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Abstract: This study investigated the effects of fluctuating boundary water levels and surface recharge 
on groundwater flow within unconfined aquifers. We aimed to understand how changes in recharge 
patterns and variable boundary water levels, such as those from rivers or canals, affect groundwater 
levels over time and space. To achieve this, we solved the linearized Boussinesq equation using the 
time-marching method alongside the generalized integral transformation method. Our analysis focused 
on how different types of recharge affect groundwater level variations and flow dynamics. We found 
that boundary effects on groundwater level change propagate from the edges toward the aquifer's center, 
becoming more pronounced with increased boundary water levels. Over time, the system stabilizes, 
leading to a steady water table height and flow rate, which depend on the disparity between the 
boundary water levels. Our analytical model demonstrated flexibility and practical applicability by 
allowing for the consideration or omission of various influencing factors, thus facilitating complete 
knowledge about groundwater variations and offering future strategic insights for sustainable 
groundwater resource management. 
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1. Introduction 

The study of groundwater dynamics spans centuries, yet it has never been more pertinent than in 
today's context of global climate change. As freshwater resources become increasingly precious, 
understanding and managing groundwater has become crucial to ensuring sustainable water 
availability [1–3]. Advanced computational technologies have revolutionized the field, enabling the 
development of sophisticated groundwater models. These tools have significantly deepened our 
understanding by simulating the intricate processes governing groundwater flow, particularly in 
unconfined aquifers. 

A pivotal area of research has been the exploration of groundwater flow dynamics under the 
influence of external factors like surface recharge and boundary water level fluctuations. Noteworthy 
in this domain is the work in [4], which showcased the application of the Artificial Neural Network-
Finite Element subsurface Flow (ANN-FEFLOW) model. This model distinguished itself by 
simulating groundwater flow changes in arid regions of China with an accuracy superior to traditional 
methods, attributing this success to its consideration of variable boundary conditions. This approach 
offered valuable perspectives for refining groundwater management strategies in arid landscapes. 
Furthermore, studies investigating the effects of ocean waves on groundwater levels have underscored 
the importance of accommodating varying boundary conditions. Research in [5–7] elucidated the 
cyclic nature of groundwater discharge and the potential risks of seawater intrusion, influenced by tidal 
activities and climatic factors like rainfall. These studies highlight that the bottom inclination 
influences the distance at which water levels change; the farther inland, the more rapid the decrease in 
influence. Additionally, higher rainfall intensity inhibits the tidal effect. These insights stress 
incorporating dynamic boundary conditions in groundwater models to accurately predict flow patterns 
and respond to environmental changes. 

Central to these investigations is the application of the Boussinesq equation, derived from 
integrating Darcy's formula with the continuity equation [8–11]. This foundational equation is the 
cornerstone for modeling groundwater flow in unconfined aquifers, facilitating the prediction of 
groundwater level responses to various stimuli. Through theoretical advancements and empirical 
validations, research in this field continues to evolve, offering nuanced understandings of groundwater 
behavior in response to changing environmental conditions [12–17]. 

Upadhyaya and Chauhan [18] introduced several analytical and numerical methods to model 
groundwater level variations between two drains within a horizontal or inclined aquifer. They 
evaluated the accuracy of these methods by comparing predicted groundwater levels at the midpoint 
against experimental data. The findings indicated that the hybrid finite analytic solution outperformed 
others, ranking above the finite element method, the finite difference method, and the analytical 
linearization techniques in [19,20]. 

Zissis et al. [21] delineated the aquifer into areas of recharge (adjacent to the boundary river) and 
non-recharge. They utilized the Laplace transformation method to address the linearized Boussinesq 
equation, considering uniform recharge and exponential fluctuations in river water levels. Their results 
aligned closely with numerical solutions by the finite element method, showcasing analytical solutions’ 
efficacy in investigating groundwater level responses to abrupt changes in adjacent river levels. 
Interestingly, linearizing the nonlinear Boussinesq equation had minimal effect on the predicted water 
level height, as found in the work in [22,23]. 

