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Abstract: As a pivotal branch within the realm of differential equations, the theory of oscillation holds
a crucial position in the exploration of natural sciences and the construction of modern control theory
frameworks. Despite the extensive research conducted globally, focusing on individual or combined
analyses of key elements such as explicit damping terms, positive and negative coeflicients, time-
varying delays, and nonlinear neutral terms, systematic investigations into the oscillatory behavior of
even-order differential equations that concurrently embody these four complex characteristics remain
scarce. This paper, by establishing reasonable assumptions, innovatively presents two crucial criteria,
aiming to preliminary delve into the oscillation patterns of even-order differential equations under
specific complex settings. In the course of the study, a variety of mathematical techniques, such as
Riccati transformation, calculus scaling methods, and partial integration, have been utilized by the
researchers to perform the necessary derivations and confirmations.
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1. Introduction

The study of vibrations in the realm of differential equations holds significant research value
within the academic sphere. This field not only plays a crucial role in mathematical modeling
but also finds application in the stability analysis of various systems [1-3]. Notable contributions
include L. Fan et al. [1], who examined the stability challenges of switched stochastic systems with
state-dependent delays; M. L. Xia et al. [2], who conducted a stability analysis for a particular
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class of stochastic differential equations; and Q. X. Zhu [3], who investigated the exponential
stability of stochastic nonlinear delay systems. Consequently, it has emerged as a focal point of
interest for numerous scholars seeking to deepen their understanding of these phenomena. S. R.
Grace [4] introduced several novel criteria regarding the oscillatory behavior of fractional differential
equations that utilize the Caputo derivative. Z. DoSld and P. LiSka [5] developed a range of
innovative criteria concerning the oscillatory characteristics and asymptotic behavior of solutions to
third-order nonlinear neutral differential equations. They also conducted an in-depth investigation
into the vibrations of third-order nonlinear neutral differential equations with time delays, offering
significant insights for related research areas. R. Vimala et al. [6] employed the Riccati transformation
along with comparison techniques to demonstrate the oscillatory behavior of higher-order differential
equations. O. Ozdemir [7] studied the vibration properties of differential equations with non-regular
terms. T. X. Li et al. [8] investigated the oscillatory behavior of second-order nonlinear differential
equations that include damping terms. Concurrently, T. X. Li and Y. V. Rogovchenko [9] applied
inequality techniques to analyze the oscillation properties of a specific category of second-order neutral
differential equations. Moreover, Y. F. Ge [10] investigated the stability properties of nonlinear
fractional neutral differential equations that involve multiple variable time delays. In a related
study, J. S. Yang et al. [11] proposed two novel criteria for determining the oscillatory behavior of
second-order nonlinear neutral differential equations with time delays. Additionally, L. Jann and Y.
C. Chih [12] focused on an integral criterion to assess the oscillation characteristics of nonlinear
differential equations. J. R. Graef [13] examined the criteria for oscillatory behavior in nonlinear
higher-order differential equations. S. Tamilvanan et al. [14] investigated the sufficient conditions
that guarantee the behavior of all solutions for second-order nonlinear neutral differential equations
characterized by sublinearity. Z. Oplustil [15] developed novel criteria for vibrations in second-
order linear differential equations by employing the Riccati technique along with effective estimation
methods for non-vibrational solutions. Z. F. Sun et al. [16] applied the Riccati transformation along
with neutral delay systems to derive a novel vibration criterion for two-dimensional neutral time-
delay power systems. Y. P. Zhao [17] utilized the Riccati transformation and various analytical
techniques to establish sufficient conditions for the vibrations of second-order differential equations
involving intermediate projects. X. Mi et al. [18] investigated a specific category of second-order
nonlinear differential equations with damping terms, deriving new sufficient conditions for oscillations
through the Riccati transformation technique. X. H. Deng et al. [19] explored the vibrational and non-
vibrational behavior of third-order delay differential equations containing both positive and negative
terms, formulating new oscillation criteria, including the Kamenev-type oscillation criterion. Lastly,
S. Panigrahi and R. Basu [20] examined a class of nonlinear third-order neutral differential equations
characterized by positive and negative coefficients.

