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Abstract: This study investigated the point-wise superconvergence of block finite elements for the
variable coefficient elliptic equation in a regular family of rectangular partitions of the domain in
three-dimensional space. Initially, the estimates for the three-dimensional discrete Greens function and
discrete derivative Greens function were presented. Subsequently, employing an interpolation operator
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1. Introduction

In the realm of solving differential equations using the finite element method (FEM), it has
been observed that the rate of convergence of finite element solutions at specific exceptional points
within a domain surpasses the optimal global rate. This phenomenon is known as superconvergence,
which has already aroused many scholars’ interest. In recent decades, superconvergence has become
a significant topic in the research field of the Galerkin FEM. With the advancement of research
technologies, numerous superconvergence results have been obtained, and theoretical frameworks
for superconvergence have also been established. Currently, several important works related to
FEM superconvergence are cited in Ref. [1–5]. Depending on the partition types within a domain,
the commonly used three-dimensional finite elements mainly include tetrahedral, pentahedral, and
hexahedral elements. Substantial progress has been made in studying the superconvergence of these
three-dimensional FEMs with numerous superconvergence results documented in various published

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20241388


28612

papers or reports such as [6–11]. Recently, we also obtained some superconvergence results for the
three-dimensional FEM [12–15]. This paper focuses on the superconvergence of the block finite
element for variable coefficient elliptic equations, which is a topic not explored by others. The
objective is to demonstrate that the error convergence rates of the finite element approximation and
corresponding interpolant in the W1,∞-semi-norm and L∞-norm are one order (or nearly one order)
higher than those of the finite element approximation and the true solution (referred to as optimal
global rates). It is important to note that the results presented here are generalizations of the research
discussed in [14].

In the paper, the letter C is employed to represent a generic constant, which may vary in different
instances. Additionally, standard notations for the Sobolev spaces and their norms are utilized.

The model problem considered is{
Lu ≡ −

∑3
i, j=1 ∂ j(ai j∂iu) +

∑3
i=1 ai∂iu + a0u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω ⊂ R3 is a rectangular block with boundary, ∂Ω, consisting of faces parallel to the x-, y-, and
z-axes. For simplicity, we assume ai j, ai, a0, and f are sufficiently smooth given functions, and write
∂1u = ∂u

∂x , ∂2u = ∂u
∂y , and ∂3u = ∂u

∂z .
Thus, the standard variational formulation of the problem (1.1) is as follows.{

Find u ∈ H1
0(Ω) satisfying

a(u , v) = ( f , v) ∀v ∈ H1
0(Ω),

(1.2)

where

a(u, v) =
∫
Ω

(
3∑

i, j=1

ai j∂iu∂ jv +
3∑

i=1

ai∂iuv + a0uv)dxdydz, ( f , v) =
∫
Ω

f vdxdydz.

We also write

a(u , v) =
3∑

i, j=1

(ai j∂iu, ∂ jv) +
3∑

i=1

(ai∂iu, v) + (a0u, v). (1.3)

The existence and uniqueness of the solution to (1.2) is given by the Lax-Milgram lemma, see
Ciarlet [2, Theorem 1.1.31].

In order to discretize the problem (1.2), one proceeds as follows. The domain Ω is first partitioned
into a regular family of rectangular blocks T h with mesh size h ∈ (0, 1) such that Ω̄ = ∪e∈T h ē. Then we
define the finite dimensional subspace, S h

0(Ω) ⊂ H1
0(Ω), as the standard tensor-product m-order finite

element space over the partition. Thus, the discrete problem of approximating (1.2) is{
Find uh ∈ S h

0(Ω) satisfying
a(uh , v) = ( f , v) ∀v ∈ S h

0(Ω).
(1.4)

Obviously, from (1.2) and (1.4), the following Galerkin orthogonality relation holds.

a(u − uh , v) = 0 ∀v ∈ S h
0(Ω). (1.5)

To obtain the desired results, for every Z ∈ Ω, and any directional unit vector ℓ ∈ R3, we also need the
discrete Green’s function Gh

Z and discrete derivative Green’s function ∂Z,ℓGh
Z defined by

a(v,Gh
Z) = v(Z) ∀ v ∈ S h

0(Ω), (1.6)
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and
a(v, ∂Z,ℓGh

Z) = ∂ℓv(Z) ∀ v ∈ S h
0(Ω). (1.7)

Here, ∂Z,ℓGh
Z and ∂ℓv(Z) stand for the following one-sided directional derivatives, respectively.

∂Z,ℓGh
Z = lim

|∆Z|→0

Gh
Z+∆Z −Gh

Z

|∆Z|
,

∂ℓv(Z) = lim
|∆Z|→0

v(Z + ∆Z) − v(Z)
|∆Z|

, ∆Z = |∆Z|ℓ.

As for Gh
Z and ∂Z,ℓGh

Z, we have [3]
∥∂Z,ℓGh

Z∥1,1,Ω ≤ C| ln h|
4
3 , (1.8)

∥∂Z,ℓGh
Z∥

h
2,1,Ω ≤ Ch−1, (1.9)

∥Gh
Z∥

h
2,1,Ω ≤ C| ln h|

2
3 , (1.10)

where ∥Gh
Z∥

h
2,1,Ω =

∑
e∈T h ∥Gh

Z∥2,1,e and ∥∂Z,ℓGh
Z∥

h
2,1,Ω =

∑
e∈T h ∥∂Z,ℓGh

Z∥2,1,e.
The rest of the paper is arranged as follows. In Section 2, for the second-order elliptic equation

with variable coefficients, we discuss two weak estimates for the finite element, which are crucial in
the superconvergence analysis. Combined with (1.8)–(1.10), several superconvergence results of the
finite element approximation are given in Section 3.