Sudicky [24] and Sudicky and McLaren [25] applied Laplace and Fourier transform techniques 
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to determine aquifer water levels before [26] explored how groundwater levels in rivers and coastal 
aquifers respond to environmental stimuli. Additionally, [27,28] examined the effects of water level 
adjustments and tidal influences on groundwater. Their sensitivity analysis indicated that riverbed 
leakage scarcely affects groundwater fluctuations, whereas the impact of river water levels becomes 
more pronounced with increased leakage. 

The common simplification of river water level changes in many studies—either as instantaneous 
or step-like uplifts—oversimplifies these variations’ complex, nonlinear, and continuous nature. This 
paper presents a conceptual model for the riparian aquifer system, accommodating time- and space-
varying recharge. We derive analytical solutions for groundwater flow within unconfined aquifers 
under intricate boundary conditions, aiming to bridge the gap between simplified theoretical 
assumptions and the dynamic realities of groundwater systems. 

2. Methodology 

2.1. Conceptual and mathematical modeling 

Our study investigates groundwater level changes in a horizontal unconfined aquifer with variable 
boundary water levels resulting from groundwater recharge after rainfall percolation. The aquifer 
model is a one-dimensional rectangular prism characterized by length 𝐿 and height 𝐷, with recharge 
𝑟 on the ground surface and impermeable base. Boundary water levels are represented by ℎ 𝑡  and 
ℎ 𝑡  at the left and right edges, respectively. 

Groundwater flow is governed by the mass balance equation, which, in terms of the specific yield 
𝑆, groundwater level height ℎ 𝑥, 𝑡 , recharge rate 𝑟 𝑥, 𝑡 , and flow rate 𝑞 per unit width, is given by: 

𝑆 𝑟 0. (1)

Flow within the aquifer, adhering to Darcy's law, is defined as: 

𝑞 𝑘ℎ , (2)

where 𝑘 is the hydraulic conductivity. 
Substituting Eq (2) into Eq (1) yields the Boussinesq equation with a source term 𝑟: 

𝑆 𝑘ℎ 𝑟. (3)

Referring to the linearization techniques presented in [21,29], an average groundwater level ℎ is 
suggested to replace the first ℎ of the nonlinear term in Eq (3), enhancing it through linearization 
techniques to accommodate small perturbations in groundwater level compared to the average 
groundwater level. After assessing the applicability of the linearization parameters, the water level 
ℎ 𝑥  at an early moment by a time step is presented as a novel linearization parameter, and the time-
marching method is employed to calculate it from the initial water level. The time step ∆𝑡 is small 
enough to satisfy the assumptions of the semi-linearization technique, ensuring that the water level 
change between two subsequent moments varies much less than ℎ. Thus, Eq (3) can be rearranged as 
follows: 
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, (4)

where ℎ ℎ 𝑥, 𝑡 ∆𝑡  is the groundwater level at the moment before the concerned time 𝑡, and 
∆𝑡 is the time step. 

In addition, the initial water level ℎ  can be observed from the wells, and the various river water 
levels at both boundaries 𝑥 0 and 𝑥 𝐿 can be collected from the gauge station. Hence, the initial 
condition and boundary conditions are presumed as follows: 

ℎ 𝑥, 0 ℎ 𝑥 , (5)

ℎ 0, 𝑡 ≡ ℎ 𝑡 , (6)

ℎ 𝐿, 𝑡 ≡ ℎ 𝑡 . (7)

For solving the boundary-value problem, dimensionless variables are introduced to simplify the 
above equations: 

𝑋 , 𝐻 , 𝑇 , 𝐼 𝑋 ≡ , 𝑅 𝑋, 𝑇 ≡ , 𝑄 ≡ , 

where ℎ ℎ 𝑥 𝑑𝑥 and 𝑡  is the duration of recharge. 

The Boussinesq equation (4) becomes 

𝛼 𝛾𝑅 , (8)

where 𝛼 ≡ , 𝛾 ≡ . 

