.642([1,1],[1,1]) 2938.51([1,1],[1,1])
10 1218.773([1,1],[1,1]) 1918.642([1,1],[1,1]) 2618.51([1,1],[1,1]) 3318.378([1,1],[1,1])
11 1358.642([1,1],[1,1]) 2138.51([1,1],[1,1]) 2918.378([1,1],[1,1]) 3698.247([1,1],[1,1])
12 1498.51([1,1],[1,1]) 2358.378([1,1],[1,1]) 3218.247([1,1],[1,1]) 4078.115([1,1],[1,1])

Table 12. IFH(TUDS IVIFG) for r = 0.4.

p/q 3 4 5 6
8 28.4577([1,1],[1,1]) 38.3278([1,1],[1,1]) 48.198([1,1],[1,1]) 58.0682([1,1],[1,1])
9 32.0778([1,1],[1,1]) 43.198([1,1],[1,1]) 54.3182([1,1],[1,1]) 65.4384([1,1],[1,1])
10 35.698([1,1],[1,1]) 48.0682([1,1],[1,1]) 60.4384([1,1],[1,1]) 72.8086([1,1],[1,1])
11 39.3182([1,1],[1,1]) 52.9384([1,1],[1,1]) 66.5586([1,1],[1,1]) 80.1788([1,1],[1,1])
12 42.9384([1,1],[1,1]) 57.8086([1,1],[1,1]) 72.6788([1,1],[1,1]) 87.549([1,1],[1,1])

6. Conclusions

Several generalized findings regarding the uniform degree of membership and non-membership
of the strong interval-valued intuitionistic fuzzy graph were covered in this article. We also spoke
about the findings of a strong interval-valued intuitionistic fuzzy graph’s overall uniform degree.
Additionally, the present section’s cellular neural intuitionistic fuzzy network represents a set of
membership and non-membership values. Particularly, the general Randić index, harmonic index,
and first and second Zagreb indices were defined in terms of a uniform intuitionistic environment.

An intriguing and multidisciplinary study topic that combines ideas from graph theory, fuzzy logic,
and neural networks is encapsulated in the this article. This interesting mix provides a wealth of
prospective research topics and practical applications. Here are a few last thoughts emphasizing the
importance and promise of this title.

Interdisciplinary Intersection: This term highlights the confluence of several disciplines,
specifically graph theory, fuzzy logic, and neural networks. This convergence offers a distinct
viewpoint that might inspire fresh ideas and uses. Incorporating Uncertainty: The phrase “uniform
intuitionistic fuzzy environment” indicates that there is uncertainty and imprecision in the research.
When representing real-world situations where information is frequently hazy or lacking, the use of
fuzzy sets and intuitionistic fuzzy sets enables a more thorough portrayal of uncertainty. Topological
Numbers: The use of the term “topological numbers” implies that the research is concerned with
quantifying network structure characteristics. This may entail a number of topological indices that shed
light on centrality, connectedness, and other graph-based properties. Traditional topological analysis
gains a new level of complexity and depth as a result of the use of these indices in a fuzzy environment.

Neural Network Application: A practical element of the research can be seen in the use of these
topological numbers in the context of neural networks. In pattern recognition and machine learning,
neural networks are a common tool. The inclusion of topological data in a fuzzy environment
may improve neural network comprehension and performance, thereby producing more reliable
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and understandable models. Real-World Relevance: The proposed study could help close the gap
between theoretical ideas and practical applications. Topological analysis, along with fuzzy logic and
neural networks, can be used in a variety of domains where uncertainty and complicated interactions
are common, including data analysis, pattern recognition, bioinformatics, and more. Algorithm
Development: The creation of algorithms that function in a consistent, intuitionistic fuzzy environment
may be part of the research. The development of theoretical frameworks and practical techniques could
be aided by these algorithms’ ability to compute and use topological numbers effectively.

Novelty : A uniform interval-valued intuitionistic fuzzy graph (UIVIFG) contains more information
on relationships and decisions compared with other fuzzy models of graphs that are useful in more
complicated environments of decision-making. While a basic fuzzy graph only assigns one value to
represent the strength of a relationship (membership), an intuitionistic fuzzy graph improves on this
by introducing two labels: the presence and absence of relationships which may be explained on a
membership and non-membership basis, respectively. The next step up is the division between the two
types of fuzzy graphs; the interval-valued intuitionistic fuzzy graph not only provides a single value
for membership and non-membership but a range between lower and upper bounds. This gives us four
values in total: upper and lower bounds of credibility for the extent to which the relation holds or does
not hold ( membership and non-membership). These intervals offer more freedom, and thereby, make
it easier to give a finer degree to its uncertainty and hesitating measures in connection relationships.
This additional granularity therefore proves that the UIVIFG can capture more precise and broader
information than any standard fuzzy graph or intuitionistic fuzzy graph. It is effective in capturing
relationship systems that are not simple, or even clear-cut mutually exclusive or directly proportional;
this makes its use enhance analysis and decision-making. Due to the presence of intervals, this graph
could be applied in the fields of networks analysis, controls systems, and fuzzy decision theories where
accuracy and depth of the data are important for receiving reliable conclusions.

Future Exploration: The title alludes to a potential direction for further investigation. New
understandings about the connections between topological properties, fuzzy logic, and neural networks
may be found as a result of this research. It may also encourage additional research, teamwork, and
creative applications.

Finally, this section proposes a thought-provoking research strategy that unifies various fields to
solve issues with uncertainty, complex systems, and machine learning. It embodies the very best of
multidisciplinary study, providing the chance to develop both theoretical knowledge and real-world
applications in a technological environment that is continually changing.
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