Currently, researchers have employed the following differential equations in demonstrating a robust
oscillation criterion: Second-order Emden-Fowler differential equations.

[ro 01" X 0] + 0@)lxo " x(0) = 0, (1.1)
{r(0)|[x(@) + p(O)x(x(@)] @ + pOx@)]Y + gl x(6(0) = 0, (1.2)

and second-order delayed differential equations with positive and negative coeflicients,
{r(Olx(@ + p()x(t = 1)} + Q) f (x(t = 770)) = R(Ng(x(t = 60)) = 0. (1.3)
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Nonetheless, this investigation uniquely centers on the vibrational scrutiny of a distinct set of even-
order differential equations amalgamating intricate features such as significant damping components,
a blend of positive and negative coefficients, varying time delays, and nonlinear neutral terms.

m 1
(r()¢a @ O) +8O¢a & )+ )" 0i(0) fi(pa (X (s N = D R0 g (¢ (x(6;1))) = 0, (1.4)
i=1

=1

where (¢ > ty). Currently, the exploration of its vibrational characteristics remains insufficient. In
Eq (1.4), we have the expression z () = x(¢) + p (¢t) x (7 (¢)), where ¢, (1) = lu|*"'u, and the functions
r,g,p € C'([t),),(0,00)), u € R, 7,0 € C' ([ty,0),R), 7(1) < t, o (t) < t, 1i_>1’l’1T (1) = oo, tlimO' (1) =
oo, and f € C ([ty,0) Xx R,R). Constants @ > 0 and 8 > 0 are specified, Whéreooto > 0 and c—ym> 0 are
real constants. Additionally, integers m > 1 and [ > 1 are involved in the context.

Consider the following criteria:
(HD) p(®) € C([t, +0), [0, +00)), g (1) € C([tp, +0),[0,+0)), r(t) € C ([to, +o0), [0, +o0)), O; €
C ([ty, +0), [0, +0)), R; € C ([ty, +0), [0, +0)), f; € C(R,R), g; € C(R,R), furthermore, uf; (u) > 0
foru # 0, ug;j(u) > 0foru # 0, wherei=1,2,..,mand j=1,2,..,L
(H2) Retention function 7 belongs to the set C ([y, +0), (0, +00)), with the additional property that
7(t) < tforall tand lim 7(f) = +oo.

t—+00

(H3) The retention functions o(¢) and ¢,(¢) are both equal to o(f). Additionally, o belongs to
C'([ty, +0), (0, +00)) with o (f) < t, lim o(f) = 400, and o”(¢) > 0.

t—+00
(H4) For u # 0, there exist positive constants «; > 0 and ; > 0 such that fi(u)/u > «;, g;(u)/u < B;,

m 1
and Zl CUiQ,'(t) - Z] ﬁjRj(l‘) > 0.
1= J=
(H5) The conditions are as follows: 0 < p(t) < 1, r(t) € C'([ty, +o0), R) where r(t) > 0 and r'(¢) > 0.
1

(H6) fto+°° [ﬁ exp(—f‘%ds)] du = +o0.
fo

As this paper is primarily concentrated on the vibrational characteristics of Eq (1.4), the analysis
will predominantly revolve around these aspects. The motivation of this study lies in the desire to
first understand how these complex characteristics influence the oscillatory behavior of the system.
Secondly, it aims to explore the practical effects of time delays on the oscillation features, providing
guidance for real-world applications. Furthermore, this research will contribute to the development
of mathematical theories related to oscillation criteria, with broad interdisciplinary implications in
fields such as engineering, physics, and biological systems. Ultimately, we hope to establish robust
oscillation criteria that will facilitate deeper modeling and control of dynamic systems, laying a
foundation for research and applications in related areas.

The study of vibrations encompasses a critical segment of even-order differential equations, with
wide-ranging implications in the natural sciences and control theory, as demonstrated in Eq (1.4).