𝐻 𝑋, 0 0, (9)

𝐻 0, 𝑇 ≡ 𝐻 𝑇 , (10)

𝐻 1, 𝑇 ≡ 𝐻 𝑇 . (11)

Employing the following linear transformation: 

∆𝐻 𝑋, 𝑇 ≡ 𝐻 𝑋, 𝑇 𝐻 𝑇 𝐻 𝑇 𝐻 𝑇 𝑋 . (12)

Equations (8)–(11) become 

∆
𝛼

∆
𝛾𝑅 𝛼 1 𝑋 𝛼𝑋 , (13)

∆𝐻 𝑋, 0 0, (14)
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∆𝐻 0, 𝑇 0, (15a)

∆𝐻 1, 𝑇 0. (15b)

2.2. Analytical solutions 

In this study, the following transforms of the Generalized Integral Transform Method (GITM) 
presented in [30] are employed. 

Transform formula: 

𝐻 𝛽 , 𝑇 𝐾 𝛽 , 𝑋 ⋅ ∆𝐻 𝑋 , 𝑇 d𝑋 . (16)

Inverse transform formula: 

𝐻 𝛽 , 𝑇 𝐾 𝛽 , 𝑋 ⋅ ∆𝐻 𝑋 , 𝑇 d𝑋 . (17)

Here, the kernel 

𝐾 𝛽 , 𝑋 √2 sin 𝛽 𝑋  (18)

with 𝛽 𝑚𝜋, 𝑚 ∈ 𝑵 (natural number). 
Applying these transformations, we reformulate the Boussinesq equation, setting up the 

conditions for a linear transformation to solve the equation using GITM. The transformations and 
inverse transformations allow us to handle complex boundary conditions dynamically. The derivation 
processes of ∆𝐻 in Eq (13) by GITM are shown in Appendix A. 

After expanding the integral of Eq (A7) and organizing the equation, we can get: 

∆𝐻 𝑋, 𝑇 ∑ ∙ sin 𝛽 𝑋 𝐹 𝐹 𝐹 , (19)

where 

𝐹 𝑇 ≡ sin 𝛽 𝑋 𝛾𝑅 ⋅ exp
𝛽
𝛼

𝑇 𝜏 d𝑋 𝑑𝜏, (20)

𝐹 𝑇 ≡ sin 𝛽 𝑋 𝛼 1 𝑋
𝑑𝐻
𝑑𝜏

𝛼𝑋
𝑑𝐻
𝑑𝜏

, (21)

𝐹 𝑇 ≡ sin 𝛽 𝑋 ⋅
𝑑 𝐼

𝑑𝑋
⋅ exp

𝛽
𝛼

𝑇 𝜏 d𝑋 𝑑𝜏. (22)

Each term, 𝐹 , 𝐹 , and 𝐹 , represents the source term, boundary water level variations, and initial 
groundwater level conditions, respectively. Through GITM, we derive explicit formulas for 
groundwater levels and flow discharge as the following, which are then verified against numerical 
solutions for accuracy in the next section. 

Substituting Eq (19) into Eq (12) yields 
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𝐻 𝑋, 𝑇 ∑ ∙ sin 𝛽 𝑋 𝐹 𝐹 𝐹 1 𝑋 𝐻 𝑋𝐻 . (23)

After the groundwater level has been estimated, the flow discharge at the outlet can be obtained 
by integrating Eq (2) as follows. 

𝑄 ∑ 𝛽 cos 𝛽 𝑋 ⋅ 𝐹 𝐹 𝐹 𝐻 𝐻 . (24)

3. Comparison of analytical and numerical solutions 

Our approach is validated against the established analytical solution proposed in [31] and through 
comparison with the numerical solution developed by ourselves, using specific scenarios to test our 
model’s accuracy and practical applicability under varying conditions of recharge and boundary water 
levels. The recharge of their mathematical model was presented by an exponential function, 𝑟 𝑘⁄
𝑟 𝑘⁄ 𝑟 𝑘⁄ ∙ exp 𝑑𝑡 ,  indicating that the river water level varies quantitatively with time. The 
application of Eq (20) by introducing the above exponential type recharge is given in Appendix B. The 
parameters used are as follows: 𝐿 1000 m , 𝑎 12,000 m /d , ℎ 0 , ℎ ℎ 120 m  , 
ℎ ℎ 100 m  , 𝑟 𝑘⁄ 1 10  , 𝑟 𝑘⁄ 2 10  , 𝑑 0.1 1/d , 𝑡 2, 5, 10 d , ∆𝑡
0.1 d, ℎ 72 m, 𝑆 0.27, and 𝑘 45 m/d. 

