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Abstract: Mathematical models play a crucial role in understanding the dynamics of epidemic
diseases by providing insights into how they spread and be controlled. In biomathematics,
mathematical modeling is a powerful tool for interpreting the experimental results of biological
phenomena related to disease transmission, offering precise and quantitative insights into the processes
involved. This paper focused on a discrete mathematical model of the Hepatitis C virus (HCV) to
analyze its dynamical behavior. Initially, we examined the local dynamics at steady states, providing
a foundation for understanding the system’s stability under various conditions. We then conducted
a detailed bifurcation analysis, revealing that the discrete HCV model undergoes a Neimark-Sacker
bifurcation at the uninfected steady state. Notably, our analysis showed that no period-doubling or
fold bifurcations occur at this state. Further investigation at the infected steady state demonstrated
the presence of both period-doubling and Neimark-Sacker bifurcations, which are characterized using
explicit criteria. By employing a feedback control strategy, we explored chaotic behavior within the
HCV model, highlighting the complex dynamics that can arise under certain conditions. Numerical
simulations were conducted to verify the theoretical results, illustrating the model’s validity and
applicability. From a biological perspective, the insights gained from this analysis enhance our
understanding of HCV transmission dynamics and potential intervention strategies. The presence of
Neimark-Sacker bifurcation at the uninfected steady state implies that small perturbations could lead to
oscillatory behavior, which may correspond to fluctuations in the number of infections over time. This
finding suggests that maintaining stability at this steady state is critical for preventing outbreaks. The
period-doubling and Neimark-Sacker bifurcations at the infected steady state indicate the potential for
more complex oscillatory patterns, which could represent persistent cycles of infection and remission in
a population. Finally, explorationofchaoticdynamics throughfeedbackcontrolhighlights thechallenges
inpredictingdiseasespreadand theneedforcarefulmanagement strategies toavoidchaoticoutbreaks.
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1. Introduction

1.1. Motivation and literature survey

Infection with the Hepatitis C virus (HCV) is a major global health concern and a substantial
contributor to liver cirrhosis, liver cancer, and chronic liver disease. Chronic HCV infection is
believed to be the primary cause of chronic liver disease, which can progress to serious complications
such as primary hepatocellular carcinoma (HCC) or cirrhosis. In severe cases, this progression
necessitates liver transplantation or can lead to death in some individuals. According to recent data, it is
estimated that between 130 and 170 million people worldwide are living with chronic HCV infections,
highlighting the extensive reach and impact of this virus on global health. The discovery of HCV
marked a significant milestone in medical research. It was only in 1989 that the cause of HCV was
discovered using modern genome sequencing and molecular cloning techniques, which allowed for
the identification of previously uncharacterized non-B and non-A Hepatitis viruses. As an RNA virus
belonging to the Flaviviridae family, HCV is characterized by a limited host population, primarily
humans. The HCV has a single-stranded RNA genome approximately 10, 000 nucleotides in length,
comprising both structural and non-structural protein-coding regions. Two envelope proteins, E1 and
E2, are crucial components of the virus, with the E2

NS 1
region containing a hypervariable area that is key

to the virus’s ability to evade the host immune system. While structural proteins form the virus’s outer
shell, non-structural proteins are essential for viral replication. Diagnosing HCV infection involves a
multi-step process. The standard method begins with checking for antibodies to detect the presence of
the virus. This is followed by measuring HCV RNA levels to confirm active infection and monitor the
virus’s presence over time. These tests are critical in diagnosing HCV and guiding treatment plans.
Following infection, the half-life of infected cells varies significantly, with rates ranging from 1.7 to 70
days. This variability suggests that effective treatment requires high doses of interferon-alpha (IFN−α),
between 3 and 15 million international units (mIU) per day, to hasten the death of infected cells
during early viral load measurements. This dosing strategy aligns with current recommendations for
overcoming HCV infection, aiming to reduce viral load and promote recovery. One of the challenges
in treating HCV is the virus’s rapid mutation rate and high turnover of HCV RNA molecules, which
presents an opportunity for early eradication if addressed promptly. Despite advances in treatment,
there is currently no vaccine available to protect against HCV infection. However, early intervention
with antiviral therapies can significantly improve outcomes. Administering interferon (IFN) in the
early stages of treatment, particularly within 89 days of infection, has been shown to increase the
sustained viral response (SVR) rate. Combining ribavirin with IFN therapy results in an SVR rate
exceeding 50% during the chronic phase, providing a substantial benefit to patients. Research into
the antiviral effects of IFN has revealed that hepatocytes persistently infected with HCV respond to
IIFN-α treatment by exhibiting enhanced antiviral activity and inhibition of host RNA translation.
Several HCV proteins have been identified as regulators of the IFN response pathway, suggesting a
complex interaction between the virus and host immune responses. Understanding these interactions
is crucial for developing more effective treatments and overcoming the challenges posed by the virus’s
ability to evade immune defenses [1]. In recent years, researchers have turned their attention to the
dynamical analysis of HCV models, seeking to understand the virus’s behavior and its impact on
infected populations. Mathematical modeling of HCV infection dynamics has become an essential
tool in this effort, providing insights into the factors influencing infection spread, treatment efficacy,
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and disease progression. By incorporating elements of chaos and bifurcation theory, these models offer
a deeper understanding of the complex dynamics underlying HCV infections. Discrete models of HCV
dynamics, in particular, have garnered interest due to their ability to capture the non-linear behaviors
and chaotic patterns observed in the progression of HCV infections. These models examine the local
dynamics of the virus, shedding light on how small changes in parameters or initial conditions can lead
to significant variations in disease outcomes. By exploring the potential for chaos and bifurcations,
researchers aim to identify critical thresholds and tipping points that influence the course of infection
and response to treatment. For instance, Li et al. [2] have examined the behavior of the following
chronic HCV model: 

Ṫ = rT (1 − T+T1
K ) − β1TV,

Ṫ1 = β1TV − d1T1 − β2T1C,

V̇ = κT1 − γV,

Ḋ = λ − δ1D − αDT1,

Ḋ1 = αDT1 − δ2D1,

Ċ = ηD1C − β3T1C − µC,

(1.1)

where T , T1, V , D, D1, C are healthy hepatocytes, infected hepatocytes, free virus, non-activated DC,
activated DC, and cross-presentation CTL, respectively. Moreover, r, K, κ, β1, d1, γ, λ, δ1, δ2, η, β3,
µ are all positive parameters. Rihan et al. [3] have investigated bifurcation scenarios of the following
HCV model: 

Ḣ = s − µHH − κ1VH,

İ = κ′1VH − µI I,

V̇ = µbI − µVV,

(1.2)

where H, I, V represent the concentration of uninfected, infected hepatocytes, and free HCV cells,
respectively, s, κ1 denote uninfected and infected hepatocytes and the rest are parameters that cause the
production or death of hepatocytes. Nangue [4] has examined global dynamics of the HCV model:

Ṫ = −βVT (1 − η) + λ − dT,

İ = −δI + (1 − η)βVT,

V̇ = −cV + (1 − ε)pI,

(1.3)

where V , I, and T respectively denote free virus, infected, and target uninfected cells. Moreover, λ,
d, δ, β, p, s, c, ε, η are all positive parameters that represent production and death rate of T , I, and V
cells. Ahmed et al. [5] have investigated global dynamics of the HCV model:

Ṡ = B − (kb1a + kb2c)S − µS ,

ȧ = (kb1a + kb2c)S − (σ1 + µ)a,
ċ = δσ1a − (σ2 + µ)c,
ṙ = (1 − δ)σ1a + σc2 − µr,

(1.4)
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where B, µ describe birth and death rates, respectively, and k, b, σ1, σ2, δ are positive parameters.
Ntaganda [6] has explored the global dynamics of the HCV model:Ḣ = −H + Iα f (IFN,Rib),