By employing the Riccati transformation, partial integration, and scaling methodologies, two novel
criteria have been formulated, supported by meticulous mathematical proofs. Moreover, illustrative

examples have been presented to support our findings, offering valuable insights that enrich the existing
scholarly discourse.
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2. Theoretical foundations of research

w (1) = exp (ft %ds), 2.1)

plays a crucial role in the examination of dynamic systems and differential equations across a range of
mathematical frameworks.

The Riccati transformation is a mathematical method employed to transform a Riccati differential
equation into a second-order linear differential equation. Consider a Riccati differential equation
represented as follows:

The function

w' = P(2) + Q@w + R@W’,
where w' = %. The transformation is defined in the following manner:

’

Y
YR(2)’

where y is a function to be determined and y’ is its derivative. This transformation seeks to transform the
original nonlinear first-order equation into the following second-order linear homogeneous equation:

Ry - [R(2) + Q@)R@]Y + [R@I*P(z)y = 0.

Lemma 1. [10] Consider a function u that is positive and possesses an n-th order differentiability
on the interval [ty, +o0), with its n-th derivative, u"(t), existing and eventually settling to a definitive
sign within this interval. Consequently, there exists a particular time point, t*, such that t* > t,
corresponding to an integer [ (where 0 < [ < n). If u™(t) > 0, it follows that n + L is even; conversely,
if u™(¢) < 0, then n + 1 is odd. Furthermore, this condition is maintained. In scenarios where [ > 0,
it is observed that u®(t) > 0 for all t > t* and for k = 0,1. When | < n — 1, it holds true that
(=D)!**u®@) > 0 for all t > t* and for k = 0, 1.

Lemma 2. [10] Consider a function u that meets the conditions stipulated in Lemma 1, and for which
the product u'(H/u®(t) remains non-positive for all t > t*. Under these conditions, for any 6 € (0, 1),
there exists a constant M > 0 such that for every sufficiently large t, the following inequality holds:

u'(0f) > M 2u"V(r).

Lemma 3. [10] (Holder inequality) The following inequality holds for integrals involving two
functions f(x) and g(x) over a closed interval [a, b):

b b 3/ b :
f If(X)g(x)lde( f If(X)I”dx) ( f |g<x>|qu) |

The inequality presented is constrained by the stipulations that p > 0, g > 0, and additionally
mandates that % + %[ = 1 in order to hold true.
,yyaerl

. padl
Lemmad. [8]Leta>0,b>0,y >0, thereisau—bu v < T

(u > 0).
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Lemma S. Upon satisfaction of conditions (HI)—(H6), the function x(t) is recognized as the ultimate
positive solution to Eq (1.4). Consequently, it can be concluded that

z2(t) > 0,7(r) > 0,7'(r) < 0. (2.2)

Proof. Given that x(f) constitutes the final positive solution of Eq (1.4), it follows that the conditions
are established as follows:

x(1) > 0, x(7(1)) > 0, x(0oi(1)) = x(6,(¢)) = x(0o (1)) > 0,fort > T > t,.

In the derivation, it is deduced that z(¢) = x(¢) + p(t)x(7(t)) > 0.
According to the formula (1.4), one has,

m 1
(r(0¢a@ @) +20 e @ ®)<—|> e =Y BR;O|¢(x(@ @) <0.  (2.3)
i=1 i=1
Further, derived from (2.1) the formula, get ' () = w (¢) g (¢) /7 (?).
Based on the above two conclusions, it can be deduced,

C = w80 / O
[0 @ r@ e O =075 rOe @ O)+ 0O g @ ©) 04
= wO{[r®¢. (@ D) +gD ¢ D)} <0.

Therefore w (1) r () ¢, (z' (1)), when t > T, w () r (t) ¢, (Z’ (¢)) is a strictly decreasing trend, and 7’ (¢)
the final number.
Hence
7@ >0,t>T. (2.5

Counter evidence is utilized with the indication that 7’(r) < 0, fort > T.
Following the information presented in Eq (2.4), the formula is derived as:

W(Or(Dp. (2 (1) < (TN (2(T)) = -C.