Regarding the linearization improvement of the governing equation, the most significant 
difference between this study and [31] is using the time-marching method to enhance accuracy. With 
minimal changes in groundwater level, the present solution closely aligns with the linear solution 
obtained in [31]. However, when there are substantial changes in water level, the solution in [31] 
becomes impractical because it must satisfy the assumption of a slight fluctuation in groundwater level. 
The time-marching method can provide reasonable groundwater level estimates by selecting a suitable 
time-step interval to ensure that the groundwater level change in each step adheres to the linearization 
assumption because the adjacent groundwater level change is minimal. 

If the varying water levels at both boundaries also admit the change of exponential functions with 
constant decaying rates 𝜆  and 𝜆 , they can be expressed as follows: 

ℎ 𝑡 ℎ , ℎ , ℎ 0 ∙ exp 𝜆 ∙ 𝑡 , (25a)

ℎ 𝑡 ℎ , ℎ , ℎ 0 ∙ exp 𝜆 ∙ 𝑡 , (25b)

where ℎ ,   and ℎ ,   are the equilibrium water level of rivers at the left and right boundaries, 
respectively. The application of Eq (21) by introducing the variable boundary water level is shown in 
Appendix C, and an exponential type water level distribution is shown in Appendix D. To complement 
our analytical solutions, a numerical scheme was employed using finite difference methods to 
approximate the groundwater flow equations. The aim was to validate our analytical model by 
comparing its predictions with those from the numerical model, especially under dynamic boundary 
conditions and variable recharge rates. 

The derived difference expression is as follows: 

ℎ
∆

ℎ 2 ℎ ℎ ∙ ∆ ℎ , (26)
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where 𝑖′  and n′  denote the node in the space and time domain, respectively, and 𝑚′  denotes the 
number of iterations. The condition of solution convergence is: 

ℎ ℎ 10 m (27)

with ∆𝑥 5 m and ∆𝑡 0.0002 d. 

As depicted in Figure 1(a), the river water levels are assumed constant with the reference of [31]. 
In the absence of recharge, the water level is merely affected by the difference in the river water levels, 
and the groundwater level gradually rises from the initial water level until the water levels reach 
equilibrium. In Figure 1(b), the rising groundwater level depends on the recharge rate when the 
recharge is considered. Nevertheless, the trend is similar to the result in Figure 1(a). The present 
analytical solution agrees very well with [31] and the numerical solutions. Further, it provides a more 
concise and general solution that can be applied to various recharge and boundary water levels. 

  

(a) Without recharge (b) With recharge (d=0.1 1/d) 

Figure 1. Comparison of changes in groundwater level with the numerical solution and 
the solution presented by [31] for constant boundary water levels. 

Different time steps are presented to evaluate the effect of time steps on the present analytical 
solutions and examine the solutions' consistency, as shown in Figures 2 and 3. The parameters used 
are as follows: 𝐿 200 m , ℎ 5 m , ℎ , 6 m , ℎ , 5.2 m , 𝜆 0.4 1/d , 𝜆 0.4 1/d , 
𝑟 0.05 m/d , 𝑡 5 d , 𝑡 1, 5, 20 d , 𝑆 0.21 , and 𝑘 2.5 m/d . The figures show the 
consistency of all solutions except choosing ∆𝑡 5 d for the case of 𝑡 5 d. It is infeasible when 
the simulation time and the time step are the same, resulting in a great discrepancy in the solutions. 
Hence, the time step size must be chosen less than the simulation time. Further, the results also indicate 
that the groundwater level tends to rise during the recharge period. It is evident that, due to the low 
hydraulic conductivity, changes of boundary water levels have minimal impact on the groundwater 
level in the inner region of the aquifer. The rise of groundwater level is primarily attributed to rainfall 
recharge. When the recharge ceases, the water level gradually stabilizes, aligning with the boundary 
water levels on both ends. Notably, significant differences in solutions are observed at 𝑡 5 d . 
Comparison with the numerical solution reveals that the gap gradually widens as the recharge 
progresses, indicating a decrease in accuracy. Conversely, when the recharge ceases and the 

H
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H
/H
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groundwater level drops near the boundary (𝑥 200 m ), the gap gradually narrows, increasing 
accuracy. 