İ = −I + Hβg(IFN,Rib),
(1.5)

where I and H stand for infected and uninfected hepatocytes, respectively, at time t, α and β are model’s
constants, and f , g are functions to be found. Sun et al. [7] have explored the dynamics of disease
spreading on networks using reaction-diffusion systems. They focused on understanding how diseases
propagate through different network structures, analyzing the impact of network topology on the spread
and control of infectious diseases. The study employed mathematical modeling to describe disease
transmission processes, incorporating elements such as diffusion rates, infection rates, and network
connections. The authors used simulations to investigate various scenarios and parameters, revealing
complex patterns of disease spread that were highly sensitive to network configurations. Their findings
indicated that network heterogeneity played a crucial role in determining the speed and extent of
disease outbreaks. They demonstrated that nodes with high connectivity significantly influenced the
overall dynamics, often acting as super-spreaders within the network. The authors also analyzed
the effectiveness of different intervention strategies, such as targeted vaccinations and quarantine
measures, in mitigating disease spread. They concluded that understanding the interplay between
network structure and disease dynamics is essential for designing effective public health interventions.
Furthermore, their work contributed to the field by providing insights into the mechanisms of
disease spread in networked environments and highlighting the importance of considering network
characteristics in epidemic modeling and control. RabieiMotlagh and Soleimani [8] investigated
the impact of mutations on the stochastic dynamics of infectious diseases using a probability-based
approach. They developed a mathematical model to analyze how mutations in pathogens can influence
the spread and control of infectious diseases. The authors incorporated mutation effects into a
stochastic framework, allowing them to examine the probabilistic behavior of disease transmission
under various scenarios. By doing so, they aimed to understand better the role of genetic changes
in pathogens and their implications for disease dynamics and public health interventions. The
study utilized a combination of analytical and computational methods to explore the dynamics of
mutated pathogens in a population. The authors considered different types of mutations, including
beneficial, neutral, and deleterious, and examined their effects on the basic reproduction number
and disease prevalence. They found that mutations could lead to significant changes in disease
dynamics, potentially increasing the difficulty of controlling outbreaks. The model also highlighted the
importance of considering stochasticity in disease modeling, as random events can significantly impact
the outcomes of infectious disease spread. They also conducted several simulations to validate their
model and demonstrate its applicability to real-world scenarios. They showed that mutations could lead
to increased variability in disease outcomes, with some scenarios resulting in more severe outbreaks
than others. The authors also explored the effects of vaccination and other control measures, finding
that their effectiveness could be compromised by the presence of mutations. Their work underscored
the need for adaptive strategies in public health responses to infectious diseases, considering the
potential for rapid genetic changes in pathogens. Overall, the study provided valuable insights into
the complex interplay between mutations and stochastic dynamics in infectious disease modeling.
The authors emphasized the importance of integrating genetic factors into epidemiological models
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to improve predictions and inform public health strategies. Their findings suggested that traditional
deterministic models might underestimate the impact of mutations and stochastic events, leading to less
effective control measures. By incorporating a probabilistic approach, RabieiMotlagh and Soleimani
offered a more comprehensive framework for understanding and managing infectious diseases in
the face of evolving pathogens. For further results, we direct the reader to the work of eminent
mathematicians [9–13] and references cited therein.

1.2. Mathematical formulation

Mathematical modeling of the Hepatitis C virus (HCV) is crucial for understanding the complex
dynamics of this persistent infection. HCV affects millions of people worldwide and poses significant
challenges to public health due to its high mutation rate and diverse disease progression patterns.
Mathematical models provide a powerful framework for analyzing these complexities by allowing
researchers to simulate the interactions between the virus, host immune responses, and treatment
interventions. By capturing the non-linear behaviors and potential for chaos inherent in HCV
dynamics, these models help identify critical factors influencing disease spread and treatment efficacy.
This approach enables the prediction of outbreak scenarios, the optimization of therapeutic strategies,
and the development of more effective public health policies. Through mathematical modeling, we
can gain valuable insights into HCV’s behavior, ultimately paving the way for better management and
control of this global health threat. So, hereafter, we will reformulate the mathematical modeling of
the continuous HCV model. Based on Figure 1, the model’s equation for continuous-time HCV model
takes the following form [1] : 

Ṫ = s − dT − (1 − η)βVT,

İ = (1 − η)βVT − δI,

V̇ = (1 − ε)pI − cV,

(1.6)

where V , I, and T respectively denote free virus, infected, and target uninfected cells. Moreover,
T cells are created and destroyed at rates s and d; I cells are destroyed at a rate δ; β represents
de novo infection; p denotes viral production; and c represents the clearance per virion of V cells.
Additionally, the model’s therapeutic effect of IFN treatment included preventing the production of
virion and reducing the number of new infections denoted by 1−ε and 1−η, respectively. Furthermore,
for the specific range of parameters d, s, β, η, ε, p, c, and δ, we refer the reader to [1] and literature
cited therein. It is important to mention that discrete-time models driven by difference equations are
preferred to continuous ones in populations with non-overlapping generations. Discrete models can
also produce effective computational results for numerical simulations. For instance, the continuous-
time HCV model, which is depicted in (1.6), by Euler-forward formula, becomes:

Tt+1 = hs + (1 − hd)Tt − h(1 − η)βVtTt,

It+1 = (1 − hδ)It + h(1 − η)βVtTt,

Vt+1 = (1 − hc)Vt + h(1 − ε)pIt,

(1.7)

where h is the integral step size.
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Figure 1. Schematic representation of HCV model.

1.3. Main contribution

In this paper, our key findings include:

• Mathematical formulation of the discrete Hepatitis C virus model (1.7).
• Existence of steady states of discrete HCV model.
• Construction of basic reproduction number by next-generation approach.
• Local dynamics at steady states of the HCV model.
• Bifurcation analysis at steady states.
• Study of chaos by state feedback method.
• Numerical verification of theoretical results.

1.4. Paper layout

This paper is organized as follows. The existence of steady states and the linearized form of discrete
HCV model (1.7) is studied in Section 2. We study the basic reproduction number by next-generation
matrix in Section 3, whereas local stability at steady states is studied in Section 4. The detailed
bifurcation analysis at steady states is given in Section 5. In Section 6, we study chaos control, whereas
theoretical results are verified numerically in Section 7. Finally, a brief conclusion is given in Section 8.

2. Existence of steady states and linearized form

In this section, we study the existence of steady states and linearized form of discrete HCV
model (1.7). To do this, we first need to point out the steady states of the discrete HCV model (1.7).

Lemma 2.1. The following statements hold for HCV model’s steady states:

(i) Discrete HCV model (1.7) has uninfected steady state (USS)
(

s
d , 0, 0

)
∀ d, s, β, η, ε, h, p, c, δ;

(ii) Model (1.7) has infected steady state (ISS)
(

δc
pβ(1−ε)(1−η) ,

spβ(1−ε)(1−η)−dcδ
pβδ(1−ε)(1−η) , spβ(1−ε)(1−η)−dcδ

cβδ(1−η)

)
if s >

dcδ
pβ(1−ε)(1−η) with ε, η < 1.
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Proof. The point (T, I,V) is a steady state of discrete HCV model (1.7) if
T = hs + (1 − hd)T − h(1 − η)βVT,

I = (1 − hδ)I + h(1 − η)βVT,

V = (1 − hc)V + h(1 − ε)pI.