Additionally, it is observed that C = w(T)r(T)[—¢o (' (T)] = (T)r(T)|Z(T)|* ' (=z/(T)) > 0,

which remains constant.
1 FIOA
7 (t)S—Cl/“[—ex (— f S sl .
r@) P\"J, ()

So
Upon integration of both sides of the equation, it leads to the following outcome:

t 1 U (S) l/a
Z(I)Sz(T)—C”"f [—exp(—f g—ds)] du.
r | r(w) o ()

As t approaches +oo, taking into account condition (H6), lim z(f) = —oo. This contradicts the
t—+o0
assertion that z(¢) > 0.
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This can be confirmed to be true for Eq (2.5).
Derived from the formula (2.3),

0> [r(0) . (2 @)
={r®[Z O (2.6)
— }"’ ([) [Z/ (t)](x +ar (t) [Z/ (t)]a 1_nm (t)

As a result, it can be concluded that 7/ (f) < 0(z > T) . Given that 2 is an even number, according to
Lemma 1, knowing that there is an odd number /, this condition is further derived when ¢ > T', function
7' (t) > 0. Therefore, it can be concluded that z”(¢) < 0 for r > T. With the given even number being 2,
and in accordance with Lemma 1, it is established that there exists an odd number /. This condition is
further established for r > T when the function z’(#) > 0. Lemma 5 is validated.

O

3. A class of time-varying differential equations for vibration studies

Consider the set D defined as D = {(¢,s) | t > s and s > £y}, and the set Dy defined as Dy = {(¢, 5) |
t > sand s > ty}. A binary function H(¢, s) is then introduced as an element of the function class
0, denoted by H € O. This binary function must first satisfy the condition H(¢, s) € C(D,R), and
secondly, it must adhere to the following condition:

(1) Fort > 1y, H(t,1) = 0, and for (¢, s) € Dg, H(t, s) > 0.

(i) The function H(t, s) possesses a continuous partial derivative with respect to s that is non-
positive. This can be represented as oH (t Y <.

Theorem 1. Given the fulfillment of the (HI)—(H6) conditions, let us consider that all requirements
are satisfied. Assume the function ¢ € C'([ty, +0), (0, +0)) and the function H € ®. Under these
circumstances, the function can be derived as follows:

lim sup

t=>+00 H( 1) f H(t,s5)$ (s5) [‘D (s) =y (9)|h(t, S)la”]ds = +oo. 3.1)

In this context, let it be known that a constant 0 € (0,1) and M > 0 are defined in accordance with
Lemma 2. Consider the functions:

m i
(s) = [Z @ 0i(5) ~ > BiRi(s)
i=1 j=1

Furthermore, with the function

(@ + 1)@ Dp(s)

[1=np(a I 9s) = s o (3.2)

h.5) = s e+ (G - £9)

H(t,s) Os ¢(s)  r(s))
the Eq (1.4) experiences oscillation.

Proof. Counterevidence. Assuming Eq (1.4), there exists a solution x(¢) to the equation that does not
exhibit vibration. Consider x(¢) > 0, x(7(¢)) > 0, x(c(¢)) > 0,t > T > ty,. By utilizing the formulas
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from (2.2) and Lemma 2, it can be shown that for any 0 < 6 < 1, there exists a positive constant M
such that

700 () > Mo()'(o(t)) > Mo(H)Z' (). (3.3)

Due to the relationship z() = x(¢) + p(¢)x(7(t)), it follows that x(¢) < z(¢). Therefore, one has

z(1) = x(2) + p(D)x(7(1))
< x(1) + p(D)z(r(2))
< x(1) + np()z(®).
Consequently, one has
x(t) = [1 = np(H)]z(t) = 0. (3.4
Introducing the Riccati transform as
rOe. @ @)  r®[Z®)]"

2 oo = %o (2T 15
pa @) ey ' (35)