 

(a) 𝑡 1 d (b) 𝑡 5 d (c) 𝑡 20 d 

Figure 2. Examination of the effect of time steps on the analytical solutions for spatial 
changes in groundwater level at different durations. 

Further, in Figure 2, the groundwater level for 𝑥 10 m is initially affected by recharge and 
river water level changes, and then the groundwater level gradually increases with increasing time. 
After the recharge ceases, the river water level still rises, causing the groundwater level to increase 
slightly. Nevertheless, the groundwater level at the midsection (𝑥 100 m) remains approximately 
ℎ 5.6 m. 

  

(a) 𝑥 10 m (b) 𝑥 100 m 

Figure 3. Examination of the effect of time steps on the analytical solutions for temporal 
changes in groundwater level at different locations. 

From Figures 2 and 3, the errors of the analytical solution and the numerical solution obtained at 
different simulation times and time step intervals ∆𝑡 exists. Figure 4 shows the error analysis between 
the analytical and numerical solutions for groundwater level changes via the difference percentage 
ℎ ℎ /ℎ   and ℎ ℎ∆ . /ℎ∆ .  . In Figure 4(a), using the numerical solution as a 
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comparison benchmark, the error of the solution of the groundwater level is the largest for both ∆𝑡
5 d and ∆𝑡 0.01d with a peak error of -0.675% and +0.638%, respectively, meaning that both larger 
and smaller time steps are inadequate. In Figure 4(b), for ∆𝑡 0.2 d or less, the analytical solutions 
tend to a constant without obvious discrepancy, indicating that selecting an appropriate ∆𝑡 can save 
computer calculation time and obtain considerable accuracy. 

  

(a) (b) 

Figure 4. Error analysis: (a) comparison with the numerical solutions; (b) comparison with 
the analytical solution using ∆𝑡 0.01 d for different cases of time steps at 𝑡 5 d. 

4. Discussion 

This section explores the effects of time-varying recharge patterns on groundwater levels, 
specifically analyzing uniform, central-peak, forward-peak, and backward-peak scenarios. The 
parameters guiding this investigation include a uniform initial water level function (𝐼 1), boundary 
water levels (𝐻 𝐻 0), recharge duration (𝑇 1), study period (𝑇 5), and time step (∆𝑇
1/48), as elaborated in Appendix E. We modeled various recharge rates using unit step functions but 
maintained a consistent total recharge amount of 0.01. 

During the uniform recharge period, we observed a continuous increase in groundwater level 
(refer to Figure 5(b)), which correspondingly heightened the flow rate at the aquifer boundaries (𝑋
0 and 𝑋 1, as seen in Figure 6(b)). The central-peak pattern showed a gradual rise in groundwater 
level in the early half recharge period (𝑇 𝑇 /2). Still, it accelerated after the half recharge moment 
(𝑇 𝑇 /2) at the mid-recharge point (𝑋 0.5) as shown in Figure 5(b). In contrast, the forward-peak 
pattern demonstrated a sharp increase in the early recharge phase, followed by a deceleration (see 
Figure 6(a) illustrates the comparative flow rate changes). The backward-peak pattern, however, 
initiated a slower groundwater level increase that subsequently quickened, significantly impacting 
flow changes at both aquifer’s ends. 

Upon cessation of recharge at 𝑇 1, the midpoint groundwater level change (𝑋 0.5) suggests 
a reduction in flow rate, potentially reaching near zero (see Figure 6(a)). Notably, the early-stage 
recharge predominantly dictates groundwater level changes near the boundaries post-recharge (𝑇 1). 
The backward-peak pattern, with its late-stage intensified recharge, results in prolonged water 
dissipation and elevated groundwater levels at the boundaries post-recharge cessation (Figure 5(a)). 
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Analyzing the recharge period (𝑇 1), the forward-peak type recorded the highest groundwater 
levels at 𝑋 0.5, while the backward-peak type exhibited the lowest (Figure 5(b)). Interestingly, the 
central-peak pattern initially induced lower groundwater levels but surpassed the uniform pattern later 
in the recharge period. Post-recharge (𝑇 1), groundwater levels notably diverged; the backward-
peak type maintained higher levels, whereas the forward-peak type resulted in lower levels, 
showcasing a more uniform rate of decline. 