(2.1)

Since system (2.1) obviously satisfies if (T, I,V) =
(

s
d , 0, 0

)
, and therefore ∀ d, s, β, η, ε, h, p, c, δ, the

discrete HCV model (1.7) has USS
(

s
d , 0, 0

)
. In order to find ISS, from (2.1), one has

s − dT − (1 − η)βVT = 0, (1 − η)VT − δI = 0, (1 − ε)pI − cV = 0. (2.2)

The system’s third equation (2.2) yields

V =
(1 − ε)pI

c
. (2.3)

Using (2.3) into system’s second equation (2.2), we get

T =
δc

(1 − η)(1 − ε)βp
. (2.4)

Using (2.3) and (2.4) into system’s first equation (2.2), we get

I =
(1 − ε)(1 − η)sβp − δcd

(1 − η)β(1 − ε)pδ
. (2.5)

Finally, using (2.5) into (2.3), one gets

V =
(1 − ε)(1 − η)sβp − δcd

(1 − η)δcβ
. (2.6)

Equations (2.4), (2.5), and (2.6) then imply that if s > dcδ
pβ(1−ε)(1−η) with ε, η < 1, then the HCV

model (1.7) has ISS
(

δc
pβ(1−ε)(1−η) ,

spβ(1−ε)(1−η)−dcδ
pβδ(1−ε)(1−η) , spβ(1−ε)(1−η)−dcδ

cβδ(1−η)

)
. �

Now, variational matrix J|(T,I,V) evaluated at (T, I,V) under the map ( f , g,w) 7→ (Tt+1, It+1,Vt+1) is

J|(T,I,V) :=


1 − h(d + (1 − η)βV) 0 −h(1 − η)βT

h(1 − η)βV 1 − δh h(1 − η)βT
0 h(1 − ε)p 1 − hc

 , (2.7)

where 
f = hs + (1 − hd)T − (1 − η)βhTV,

g = (1 − δh)I + (1 − η)βhTV,

w = (1 − hc)V + h(1 − ε)pI.

(2.8)
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3. Basic reproduction number

Based on the existing theory [14–17], we aim to calculate the basic reproduction number for discrete
HCV model (1.7) by the next-generation approach. The next-generation matrix for the understudied
HCV model (1.7) can be performed as follows:

F =

(
h(1 − η)βVT

0

)
and H =

(
hδI

hcV − h(1 − ε)pI

)
,

where corresponding variational matrices at USS are, respectively,

F̂|USS =

(
0 hsβ(1−η)

d
0 0

)
and Ĥ|USS =

(
hδ 0

−h(1 − ε)p hc

)
.

Further, the simple calculation yields that F̂|USSĤ−1|USS =

( spβ(1−η)(1−ε)
dδc

sβ(1−η)
dc

0 0

)
has dominant

eigenvalue spβ(1−ε)(1−η)
dcδ , which is the required basic reproduction number, that is, R0 := spβ(1−ε)(1−η)

dcδ .

4. Stability analysis

Here, local stability at steady states is studied by stability theory [18–22]. At USS, (2.7) becomes

J|USS =


1 − hd 0 −

h(1−η)βs
d

0 1 − δh h(1−η)βs
d

0 h(1 − ε)p 1 − hc

 , (4.1)

with

λ1 =1 − dh,

λ2,3 =
2 − h(c + δ) ±

√
∆

2
,

(4.2)

where

∆ = (2 − hδ − hc)2
− 4

(
1 − hc − hδ + h2δc −

h2(1 − ε)(1 − η)βps
d

)
=h2

(
(c − δ)2 + 4(1 − ε)(1 − η)

βps
d

)
.

(4.3)

Theorem 4.1. If ∆ < 0, then USS is a

(i) stable focus if

0 < d < min
{

2
h
,

h(1 − ε)(1 − η)βps
cδh − c − δ

}
; (4.4)

(ii) unstable focus if

d > max
{

2
h
,

h(1 − ε)(1 − η)βps
cδh − c − δ

}
; (4.5)

AIMS Mathematics Volume 9, Issue 10, 28643–28670.



28651

(iii) saddle focus if
2
h
< d <

h(1 − ε)(1 − η)βps
cδh − c − δ

, (4.6)

or
h(1 − ε)(1 − η)βps

cδh − c − δ
< d <

2
h

; (4.7)

(iv) non-hyperbolic if

d =
2
h
, (4.8)

or

d =
h(1 − ε)(1 − η)βps

cδh − c − δ
. (4.9)

Proof. By stability theory, if |λ1| = |1 − dh| < 1 and |λ2,3| =
∣∣∣∣2−h(c+δ)±

√
∆

2

∣∣∣∣ < 1, that is, d < 2
h

and d < h(1−ε)(1−η)βps
cδh−c−δ , then USS is a stable focus. Alternately, USS is a stable focus if 0 <

d < min
{

2
h ,

h(1−ε)(1−η)βps
cδh−c−δ

}
. Similarly, is is also easy to obtain that USS is unstable focus if d >

max
{

2
h ,

h(1−ε)(1−η)βps
cδh−c−δ

}
, saddle focus if 2

h < d < h(1−ε)(1−η)βps
cδh−c−δ or h(1−ε)(1−η)βps

cδh−c−δ < d < 2
h , and non-hyperbolic

if d = 2
h or d =

h(1−ε)(1−η)βps
cδh−c−δ . �

Theorem 4.2. If ∆ > 0, then USS is a

(i) stable node if
(1 − ε)(1 − η)pβs

δc
< d < min

{
h2(1 − ε)(1 − η)pβs

4 − 2δh − 2hc + h2δc
,

2
h

}
; (4.10)

(ii) unstable node if

max
{

h2(1 − ε)(1 − η)pβs
4 − 2δh − 2hc + h2δc

,
2
h

}
< d <

(1 − ε)(1 − η)pβs
δc

; (4.11)

(iii) saddle node if
h2(1 − ε)(1 − η)pβs

4 − 2δh − 2hc + h2δc
< d < min

{
(1 − ε)(1 − η)pβs

δc
,

2
h

}
, (4.12)

or

max
{

(1 − ε)(1 − η)pβs
δc

,
2
h

}
< d <

h2(1 − ε)(1 − η)pβs
4 − 2δh − 2hc + h2δc

; (4.13)

(iv) non-hyperbolic if

d =
2
h
, (4.14)

or

d =
(1 − ε)(1 − η)pβs

δc
, (4.15)

or

d =
h2(1 − ε)(1 − η)pβs

4 − 2δh − 2hc + h2δc
. (4.16)

Proof. It is the same as the proof of Theorem 4.1. �
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Finally, at ISS, Eq (2.7) gives

J|ISS :=


δc−h(1−ε)(1−η)βps

δc 0 − hcδ
(1−ε)p

h(−cdδ+psβ(1−ε)(1−η))
δc 1 − hδ hcδ

(1−ε)p

0 h(1 − ε)p 1 − hc

 , (4.17)

with
Γ(λ) = λ3 + ς1λ

2 + ς2λ + ς3, (4.18)

where

ς1 =
−3cδ + h(cδ(c + δ) + pβs(1 − ε)(1 − η))

δc
,

ς2 =
3cδ − 2h(cδ(c + δ) + psβ(1 − ε)(1 − η)) + h2 psβ(c + δ)(1 − ε)(1 − η))

δc
,

ς3 =
1
δc

(
−cδ + h(cδ(c + δ) + psβ(1 − ε)(1 − η)) − h2 psβ(c + δ)(1 − ε)(1 − η)

− ch3δ(cdδ + psβ(1 − ε)(1 − η))
)
.