It can be concluded that for ¢+ > T, the function V(¢) is greater than zero. Leveraging Eqgs (2.3), (3.3),
and (3.4) along with (3.5), it can be deduced that

V(D) = (1)

r (1) ¢a (2 (1) [r (1) g (Z )] r(lz @

VI — ’ _ 9 7 9 ’
W=00 ooy T sty YLt @O
m )
, g0 e, (I (D) +| X aiQi (1) - ¥ BiR; (r)] o (x (0 (1))
< 2Oy p -4 o A
¢ (1) ®q (z(00 (1))
[Z/ (t)]a+1 )
- ——aM
¢ (1) r () T o () o’ (1)
<0y - 80y 4y g i @;Q; (1) = iﬁ-Rv(t) [1=np (e @]
¢ (1) r (0 = rrie
_afMo (1) o’ () [V (0]
[p () r]" '

m I
Given @(s) = |2 ;Qi(s) — X BR j(s)] [1 — np(o(s))]®, the consequent implication when ¢ > T is
i=1 j=1

delineated by the equation provided. On further analysis:

') g adMo (o’ (DIV(H]@D
) @) [¢()r(1)]"/e '
Then, by replacing ¢ with s in the previously mentioned equation and integrating both sides with

respect to H(t, s), the operation is concluded.
Because

d(ODP() < -V'(¢) + [ ] V(t) - (3.6)

h(t,s) =

1 O0H(t,s) +(¢' (s) g(s))
H(t,s) Os d(s) r(s))’
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It can be concluded that
P (s) g(s)

j:H(t,s)qﬁ(S)(D(S)dsﬁ —ftH(t,s)V'(s)ds+ftH(l,S)[¢( Y (s

(a+1)/a
oot [ T OOV,
[¢(s) 7 (s)]

CHETYVT)+ f [aHa(; s) +H(z,s)(¢'(s) g(s))]v( ) ds

¢ (s) ()
o’ (a+1)/a
_aer 1,9 T OV OL
O'(S) [¢ ()7 (5)]

=H(t, T)V(T)+f {Ih(t, s)H(t,s)V(s)

- OMECDT ) 1y (1% s
o ()¢ (s)r(s)]

Apply the inequalities from Lemma 4 to the above equation and make use of functions
(@+ D)™ Vr(s)
[6Mo () o ()]

]V( )ds

(3.7)

Y(s) =
It is further obtained by the formula (3.7)

¢ (s)r(s)Ih@, )" H, g
(@ + D [aMo (s) o (5)]*

fH(t,s)qﬁ(s)d)(s)dssH(t,T)V(T) f{
r T (3.8)

=H@,T)V(T)+ f ¢ () (I (@, I H (1, 5) ds.
T
So )
f H(t,5)|¢(s) =y () I (t, )" | ()ds < H (&, T)V(T) < H (t,10) V (T). (3.9)
T

Therefore

a+1
H(, to)fH(’ |0 (5) = ) 1t )| ¢ (s)ds < V(T).

Hence .

T ), HEO[@O-v©her]owds

T
~H1) { f, H(1.9) [ () -y )|, s)l““]qs(s)ds}

+ {f H (t,$)|® (s) =y () I (2, )" | 6 (s) dS}
T

T H(,s)
H(, 1)

[© () =0 () I 2.9 p () ds + V(T)

fo

T
gf DO(s)p(s)ds+V(T)
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which constant C = ft OT @ (s)p(s)ds + V(T). The above formula contradicts the conditions (3.1). The
proof of Theorem 1 is now concluded. O

When the formula (3.1) is not true, then there are the following theorems.
Theorem 2. The conditions (HI)—(H6) are valid if the function ¢ € C' ([ty, +0),(0,+0)),H € ©,[ €
L? ([ty, +90) , R) , makes

lim s
t—+00 H (t T)

f G ()W () (t, )" H (1, 5)ds < +oo, (3.10)

lim sup T fH(t, )| ) —w @@ |¢(s)ds = L w). (3.11)

For all situations satisfying u > T > t,, it is assumed that the function { satisfies the following
condition.

t ’ (a+D)/a
lim inf — He9o WO, (3.12)
e D HOD Jr o () [p(r (9]
Here, the explicit mention of the functions ®(s), Y(s), and h(t, s) in their definitions, as stated in
Theorem 1, leads to oscillations in Eq (1.4).
In the aforementioned context, the functions ®(s), ¥(s), and h(t,s) are explicitly defined in
accordance with Theorem 1. Under these circumstances, it is postulated that Eq (1.4) demonstrates

oscillatory behavior.