  

(a) T=1 (b) X=0.5 

Figure 5. Variation of groundwater levels under various types of recharge. 

This discussion underscores the intricate dynamics between recharge patterns and groundwater 
responses, offering insights into optimal recharge strategies for effective management. 

Further analysis reveals that at 𝑇 1, the flow rate at the midpoint is zero, as depicted in Figure 6(a). 
This outcome is attributed to the midpoint in a horizontal aquifer acting as a stagnation point, where 
the flow rate increases as water moves toward the boundaries. This phenomenon, driven by the 
aquifer's horizontal layout and the uniformity of recharge across space—solely dependent on time—
results in an antisymmetric flow rate distribution around the midpoint. Consequently, flow rates are 
identical at equidistant points from the midpoint, as illustrated in Figure 6. 

During the recharge period, flow rate changes—relative to a uniform recharge scenario—reflect 
the specific recharge patterns. For instance, the forward-peak recharge pattern accelerates the flow rate 
in the initial stages, whereas the backward-peak recharge pattern enhances the flow rates later in the 
period. This correlation between the recharge pattern and flow rate changes underscores a consistent 
dynamic; the flow rate intensifies over time, with the acceleration being more marked as one moves 
toward the boundaries. Once recharge concludes, the flow decelerates toward both ends, culminating 
in a stable state with smooth flow dynamics. 

In practical applications, gravel piles are often utilized for groundwater recharge along certain 
river segments. This section investigates the alterations in groundwater flow induced by spatially 
dependent recharge sources, focusing on middle recharge intervals of 𝑙 0.1 𝐿, 0.2 𝐿, 0.5 𝐿, and 
1.0 𝐿. To optimize computational efficiency, a time step of ∆𝑇 1/24 was selected. 
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(a) T=1 (b) X=0 and X=1 

Figure 6. Groundwater discharge changes for various types of recharge. 

Figure 7 depicts the dimensionless changes in groundwater levels across space at two distinct 
times. Notably, the groundwater level variation within the recharge interval displays a characteristic 
curve with a descending notch, which diminishes as the recharge interval decreases. The middle 
recharge interval of 𝑙  0.5 𝐿 proves both efficient and cost-effective for achieving the goals of 
groundwater recharge engineering. Moreover, analyzing the discharge variations at different recharge 
intervals reveals that the flow rate escalates with the interval's extension, as demonstrated in Figure 8. 
During the recharge period, groundwater flow accelerates toward the aquifer's extremities when the 
recharge interval encompasses the entire domain due to the higher gradient in the hydraulic head. 
Conversely, for smaller intervals (𝑙 0.1 𝐿 , 0.2 𝐿 , and 0.5 𝐿 ), the flow rates are significantly 
reduced, suggesting that the groundwater is retained within the aquifer rather than being rapidly 
expelled. This observation reinforces the advantage of selecting a middle recharge interval of 𝑙
0.5 𝐿 for effective groundwater storage, provided the aquifer's composition supports such a strategy. 

  

(a) T=0.5 (b) T=1 

Figure 7. Spatial distribution of dimensionless groundwater levels for different spatial 
recharge intervals. 
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(a) X=0.5 (b) X=0, 1 

Figure 8. Variation of dimensionless water level and discharge changes over time for 
different recharge intervals. 

Figure 9 illustrates the variation in groundwater level and discharge in response to an increasing 
water level at the left boundary (𝑋 0) in the absence of recharge. The parameters for this analysis 
include a dimensionless indicator 𝐼 1, left boundary equilibrium water levels 𝐻 , 0.1, 0.2, 0.5, 
and 1.0 right boundary equilibrium water level 𝐻 , 0, left boundary depth 𝐷 0.8, and time 
𝑇 10. As Figure 9 reveals, the groundwater level near the active boundary experiences a noticeable 
increase due to the elevated river water level. This rise in groundwater level is initially swift, stabilizing 
at the equilibrium level relatively quickly. Beyond 𝑇 10 , the change in groundwater level 
approximates a straight line, signifying a reduction in groundwater flow discharge at 𝑋 0. 
Conversely, at 𝑋 1, there is no initial movement in the groundwater level, but discharge begins to 
rise incrementally as the river water level increases over a brief period. Figure 10 further details the 
spatiotemporal changes in the dimensionless groundwater level and discharge, providing a 
comprehensive view of the dynamics at play. 