(4.19)

Based on Theorem 1.4 of [19], the local dynamics at ISS of HCV model (1.7) is given by

Theorem 4.3. ISS of HCV model (1.7) is a sink if

|ς1 + ς3| < 1 + ς2, |ς1 − 3ς3| < 3 − ς2 and ς2
3 + ς2 − ς3ς1 < 1. (4.20)

5. Bifurcation analysis

Hereafter, we examine local bifurcations at USS and ISS of HCV model (1.7) by bifurcation
theory [23–25].

5.1. Neimark-Sacker bifurcation at USS if ∆ < 0

If (4.9) holds, then from (4.2) together with (4.3), one gets |λ2,3|(4.9) = 1 but λ1|(4.9) = 1 −
h2(1−ε)(1−η)βps

cδh−c−δ , 1 or − 1, and hence at USS, the HCV model (1.7) may undergo Neimark-Sacker
bifurcation if L = (d, s, β, η, ε, h, p, c, δ) crosses the curve:

N|USS :=
{
L : ∆ < 0 and d =

h(1 − ε)(1 − η)βps
cδh − c − δ

}
. (5.1)

Hereafter, it is proved that at USS, HCV model (1.7) undergoes Neimark-Sacker bifurcation if L ∈
N|USS, where d is associated with the bifurcation parameter. It is noted that the HCV model (1.7) takes
the following form:

ut+1

vt+1

wt+1

 :=


1 − hd 0 −

hβ(1−η)s
d

0 1 − δh hβ(1−η)s
d

0 h(1 − ε)p 1 − hc




ut

vt

wt

 +


−hβ(1 − η)utwt

hβ(1 − η)utwt

0

 , (5.2)
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if ut = Tt −
s
d , vt = It and wt = Vt. Additionally, if L ∈ N |USS where (4.9) holds, then roots of J|USS

satisfying |λ2,3|(4.9) = 1 and d
dd

(∣∣∣λ2,3

∣∣∣) |(4.9) =
(δ+c−δhc)2

2pβs(1−ε)(1−η) , 0 and moreover, the calculation yields
λm

2,3 , 1 where m = 1, · · · , 4. Now, if


ut

vt

wt

 :=


a11 a12 1
a21 a22 0
1 1 0




Tt

It

Vt

 , (5.3)

then HCV model (5.2) becomes


Tt+1

It+1

Vt+1

 =


τ1 τ2 0
−τ2 τ1 0
0 0 1 − pβs(1−ε)(1−η)h2

δhc−δ−c




Tt

It

Vt

 +


Γ (Tt, It,Vt)
Φ (Tt, It,Vt)
Ψ (Tt, It,Vt)

, (5.4)

where



τ1 =
2−h(δ+c)

2 ,

τ2 =
√

h
√

(δ+c)(−4+h(δ+c))
2 ,

a11 =
2(c+δ−chδ)2

√
hp(−1 + ε)

(
c2
√

h(1 − hδ) + c
√

hδ(2 − hδ) + c
√

(c + δ)(−4 + h(c + δ))+

δ
√

(c + δ)(−4 + h(c + δ)) − chδ
√

(c + δ)(−4 + h(c + δ))+
√

h(δ2 + 2hpsβ(−1 + ε)(−1 + η))
)



,

a12 =
2(c+δ−chδ)2

√
hp(−1 + ε)

(
c2
√

h(1 − hδ) + c
√

hδ(2 − hδ) − c
√

(c + δ)(−4 + h(c + δ))−

δ
√

(c + δ)(−4 + h(c + δ)) + chδ
√

(c + δ)(−4 + h(c + δ))+
√

h(δ2 + 2hpsβ(−1 + ε)(−1 + η))
)



,

a21 = c
2p(1−ε) −

δ
2p(1−ε) −

√
(c+δ)(−4+h(c+δ))

2
√

hp(1−ε)
,

a22 = c
2p(1−ε) −

δ
2p(1−ε) +

√
(c+δ)(−4+h(c+δ))

2
√

hp(1−ε)
,

Γ = hβ(1 − η)A12a22a12I2
t + hβ(1 − η)A12a21a11T 2

t + hβ(1 − η)A12(a22a11

+a12a21)ItTt + hβ(1 − η)A12a22ItVt + hβ(1 − η)A12a21TtVt,

Φ = hβ(1 − η)A22a22a13I2
t + hβ(1 − η)A22a21a11T 2

t + hβ(1 − η)A22(a22a11

+a13a21)ItTt + hβ(1 − η)A22a22ItVt + hβ(1 − η)A22a21TtVt,

Ψ = hβ(1 − η)(A32a22a12 − a12)I2
t + hβ(1 − η)(A32a21a11 − a11)T 2

t

+hβ(1 − η)(A32(a22a11 + a12a21) − a11 − a12)ItTt + hβ(1 − η)(A32a22 − 1)ItVt

+hβ(1 − η)(A32a21 − 1)TtVt,

A12 =
√

hp(−1+ε)
√

(δ+c)(−4+h(δ+c))
,

A13 = 1
2

(
1 +

√
h(c−δ)

√
(δ+c)(−4+h(c+δ))

)
,

(5.5)
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A22 =
−
√

hp(−1+ε)
√

(δ+c)(−4+h(δ+c))
,

A23 = 1
2

(
1 +

√
h(δ−c)

√
(δ+c)(−4+h(c+δ))

)
,

A32 =
−4(c+δ−hδc)3

c
√

hδ(−2 + hδ) + c2
√

h(−1 + hδ) − c
√

(c + δ)(−4 + h(c + δ))−
δ
√

(c + δ)(−4 + h(c + δ)) + chδ
√

(c + δ)(−4 + h(c + δ))−
√

h(δ2 + 2hpsβ(−1 + ε)(−1 + η)))(c2
√

h(1 − hδ) + c
√

hδ(2 − hδ)−
c
√

(c + δ)(−4 + h(c + δ)) − δ
√

(c + δ)(−4 + h(c + δ))+
chδ
√

(c + δ)(−4 + h(c + δ)) +
√

h(δ2 + 2hpsβ(−1 + ε)(−1 + η))



,

A33 =
4(c+δ−chδ)2(chδ2−δ(c+δ)+hpsβ(−1+ε+η−εη))

p(−1 + ε)(c2
√

h(1 − hδ) + c
√

hδ(2 − hδ) + c
√

(c + δ)(−4 + h(c + δ))+
δ
√

(c + δ)(−4 + h(c + δ)) − chδ
√

(c + δ)(−4 + h(c + δ))+
√

h(δ2 + 2hpsβ(−1 + ε)(−1 + η)))(c2
√

h(1 − hδ) + c
√

hδ(2 − hδ)−
c
√

(c + δ)(−4 + h(c + δ)) − δ
√

(c + δ)(−4 + h(c + δ))+
chδ
√

(c + δ)(−4 + h(c + δ)) +
√

h(δ2 + 2hpsβ(−1 + ε)(−1 + η)))



.