Proof. In accordance with Theorem 1, the derivations of Eqs (3.7) and (3.9) are established. From
Eq (3.9), it can be deduced that for all > u > T > ¢, the following conditions must hold true:

H(t f H(t,s) CD(S) Y (s)|h(,s) |"+1]¢(s)ds < V().

Synthesizing the aforementioned formula with (3.11) yields: £ (u) < V (u),
Jim_sup H( T)

In accordance with the formulation presented in Eq (3.7), it is established that

f H(t, 5)®(s)¢(s)ds > ¢ (T). (3.13)

{aeMH(t 5)o’ (12[ V()] = |h(, 5 H (G, s)V(S)}dS
o ()@ (s)r(s)]

f H(ts)¢p(s)D(s)ds+ V(T),

H(t T)

H(t T)

exploit (3.13), combine the above formula,

. aOMH (t, s) o’ (s) sl
t1_1)I+120 me(t T)f {O_(S) 6O )]1/0[ ()]« —|h(t, ) HC(t, S)V(S)} ds < Cy, (3.14)
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which constant Cy = = (T) + V (T), so
. 1 " aOMH (1, s) o ()
lim inf T
=0 H(GLT) Jr o (s)[¢p(s)r(s)]"®

Contrast, there is a sequence {T,}. | (T, € [T, +o0)) and lim T, = +oo, such that,

V($)]T ds < +oo. (3.15)

. 1 Tn 00MH (T, s) o (5) sl
1 Vv « ds = 400, 3.16
woe H(T, T) Jy o ()[e(s)rs)]"” oI 1o
And then by (3.14),
r}l—{gm f |h (Tn’ S)lH(Tn,S)V(S)dS = +4o00. (317)

In the combination of Eqgs (3.14), (3.16), and (3.17), it can be noted that there exists a sufficiently large
natural number N such that for all natural numbers n satisfying n > N, the following conditions hold:

@OMH (T, s) o (s) - 1 T
= (TH’T) f S TCLOIE [V(s)] = ds—m fT \W(T,, )|H(T,, s)V(s)ds < Cy + 1.

Therefore, considering positive numbers &, where € is bounded by 0 and 1, specifically 0 < € < 1,
when n > N, it is established that the following inequality is valid:

fTT" \h(T,, )H(T,, s)V(s)ds

T aOMH(T, 0" (5) g
‘fT a()[p(s)r(s)] /@ [V(S)] @

>1—s>0. (3.18)

Consequently, by utilizing Lemma 3 and the function ¥(s), it can be deduced that

Ty
f |h (T, HIH(T,,s)V(s)ds
T

" (@OMH (T, 5) 0 (s) et \ ™ VAT | H (T, 8) [¢ (5) 7 ()]
_ f V()] D S—
T o () [p(s)r(s)] [@OMo (s)H (T, s) o’ (s)]

@ 1

T, ’ a+1 T, a+1 a+l
< {f @OMH (T, s) o (s)[V(s)]"Zlds} {f A (T, )| H (T, $)I"" ¢ (s) ra(S)ds}
r o (s)[e(s)r(s)]"” r [@0Mo () H(T,,s)d” (s)]

™ @OMH (T,, s) o (s) e 7T TR (T ) H (T, )6 ()0 (s) |, |7
= f T [V(s)] = ds . f ~ — ds

T o (s)[p(s)r(s)] T a(@+1)-(a+1)
Organizing the aforementioned formula and merging (3.10) with (3.18),