  

(a) T=1, 5, 10 (b) X=0, 1 

Figure 9. Variations of dimensionless groundwater level and discharge changes in 
response to the river water level rise at 𝑋 0. 
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(a) H (b) Q 

Figure 10. Spatiotemporal variations of the dimensionless groundwater level and 
discharge changes in response to the various river water levels. 

5. Conclusions 

This study leverages the time-marching technique to derive an analytical solution for the 
Boussinesq equation. Upon comparing this analytical solution with a numerical counterpart, we find 
that the discrepancies are minimal, underscoring the method's computational efficiency without 
necessitating iterative techniques. Through integrating variables such as recharge patterns, boundary 
water levels, and initial water levels, the study methodically investigates their effects on groundwater 
level and flow discharge across diverse scenarios. The key findings are as follows: 

1) The analytical solutions for changes in groundwater level ( 𝐻 ) and flow rate ( 𝑄 ) are 
categorized into three main factors: recharge, boundary water level, and initial groundwater level. This 
division allows for a detailed discussion of how each factor influences groundwater flow changes, 
enabling a clear and concise explanation of their impacts. 

2) Throughout the recharge phase, the disparity between the analytical and numerical solutions 
incrementally increases due to variations in the governing equations. However, once the recharge ends, 
convergence accuracy significantly improves, with the discrepancy against numerical solutions being 
notably small, less than 1%. This observation highlights the analytical model's robustness and 
compatibility with numerical methods. 

3) The change in groundwater level within the recharge interval is characterized by a curve with 
a distinctive downward notch. Remarkably, this notch becomes less pronounced as the recharge 
interval decreases. Designating the middle recharge interval to be half the aquifer's total length (𝑙
0.5 𝐿 ) proves to be both effective and cost-efficient, aligning well with the engineering goals of 
optimizing groundwater storage. 

4) Alterations in the water level at the left boundary instigate water movement toward the 
aquifer's opposite side. Near the 𝑋 0 boundary, the groundwater level initially experiences a rapid 
rise, swiftly achieving an equilibrium state, which, in turn, leads to a reduction in groundwater flow 
discharge. 

These conclusions demonstrate the analytical model's versatility in accurately simulating 
groundwater flow changes under varied conditions, offering valuable insights for the possible strategic 
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management and conservation of groundwater resources. 
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Appendix 

Appendix A. Derivation processes of ∆𝐻 in Eq (19) by GITM 

𝐾 𝛽 , 𝑋 ⋅
𝜕 ∆𝐻

𝜕𝑋
d𝑋  

𝐾 𝛽 , 𝑋 ⋅ 𝛼
∆

d𝑋 𝐾 𝛽 , 𝑋 ⋅ 𝛾𝑅 𝛼 1 𝑋 𝛼𝑋 d𝑋 . 

(A1)

The second-order differential term can be performed by taking integration by parts twice and the 
following results can be obtained: 

𝐾 𝛽 , 𝑋 ⋅
𝜕 ∆𝐻

𝜕𝑋
d𝑋 ＝ 𝛽 𝐻 . (A2)

Substituting Eq (A2) into Eq (A1) yields 

𝐻 ＝ , (A3)
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where 

𝐾 𝛽 , 𝑋 ⋅
∆

𝑑𝑋 ＝ 𝐾 ⋅ ∆𝐻 𝑑𝑋 , (A4)

𝛿 𝑇 ≡ 𝐾 𝛽 , 𝑋 𝛾𝑅 𝛼 1 𝑋 𝛼𝑋 𝑑𝑋 . (A5)

The solution to Eq (A3) can be found by multiplying the integrating factor 𝑇 as follows: 

𝐻 exp 𝑇 ⋅ ⋅ exp 𝜏 𝑑𝜏. (A6)

Then, taking the inverse transform to Eq (A6), we can obtain 

∆𝐻 𝑋, 𝑇 ∑ √2sin 𝛽 𝑋 ⋅ exp 𝑇 ⋅ ⋅ exp 𝜏 𝑑𝜏. (A7)

Substituting Eq (A5) into Eq (A7) results in Eq (19). 