(5.6)

Now, the center manifold WC(0) for HCV model (5.4) is

WC(0) = {(Tt, It,Vt) | Vt = ρ(Tt, It), ρ(0, 0) = 0,Dρ(0, 0) = 0} , (5.7)

where

ρ(Tt, It) = α1T 2
t + α2TtIt + α3I2

t + O
(
(|Tt| + |It|)3

)
. (5.8)

From (5.7) and (5.8), HCV model (5.4) becomes


ρ (τ1Tt + τ2It + Γ (Tt, It, ρ(Tt, It)) ,

− τ2Tt + τ1It + Φ (Tt, It, ρ(Tt, It))) =1 −
pβs(1 − ε)(1 − η)h2

δhc − δ − c
ρ(Tt, It) (Tt, It) + Ψ (Tt, It, ρ(Tt, It)) ,

(5.9)
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where after calculation, one gets

α1 =


(−1 + η)

(
−

(
(λ3 + τ2

1 + τ2
2)(hβa11(−1 + a21A32)(−λ3 + τ2

1)+

hβa12(1 − a22A32)τ2
2)
)
− hβτ1(−λ3 + τ2

1 + τ2
2)
(
a12(1 − a21A32)τ2+

a11((2 − 2a21A32)τ1 + (1 − a22A32)τ2)
))


(λ3 − τ

2
1 − τ

2
2)
(
(λ3 − τ

2
1)2 + 2(λ3 + τ2

1)τ2
2 + τ4

2

) ,

α2 =


(−1 + η)

(
hβ(a12(−1 + a21A32) + a11(−1 + a22A32))(λ3 − τ

2
1)+

2(hβa11(−1 + a21A32) + hβa12(1 − a22A32))τ1τ2+

hβ(a12(−1 + a21A32) + a11(−1 + a22A32))τ2
2

)


(λ3 − τ
2
1)2 + 2τ2

2(λ3 + τ2
1) + τ4

2

,

α3 =


(−1 + η)(hβa12(−1 + a22A32)(λ3 − τ

2
1)2 + hβ(a12(−1 + a21A32)+

a11(−1 + a22A32))τ1(λ3 − τ
2
1)τ2 + (hβa11(−1 + a21A32)+

hβa12(−1 + a22A32))(λ3 + τ2
1)τ2

2 + hβ(a11 + a12−

(a12a21 + a11a22)A32)τ1τ
3
2 + hβa11(−1 + a21A32)τ4

2


(λ3 − τ

2
1 − τ

2
2)
(
(λ3 − τ

2
1)2 + 2(λ3 + τ2

1)τ2
2 + τ4

2

) .

(5.10)

Therefore, discrete HCV model (5.4) restricted to WC(0) is(
Tt+1

It+1

)
:=

(
τ1 τ2

−τ2 τ1

) (
Tt

It

)
+

(
ζ1 (Tt, It)
ζ2 (Tt, It)

)
, (5.11)

where 

ζ1 = hβ(1 − η)A12a22a12I2
t + hβ(1 − η)A12a21a11T 2

t + hβ(1 − η)A12(a22a11

+a21a12)TtIt + hβ(1 − η)A12(a22α1 + a21α2)ItT 2
t + hβ(1 − η)A12(a22α2

+a21α3)I2
t Tt + hβ(1 − η)A12a22α3I3

t + hβ(1 − η)A12a21α1T 3
t ,

ζ2 = hβ(1 − η)A22a22a12I2
t + hβ(1 − η)A22a21a11T 2

t + hβ(1 − η)A22(a22a11

+a21a12)TtIt + hβ(1 − η)A22(a22α1 + a21α2)ItT 2
t + hβ(1 − η)A22(a22α2

+a21α3)I2
t Tt + hβ(1 − η)A22a22α3I3

t + hβ(1 − η)A22a21α1T 3
t .

(5.12)

Now, at USS, HCV model (5.11) undergoes Neimark-Sacker bifurcation if discriminatory quantity,
that is, σ , 0 [26, 27]:

σ = −<

(
(1 − 2λ) λ̄2

1 − λ
q11q12

)
−

1
2
|q11|

2 − |q21|
2 +<

(
λ̄q22

)
, (5.13)

where
q11 = 1

4

[
ζ1TtTt + ζ1It It + ι

(
ζ2TtTt + ζ2It It

)]
,

q12 = 1
8

[
ζ1TtTt − ζ1It It + 2ζ2Tt It + ι

(
ζ2TtTt − ζ2It It − 2ζ1Tt It

)]
,

q21 = 1
8

[
ζ1TtTt − ζ1It It − 2ζ2Tt It + ι

(
ζ2TtTt − ζ2It It + 2ζ1Tt It

)]
,

q22 = 1
16

[
ζ1TtTtTt + ζ1st It It + ζ2TtTt It + ζ2Tt It It + ι

(
ζ2TtTtTt + ζ2Tt It It − ζ1TtTt It − ζ1It It It

)]
.

(5.14)
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Moreover, the calculation yields

q11 =
hβ(1−η)

2

[
A12(a21a11 + a22a12) + (a22α1 + a21α2 + 3a22α3)It

+(a22α2 + a21α3 + 3a21α1)Tt + ι
(
A22(a21a11 + a22a12)

+(a22α1 + a21α2 + 3a22α3)It + (a22α2 + a21α3 + 3a21α1)Tt

)]
,

q12 =
hβ(1−η)

2

[
A12(a21a11 − a22a12) + A22(a22a11 + a21a12)

+(A12(a22α1 + a21α2 − 3a22α3) + 2A22(a22α2 + a21α3))It

+(A21(3a21α1 − a22α2 − a21α3) + 2A22(a22α1 + a21α2))Tt

+ι
(
A22(a21a11 − a22a12) − A12(a22a11 + a21a11)

+(A22(a22α1 + a21α2 − 3a22α3) − 2A12(a22α2 + a21α3))It

+(A22(3a21α1 − a22α2 − a21α3) − 2A12(a22α1 + a21α2))Tt

)
],

q21 =
hβ(1−η)

2

[
A12(a21a11 − a22a12) − A22(a22a11 + a21a12)

+(A12(a22α1 + a21α2 − 3a22α3) − 2A22(a22α2 + a21α3))It

+(A21(3a21α1 − a22α2 − a21α3) − 2A22(a22α1 + a21α2))Tt

+ι
(
A22(a21a11 − a22a12) + A12(a22a11 + a21a11)

+(A22(a22α1 + a21α2 − 3a22α3) + 2A12(a22α2 + a21α3))It

+(A22(3a21α1 − a22α2 − a21α3) + 2A12(a22α1 + a21α2))Tt

)
],

q22 =
hβ(1−η)

8

[
A12(3a21α1 + a22α2 + a21α3) + A22(a21α1 + a22α2 + a21α3)

+ι(A22(3a21α1 + a22α2 + a21α3) − A12(a21α1 + a22α2 + a21α3)))].

(5.15)

The above analysis yields the following result:

Theorem 5.1. If σ , 0, then at USS, the HCV model (5.11) undergoes Neimark-Sacker bifurcation as
L ∈ N |USS. In addition, Neimark-Sacker bifurcation is supercritical (subcritical) if σ < 0 (σ > 0).

5.2. Period-doubling and fold bifurcations at USS if ∆ > 0

If (4.14) holds, then λ1|(4.14) = −1 but λ2,3|(4.14) =
2−h(c+δ)±h

√
(c−δ)2+2hpβs(1−ε)(1−η)

2 , and hence at USS,
HCV model (1.7) may undergo period-doubling bifurcation if

F|USS :=
{
L : ∆ > 0 and d =

2
h

}
. (5.16)

On the other hand, at USS, HCV model (1.7) is invariant with respect to I = V = 0 and so one has

Tt+1 = hs + (1 − hd)Tt. (5.17)

From (5.17), one has
f (T ) := hs + (1 − hd)T. (5.18)

Now if d = d∗ = 2
h , T = T ∗ = s

d then fT |d=d∗= 2
h , T=T ∗= s

d
= −1, fd|d=d∗= 2

h , T=T ∗= s
d

= −h2 s
2 , 0 and

fTT |d=d∗= 2
h , T=T ∗= s

d
= 0. Since fTT |d=d∗= 2

h , T=T ∗= s
d

= 0 fail to satisfy non-degenerate condition, and so has
the following result [28–30]:
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Theorem 5.2. At USS, no period-doubling bifurcation occurs for discrete HCV model (1.7) if L ∈
F|USS.