(1-¢g)* (T
0<m . |h(Tn,S)|H(Tn,S)V(S)dS

7 (T, I H (T, )V (5)ds)

noa S§)o (s arl @
H(T, D %[ ()] ds)

a+1
< (a+1)
a® H(Tn,
< 400,

Ty
7 f ¢ () () |h (T, )| H (T, s)ds
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Hence ]
1 n

T T T H(T _

0= H(Tn,T)fT | (T, ) H (T, ) V (s)ds < +00

The formula presented above is in conflict with the condition (3.17), thus establishing the veracity
of (3.15). By combining the initial formula for the utility (3.13) with (3.15), one deduces that

o "H (1, 5) 0" (5)[£ ()] TV
lim inf ds
—ro - HEGT) Jr o () [ (s) r ()]
t / (a+])/a
< im inf — H, ) (WO,
o HAT) Jr o o (9)[¢ () r ()]
< 400,

The formula above conflicts with Eq (3.12). In conclusion, Theorem 2 is demonstrated. O

Corollary 1. Based on the conditions (H1)—(H6) and the proofs of Theorems I and 2, the order of the
second-order Eq (1.4) can be generalized to even-order, and the equation exhibits oscillatory behavior.

4. Proven

Example 1. Investigation of a distinctive category of fourth-order time-delayed differential equations
is executed, focusing on vibratory behavior, described by the following expression:

5/3

(P 1/ax @3] 3}' + 2 @) + 1/4x(1/3)°)]
+(1/+1/5V1) £ (e (2/2))°) = 4/ By g ((x (1/2)°)
=0,

over the domain where ¢ > 1, with the functions f(u) = u[6 + In®(1 + u?)] and g(u) = 1+23++3u4 The
formula derived by Theorem 1 is expressed as follows:

5 2 1 1 t t 1 1 4
=—to=1r@®O=,g60)=5,pO=-7O)==,0()=6(1) = =, H=—+——R({#t)=—.
@=z.t=1Lr() g0 =2.p0 =210 =3.00=60)=500=- Svi 0=z
Following the proof of the previously discussed theorem, we perform the subsequent calculations:
M>6 a=6 with u#0,2<3=8 (u#0),000)-pRH=2+:%>0.
From Theorem 1, the subsequent equation is obtained,

5
(D(s) — 2—5/3 (2/1. + 6/5 \/;) , w(s) — (8/3)—8/3«01‘24WS—8/3'

Simultaneously, as ¢t — +oo, the following equation can be introduced:
1
fieot L5
—exp|— ——ds|| du
L[r(u) U e
=T fl w3 ex gu_% du
- 1 P25
o (" 2 9 s
>e us|l+—us3|du— +oo.
| 25
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Thus (H1)—(H6) is established.
With ¢ (#) = 1 and H (t,s) =t — s as t — +oo, the equation is as follows:

a+1

8

3 5
t_lf(t—s) $(2/s+6/5Vs) - (3) 2 57

(6M)>
L, (¢' (9 _ g)
(t—s)° ¢ (s)
Therefore, the vibration of the original equation is obtained from Theorem 1.
In summary, the complexity of even-order equations in canonical examples necessitates the use of

Riccati transforms and partial integrals to deduce and apply the conclusions of the aforementioned
theorems for the purpose of proof.

3
3

lo (s)ds — +oo.

5. Conclusions

This research extends earlier work on even-order nonlinear differential equations, specifically
concentrating on a distinct category of such equations represented by (1.4). Under appropriate
conditions, we successfully derived two new criteria for the Eq (1.4). Notable features of these
equations include the presence of pronounced damping terms, a mixture of positive and negative
coeflicients, variable time delays, and nonlinearity involving neutral terms. Using methods such as
Riccati transformation, calculus scaling, and integration by parts, we carried out a thorough derivation
and proof concerning the oscillatory characteristics of even-order differential equations. By leveraging
established theoretic frameworks, we pursued an evolutionary extrapolation approach and assessed the
effectiveness of this method through meticulous proofs.
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