Appendix B. Derivation of the source term 𝐹 𝑇   in Eq (20) by introducing an exponential type 
recharge 

𝑟 𝑡 𝑟 𝑟 exp 𝑑𝑡 , (B1)

where 𝑟  and 𝑟  are constants. 
Taking the dimensionless transformation for Eq (B1) yields 

𝑅 𝑇 𝑅 𝑅 exp 𝐷𝑇 , (B2)

with 𝐷 ≡ 𝑑 ⋅ 𝑡 , 𝑅 ≡ , and 𝑅 ≡ . 

Substituting Eq (B2) into Eq (20) yields 

𝐹 𝑇 sin 𝛽 𝑋 ⋅ 𝛾 𝑅 𝑅 exp 𝐷𝜏 ⋅ exp
𝛽
𝛼

𝑇 𝜏 d𝑋 𝑑𝜏 

⋅ 𝑅 ∙ 1 exp 𝑇 𝑅 . 

(B3)

Appendix C. Derivation of the variable boundary water level term 𝐹 𝑇  in Eq (21) 

𝐹 𝛼 sin 𝛽 𝑋 ∙ 1 𝑋
𝑑𝐻
𝑑𝜏

𝑋 ⋅ exp
𝛽
𝛼

𝑇 𝜏 d𝑋 𝑑𝜏 

cos 𝛽 ⋅ exp 𝑇 𝜏 𝑑𝜏. 

(C1)
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After performing the integral over the space and then performing integration by parts, Eq (C1) becomes 

𝐹
𝛼

𝛽
𝐻 cos 𝛽 𝐻 ⋅ exp

𝛽
𝛼

𝑇 𝜏

𝛽
𝛼

𝐻 cos 𝛽 𝐻 ⋅ exp 
𝛽
𝛼

𝑇 𝜏 𝑑𝜏  

𝐻 𝑇 cos 𝛽 𝐻 𝑇 𝐻 𝜏 cos 𝛽 𝐻 𝜏 ⋅ exp 𝑇 𝜏 𝑑𝜏 . 

(C2)

Appendix D. Derivation of the variable boundary water level term 𝐹 𝑇  in Eq (21) by introducing 
an exponential type water level distribution (Zissis et al., 2001) 

ℎ 𝑡 ℎ , ℎ , ℎ 0 ∙ exp 𝜆 ∙ 𝑡 , (D1)

ℎ 𝑡 ℎ 0 =ℎ , , (D2)

where ℎ ,  and ℎ ,  are the stable boundary water level. 𝜆  is the rate of the boundary water level. 
Eq (D1) can be obtained after taking the dimensionless transformation: 

𝐻 𝐺 𝐺 ∙ exp 𝐷 𝑇 𝐺 ∙ exp 2𝐷 𝑇 , (D3)

where 

𝐺 ≡ ℎ , ℎ 0 , (D4)

𝐺 ≡ 2ℎ , ℎ , ℎ 0 , (D5)

𝐺 ≡ ℎ , ℎ 0 , (D6)

𝐷 ≡ 𝜆 𝑡 . (D7)

Substituting Eq (D3) into Eq (21) yields 

𝐹 ∙ exp 𝐷 𝑇 exp 𝑇 ∙ exp 𝐷 𝑇 exp 𝑇 . (D8)

Appendix E. Assumed distribution of the initial water level 𝐼 𝑋  over space 

Assuming that the river water levels at both boundaries are fixed and there is no recharge for a 
long period, the initial groundwater level has reached a stable state and can be expressed as: 
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ℎ 𝐶 𝑥 𝐶 , (E1)

with 𝐶  and 𝐶  being the undetermined coefficients. 
Using the dimensionless factors for Eq (E1), the dimensionless form of the initial groundwater 

level becomes 

𝐼 𝑋 𝑋 . (E2)

From Eq (9), we can get: 

𝐼 0 , (E3)

𝐼 1 . (E4)

After substituting Eqs (E3) and (E4) into Eq (E2), the distribution of the initial water level can be 
obtained as: 

𝐼 𝑋 𝑋 . (E5)
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