Next, if (4.15) holds, then λ2|(4.15) = 1 but λ1,3|(4.15) = 1 − h(1−ε)(1−η)pβs
δc , 1 − h (δ + c) , 1 or − 1, and

hence at USS, the HCV model (1.7) may undergo fold bifurcation if

F̆|USS :=
{
L : ∆ > 0 and d =

(1 − ε)(1 − η)pβs
δc

}
. (5.19)

It is recalled that if d = d∗ =
(1−ε)(1−η)pβs

δc and T = T ∗ = s
d , then from (5.18) the calculation yields

fd|d=d∗= (1−ε)(1−η)pβs
δc , T=T ∗= s

d
= − hδc

(1−ε)(1−η)pβ , 0, fT |d=d∗= (1−ε)(1−η)pβs
δc , T=T ∗= s

d
= 1 − h

(
(1−ε)(1−η)pβs

δc

)
, 1 and

fTT |d=d∗= (1−ε)(1−η)pβs
δc , T=T ∗= s

d
= 0 which fail to satisfy non-degenerate condition, and so has the following

result:

Theorem 5.3. At USS, no fold bifurcation occurs for discrete HCV model (1.7) if L ∈ F̆|USS.

Finally, if (4.16) holds, then λ2|(4.16) = −1 but λ1,3|(4.16) = 1 − h3(1−ε)(1−η)pβs
4−2δh−2hc+h2δc , 3 − h (c + δ) , 1 or − 1,

and hence at USS, the HCV model (1.7) may undergo period-doubling bifurcation if

F̂|USS :=
{
L : ∆ > 0 and d =

h2(1 − ε)(1 − η)pβs
4 − 2δh − 2hc + h2δc

}
. (5.20)

Based on this computation, one has the following result:

Theorem 5.4. At USS, no period-doubling bifurcation occurs for discrete HCV model (1.7) if L ∈
F̂|USS.

Proof. Same as the proof of Theorems 5.2 and 5.3. �

5.3. Bifurcations at ISS

The occurrence of bifurcations at ISS will be studied in this section by explicit criterion [31–34].

Theorem 5.5. If 

1 − ς2 + ς3(ς1 − ς3) = 0,
1 + ς2 − ς3(ς1 + ς3) > 0,
1 + ς1 + ς2 + ς3 > 0,
1 − ς1 + ς2 − ς3 > 0,
d

dd
(1 − ς2 + ς3(ς1 − ς3)) |d=d0 , 0,

cos
2π
l
, 1 −

1 + ς1 + ς2 + ς3

2(1 + ς3)
, l = 3, 4, · · · ,

(5.21)

then at ISS, discrete HCV model (1.7) undergoes N-S bifurcation at d0 where d0 is the real root of
1 − ς2(d) + ς3(d)(ς1(d) − ς3(d)) = 0.
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Proof. For n = 3, the explicit criterion yields

∆−2 (d) = 1 − ς2 + ς3(ς1 − ς3) = 0,
∆+

2 (d) = 1 + ς2 − ς3(ς1 + ς3) > 0,
Pd(1) = 1 + ς1 + ς2 + ς3 > 0,
(−1)3Pd(−1) = 1 − ς1 + ς2 − ς3 > 0,
d

dd
(
∆−2 (d)

)
|d=d0 =

d
dd

(1 − ς2 + ς3(ς1 − ς3)) |d=d0 , 0,

(5.22)

and

1 − 0.5Pd(1)
∆−0 (d)
∆+

1 (d)
= 1 −

1 + ς1 + ς2 + ς3

2(1 + ς3)
.

�

Theorem 5.6. If 

1 − ς2 + ς3(ς1 − ς3) > 0,
1 + ς2 − ς3(ς1 + ς3) > 0,
1 ± ς3 > 0,
1 + ς1 + ς2 + ς3 > 0,
1 − ς1 + ς2 − ς3 = 0,
ς
′

1 − ς
′

2 + ς
′

3

3 − 2ς1 + ς2
, 0,

(5.23)

then at ISS, discrete HCV model (1.7) undergoes P-D bifurcation at d0 where d0 is the real root of
1 − ς1(d) + ς2(d) − ς3(d) = 0.

Proof. For n = 3, the explicit criterion yields

∆−2 (d) = 1 − ς2 + ς3(ς1 − ς3) > 0,
∆+

2 (d) = 1 + ς2 − ς3(ς1 + ς3) > 0,
∆±1 (d) = 1 ± ς3 > 0,
Pd(1) = 1 + ς1 + ς2 + ς3 > 0,
Pd(−1) = 1 − ς1 + ς2 − ς3 = 0,

(5.24)

and

3∑
i=1

(−1)3−iς
′

i

3∑
i=1

(−1)3−i(3 − i + 1)ςi−1

=
ς
′

1 − ς
′

2 + ς
′

3

3 − 2ς1 + ς2
, 0.

�
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6. Chaos control

Chaos control plays a significant role in the study and application of complex dynamical
systems, including biological models such as the discrete HCV model. In these contexts, chaos
refers to a system’s sensitive dependence on initial conditions, leading to seemingly random and
unpredictable behavior over time. Although chaotic behavior can be fascinating and informative about
a system’s dynamics, it can also be undesirable, especially in practical applications where stability
and predictability are necessary. The primary role of chaos control is to regulate and stabilize chaotic
systems to achieve desired behaviors and outcomes. This is particularly important in fields like biology,
engineering, and economics, where chaotic dynamics can lead to adverse effects or inefficiencies. By
applying control methods, researchers can guide the system towards stable periodic orbits or fixed
points, thereby reducing or eliminating chaotic behavior. In the context of biological models, such as
the discrete HCV model, chaos control can help understand how to stabilize the spread of a virus or
disease. For example, controlling chaotic dynamics might involve adjusting treatment parameters or
other factors in the model to maintain an uninfected steady state or a manageable level of infection.
This can be crucial for developing strategies to manage diseases effectively and prevent outbreaks.
Various techniques are employed for chaos control, including feedback control, adaptive control, and
parameter adjustments. Feedback control involves using real-time information about the system’s state
to make small adjustments that keep the system in a desired behavior. Adaptive control techniques
adjust parameters dynamically based on the system’s current state and desired outcomes. Parameter
adjustments involve fine-tuning specific model parameters to transition the system from chaotic to
stable behavior. So, in this section, we explore chaos in discrete HCV model (1.7) by existing
theory [35, 36]. By utilizing feedback control strategy, HCV model (1.7) becomes


Tt+1 =hs + (1 − hd)Tt − h(1 − η)βVtTt + %(Tn − T ∗),
It+1 =(1 − hδ)It + h(1 − η)βVtTt + %(In − I∗),

Vt+1 =(1 − hc)Vt + h(1 − ε)pIt + %(Vn − V∗),
(6.1)

where % is considered as a control parameter. Moreover, J|ISS at ISS for controlled HCV model (6.1)
is

J|ISS =


δc−h(1−ε)(1−η)βps

δc + % 0 − hcδ
(1−ε)p

h(−cdδ+psβ(1−ε)(1−η))
δc 1 − hδ + % hcδ

(1−ε)p

0 h(1 − ε) 1 − hc + %

 , (6.2)

with

P(λ) = λ3 + ς∗1λ
2 + ς∗2λ + ς∗3 = 0, (6.3)
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where

ς∗1 =
−3(1 + %)cδ + h(cδ(c + δ) + pβs(1 − ε)(1 − η))

δc
,

ς∗2 =

{
3(1 + %)2cδ − 2h(δc(1 + %)(c + δ) + psβ(1 − ε)(1 − η))+

h2 psβ(c + δ)(1 − ε)(1 − η))

}
cδ

,

ς∗3 =
1
cδ

(
− (1 + %)3cδ + h(1 + %)2(cδ(c + δ) + psβ(1 − ε)(1 − η))

− h2 psβ(1 + %)(c + δ)(1 − ε)(1 − η) − ch3δ(cdδ + psβ(1 − ε)(1 − η))
)
.

(6.4)

Finally, the dynamics of controlled HCV model (6.1) at ISS can be stated as follows:

Lemma 6.1. If ∣∣∣ς∗1 + ς∗3
∣∣∣ < 1 + ς∗2,

∣∣∣ς∗1 − 3ς∗3
∣∣∣ < 3 − ς∗2, ς

∗2

3 + ς∗2 − ς
∗
3ς
∗
1 < 1, (6.5)

then ISS of controlled HCV model (6.1) is a sink where ς∗i (i = 1, 2, 3) are expressed in (6.4).

7. Numerical simulations

Example 7.1. If s = 1.4, β = 1, η = 2, ε = 0.23, h = 0.444, p = 2,
c = 1, and δ = 3, then from (4.9), one gets d = 0.3587946026986506, where model’s
uninfected steady state is USS = (3.901953901953902, 0, 0). Further, if (d, s, β, η, ε, h, p, c, δ) =

(0.3587946026986506, 1.4, 1, 2, 0.23, 0.444, 2, 1, 3), then from (4.1), one has

J|USS :=


0.8406951964017991 0 1.7324675324675325
−0.3320000000000001 −0.3320000000000001 −1.7324675324675325

0 0.68376 0.556

 , (7.1)

with

λ3 − 1.064695196401799λ2 + 1.1883157239940032λ − 0.447410652401799 = 0. (7.2)

From (7.2), one has λ1 = 0.8406951964017991 and
λ2,3 = 0.11199999999999999 ± 0.9937082066683358ι with |λ2,3| = 1 and so,
(d, s, β, η, ε, h, p, c, δ) = (0.3587946026986506, 1.4, 1, 2, 0.23, 0.444, 2, 1, 3) ∈ N|USS =

(3.901953901953902, 0, 0), which implies that eigenvalues criterion holds for the appearance of N-S
bifurcation at USS of HCV model (1.7). In order to prove this fact, hereafter, we will prove the
discriminatory quantity that is depicted in (5.13), that is, σ < 0. For instance, if s = 1.4, β = 1, η = 2,
ε = 0.23, h = 0.444, p = 2, c = 1, δ = 3, d = 0.3587946026986506, then from (5.5) and (5.6)
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one gets: 

a11 = −0.8313994751111993 + 1.1337641383081112ι,
a12 = −0.8313994751111993 − 1.1337641383081112ι,
a21 = −0.6493506493506493 − 1.4532997055521468ι,
a22 = −2.1859589377517277,
A12 = 0.34404465788427085ι,
A13 = 0.5 + 0.2234056220027733ι,
A22 = −0.34404465788427085ι,
A23 = 0.5 − 0.2234056220027733ι,
A32 = 0.7801309901713387,
A33 = 1.3379780401575228.

(7.3)

Using (7.3) in (5.15), we get


q11 = −1.3097905966442092 − 0.31903210265476073ι,
q12 = −0.5291644813780096 − 1.2388217185108317ι,
q21 = −0.887867265085585 + 0.2723090233867799ι,
q22 = −0.06360667953869255 − 0.028012456651244428ι.

(7.4)

Lastly, using (7.4) along with λ, λ̄ = 0.285547487081691 ± 0.9082322117438064ι into (5.13) we get
σ = −0.877578212800106 < 0. This implies that at USS, discrete HCV model (1.7) must undergo
supercritical N-S bifurcation where maximum Lyapunov exponent and bifurcation diagrams are drawn
in Figure 2.

Example 7.2. If s = 1.8, β = 7.09, η = 0.567, ε = 0.554, h = 0.6, p = 0.7, c =

1.037, δ = 2.8082, then from the first equation of (5.21), one of the real roots of 1 − ς2(d) +

ς3(d) (ς1(d) − ς3(d)) = 0 is d = 5.947904220066088. Therefore, at (d, s, β, η, h, p, c, δ) =

(5.947904220066088, 1.85, 7.09, 0.567, 0.554, 0.7, 1.037, 2.808) model (1.7) has steady-state solution
ISS and moreover, from (4.17), we have

J|ISS :=


1.441560109042356 0 4.5052542547705
−4.010302641082009 −0.6847999999999999 −4.5052542547705

0 −0.23268 0.3778

 , (7.5)

with

λ3 − 1.1345601090423563λ2 − 1.749558953476005λ − 2.3198112564498516 = 0, (7.6)

where λ1 = 2.3198112564498503 and |λ2,3| = | − 0.592625573703747 ± 0.8054780750537566ι| = 1
that fulfills eigenvalues criterion for the appearance of Neimark-Sacker bifurcation at ISS of HCV
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model (1.7). Additionally, from (5.21), we get

1 − ς2 + ς3(ς1 − ς3) = 0,
1 + ς2 − ς3(ς1 + ς3) = 8.763048531102863 > 0,
1 + ς1 + ς2 + ς3 = 4.203930318968209 > 0,
1 − ς1 + ς2 − ς3 = 2.7048124120162047 > 0,
d

dd (1 − ς2 + ς3(ς1 − ς3)) |d=5.947904220066088 = −4.44089 × 10−16 , 0,
1 − 1+ς1+ς2+ς3

2(1+ς3) = −0.5926255737037465.

(7.7)

Further, cos 2π
l = −0.5926255737037465 gives l = ±2.8493738112285323, and hence, by explicit

criterion, N-S bifurcation exists at ISS where maximum Lyapunov exponent and N-S bifurcation
diagrams are drawn in Figure 3.

Example 7.3. If s = 2.00065, β = 9.09, η = 0.341, ε = 0.344, h = 0.444, p =

0.7, c = 1.437, δ = 3.0082, then from the fifth equation of (5.23), the one real root of
1 − ς1(d) + ς2(d) − ς3(d) = 0 is d = 1.0733956213777098 where model’s infected steady
state is ISS = (1.571492446363595, 0.10432048701721004, 0.0333360943899115). Further, if
(d, s, β, η, ε, h, p, c, δ) = (1.0733956213777098, 2.00065, 9.09, 0.341, 0.344, 0.444, 0.7, 1.437, 3.0082)
then from (4.17), we have

J|ISS :=


0.4347484125326319 0 −4.1796947508710804

0.08866393157566488 −0.33564079999999996 4.1796947508710804
0 0.2038848 0.36197199999999996

 , (7.8)

with

λ3 − 0.4610796125326313λ2 − 0.9622213525999214λ − 0.4988582599327113 = 0, (7.9)

where λ1 = −1 and λ2,3 = 0.5439114359500233, 0.9171681765826085 , ±1 that fulfills eigenvalues
criterion for the appearance of P-D bifurcation at ISS of HCV model (1.7). Additionally, from (5.23),
one gets 

1 − ς2 + ς3 (ς1 − ς3) = 1.4833484158983508 > 0,
1 + ς2 − ς3 (ς1 + ς3) = 0.01893245709546424,
1 + ς3 = 1.4988582599327112,
1 − ς3 = 0.5011417400672887,
1 + ς1 + ς2 + ς3 = 0.07555729480015871 > 0,
1 − ς1 + ς2 − ς3 = 0,
ς
′

1−ς
′

2+ς
′

3
3−2ς1+ς2

= 0.3378449288758538 , 0.

(7.10)

This implies that at ISS, discrete HCV model (1.7) must undergo P-D bifurcation where maximum
Lyapunov exponent and P-D bifurcation diagrams are drawn in Figure 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. N-S bifurcation diagrams at USS of HCV model (1.7) for 2(a): Tt; 2(b): Tt and It;
2(c): s and Tt; 2(d): β and Tt; 2(e): h and Tt; 2(f): maximum Lyapunov exponent.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. N-S bifurcation diagrams at ISS of HCV model (1.7) for 3(a): Tt; 3(b): s and Tt;
3(c): c and Tt; 3(d): Tt and It; 3(e): δ and Tt; 3(f): maximum Lyapunov exponent.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. P-D bifurcation diagrams at ISS of HCV model (1.7) for 4(a): Tt; 4(b): Vt; 4(c):
Tt and Vt; 4(d): s and Vt; 4(e): β and Tt; 4(f): MLEs.

Example 7.4. If s = 2.00065, β = 9.09, η = 0.341, ε = 0.344, h = 0.444, p = 0.7, c = 1.437,
δ = 3.0082, % = 0.001, and d = 1.0734, then from (6.5), one has |ς∗1 + ς∗3| = 0.9276491817948008 <
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1 + ς∗2 = 1.9601656901999216, |ς∗1 − 3ς∗3| = 0.9266290952538755 < 3 − ς∗2 = 3.9601656901999216
and ς∗3

2 + ς∗2 − ς
∗
3ς
∗
1 = −0.960402130739115 < 1, which implies that ISS of a controlled discrete HCV

model (6.1) is a sink (see Figure 5).

(a) (b)

(c)

Figure 5. Dynamics of controlled HCV model (6.1).

Remark 7.1. It is important to remark that when selecting parameters for numerical simulations,
especially in the context of studying complex phenomena like bifurcations and Lyapunov exponents in
the discrete HCV model, it is essential to base these choices on both theoretical insights and empirical
data. The parameters used in the model should reflect biologically realistic values, obtained either
from experimental observations or the existing literature, to ensure that the simulation outcomes are
relevant to the real-world dynamics of HCV infection. Parameters like infection rates, recovery rates,
and viral reproduction numbers must be carefully considered, as they directly impact the stability
and behavior of the model’s steady states. For instance, when analyzing Neimark-Sacker bifurcation
diagrams, it is crucial to explore a range of parameter values to identify the onset of bifurcations,
where a stable fixed point becomes unstable and leads to quasi-periodic behavior. Similarly, in studying
period-doubling bifurcations along with the maximum Lyapunov exponent for the infected steady state,
varying parameters such as the viral production rate and immune response rate can provide insights
into how the system transitions from stable to chaotic dynamics. This involves systematically adjusting
parameters and observing changes in the bifurcation structure and Lyapunov exponents, which measure
the sensitivity of the system to initial conditions. Moreover, parameters should be chosen to reflect
different scenarios, such as varying levels of immune response or treatment effectiveness, to capture
a comprehensive picture of the system’s dynamics. Sensitivity analysis can be a valuable tool in this
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context, helping identify which parameters have the most significant impact on the system’s behavior.
Ultimately, the goal of selecting parameters in numerical simulations is to balance biological realism
with the need to explore the mathematical properties of the model, thereby gaining deeper insights into
the mechanisms driving the complex dynamics of HCV infection.

8. Conclusions

In this study, we thoroughly examined the dynamical characteristics of a discrete Hepatitis C virus
(HCV) model, focusing on both the uninfected steady state (USS) and the infected steady state (ISS).
We proved that ∀ d, s, β, η, ε, h, p, c, δ, discrete HCV model (1.7) has USS

(
s
d , 0, 0

)
and ISS(

δc
pβ(1−ε)(1−η) ,

spβ(1−ε)(1−η)−dcδ
pβδ(1−ε)(1−η) , spβ(1−ε)(1−η)−dcδ

cβδ(1−η)

)
if s > dcδ

pβ(1−ε)(1−η) with ε, η < 1. Through local dynamics

analysis, we discovered that USS is a stable focus if 0 < d < min
{

2
h ,

h(1−ε)(1−η)βps
cδh−c−δ

}
, unstable focus

if d > max
{

2
h ,

h(1−ε)(1−η)βps
cδh−c−δ

}
, saddle focus if 2

h < d < h(1−ε)(1−η)βps
cδh−c−δ or h(1−ε)(1−η)βps

cδh−c−δ < d < 2
h , and

non-hyperbolic if d = 2
h or d =

h(1−ε)(1−η)βps
cδh−c−δ . Also, USS is a stable node if (1−ε)(1−η)pβs

δc < d <

min
{

h2(1−ε)(1−η)pβs
4−2δh−2hc+h2δc ,

2
h

}
, an unstable node if max

{
h2(1−ε)(1−η)pβs
4−2δh−2hc+h2δc ,

2
h

}
< d < (1−ε)(1−η)pβs

δc , saddle node

if h2(1−ε)(1−η)pβs
4−2δh−2hc+h2δc < d < min

{
h2(1−ε)(1−η)pβs
4−2δh−2hc+h2δc ,

2
h

}
or max

{
(1−ε)(1−η)pβs

δc , 2
h

}
< d < h2(1−ε)(1−η)pβs

4−2δh−2hc+h2δc , non-

hyperbolic if d = 2
h or d =

(1−ε)(1−η)pβs
δc or d =

h2(1−ε)(1−η)pβs
4−2δh−2hc+h2δc , and ISS is a sink if |ς1 + ς3| < 1 + ς2,

|ς1 − 3ς3| < 3 − ς2, ς2
3 + ς2 − ς3ς1 < 1 where ς1, ς2 and ς3 are depicted in (4.19). These findings

highlight the intricate behavior of the system, such as transitions between stability and instability,
depending on the value of d relative to other parameters. Further, our analysis revealed the existence
of bifurcations at USS and ISS; we first identified bifurcation sets for understudied model (i) Neimark-
Sacker bifurcation set N |USS :=

{
L : ∆ < 0 and d =

h(1−ε)(1−η)βps
cδh−c−δ

}
, (ii) period-doubling bifurcation set

F|USS :=
{
L : ∆ > 0 and d = 2

h

}
, F̂|USS :=

{
L : ∆ > 0 and d =

h2(1−ε)(1−η)pβs
4−2δh−2hc+h2δc

}
, and (iii) fold bifurcation

set F̆|USS :=
{
L : ∆ > 0 and d =

(1−ε)(1−η)pβs
δc

}
. We then presented the detailed bifurcation analysis

at USS of HCV model (1.7). In addition, we also gave the N-S and P-D bifurcations at ISS by
explicit criterion. The identification of these bifurcation sets enhances our understanding of how
changes in parameters can induce shifts in system dynamics, which is crucial for devising effective
control strategies. Moreover, we explored the role of chaos control using feedback strategies to
manage the chaotic dynamics often present in such models. This aspect of the study underscores
the potential for practical applications, where controlling chaos can lead to more stable outcomes,
such as suppressing the spread of infection or maintaining manageable levels of the virus. In contrast
to existing literature, our study offers a comprehensive exploration of local dynamics of the HCV
model, incorporating a robust bifurcation analysis that parallels theoretical predictions with numerical
simulations. While previous studies have often focused on specific aspects of HCV dynamics, our
work integrates these components into a cohesive framework, providing insights that can inform
future research and application in disease management. Through comparison with similar models,
our findings confirm and extend the understanding of viral dynamics, contributing to the broader field
of infectious disease modeling by offering novel perspectives on control strategies and system behavior.
Finally, the theoretical results were validated numerically, demonstrating the model’s capacity to
accurately capture complex dynamics and providing a solid foundation for future explorations into
the control and management of HCV and similar infectious diseases.
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