2. Weak estimates for the finite element

In this section, using the properties of the interpolation operator of projection type, we derive the
weak estimates.

We write an element

e = (xe − ne, xe + ne) × (ye − ke, ye + ke) × (ze − de, ze + de) ≡ I1 × I2 × I3. (2.1)

Let {l j(x)}∞j=0, {l̃ j(y)}∞j=0, and {l̄ j(z)}∞j=0 be the normalized orthogonal Legendre polynomial systems on
L2(I1), L2(I2), and L2(I3), respectively. It is easy to check that {li(x)l̃ j(y)l̄k(z)}∞i, j,k=0 is the normalized
orthogonal polynomial system on L2(e). Set

ω0(x) = ω̃0(y) = ω̄0(z) = 1, ω j+1(x) =
∫ x

xe−ne

l j(ξ) dξ,

ω̃ j+1(y) =
∫ y

ye−ke

l̃ j(ξ) dξ, ω̄ j+1(z) =
∫ z

ze−de

l̄ j(ξ) dξ, j ≥ 0,

which are called Lobatto functions. Suppose u ∈ H3(e). Then, we have the following expansion
(see [14]):

u(x, y, z) =
∞∑

i=0

∞∑
j=0

∞∑
k=0

βi jkωi(x)ω̃ j(y)ω̄k(z), (x, y, z) ∈ e, (2.2)
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where the coefficients βi jk can be seen in [3,14] and satisfy, for i, j, k ≥ 1,

βi00 = O(ni−0.5
e ), β0 j0 = O(k j−0.5

e ), β00k = O(dk−0.5
e ), βi j0 = O(ni−0.5

e k j−0.5
e ),

β0 jk = O(k j−0.5
e dk−0.5

e ), βi0k = O(ni−0.5
e dk−0.5

e ), βi jk = O(ni−0.5
e k j−0.5

e dk−0.5
e ).

(2.3)

We introduce the standard tensor-product m-order polynomial spaces denoted by Tm, namely,

Tm = {q|q =
m∑

i=0

m∑
j=0

m∑
k=0

bi jkxiy jzk}.

Define the interpolation operator of projection type by Πe
m: H3(e)→ Tm(e) such that

Πe
mu =

m∑
i=0

m∑
j=0

m∑
k=0

βi jkωi(x)ω̃ j(y)ω̄k(z) ≡
m∑

i=0

m∑
j=0

m∑
k=0

λi jk. (2.4)

Thus, combining (2.2) and (2.4) yields

u − Πe
mu = (

m∑
i=0

m∑
j=0

∞∑
k=m+1

+

m∑
i=0

∞∑
j=m+1

∞∑
k=0

+

∞∑
i=m+1

∞∑
j=0

∞∑
k=0

)λi jk. (2.5)

Further, we may define the global tensor-product m-order interpolation operator of projection type [14]

Πm : H3(Ω) ∩ H1
0(Ω)→ S h

0(Ω), (2.6)

where (Πmu)|e = Πe
mu.

Theorem 2.1. Suppose {T h} is a regular family of rectangular partitions of Ω, and u ∈ Wm+2,∞(Ω) ∩
H1

0(Ω). Then, for all v ∈ S h
0(Ω), the interpolation operator Πm, defined by (2.6), satisfies the following

weak estimates:
|a(u − Πmu, v)| ≤ Chm+1∥u∥m+2,∞,Ω ∥v∥1, 1,Ω, m ≥ 1, (2.7)

|a(u − Πmu, v)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω, m ≥ 2, (2.8)

where ∥v∥h2, 1,Ω =
∑

e∈T h ∥v∥2, 1, e.
Proof. Note that the term u − Πe

mu can be written as follows.

u − Πe
mu = λ(m+1)00 + λ0(m+1)0 + λ00(m+1) + R. (2.9)

Now, we first bound (a11∂1(u−Πmu), ∂1v) =
∑

e(a11∂1(u−Πe
mu), ∂1v)e. For λ(m+1)00, by the orthogonality

of Legendre functions, we have

(a11∂1λ(m+1)00, ∂1v)e = β(m+1)00

∫
e
(a11 − a11(xe, ye, ze))lm(x)∂1vdxdydz. (2.10)

Set he = diam(e). Thus,
a11 − a11(xe, ye, ze) = O(he). (2.11)

By (2.3), (2.10), (2.11), and the properties of Legendre functions, we get

|(a11∂1λ(m+1)00, ∂1v)e| ≤ Chm+1
e ∥u∥m+1,∞, e ∥v∥1, 1, e. (2.12)
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It is easy to see
(a11∂1λ0(m+1)0, ∂1v)e = (a11∂1λ00(m+1), ∂1v)e = 0. (2.13)

Consider the main parts of R in (2.9), i.e.,

λ01(m+1), λ0(m+1)1, λ1(m+1)0, λ10(m+1), λ(m+1)10, λ(m+1)01.

As the symmetry, only need to discuss λ01(m+1), λ1(m+1)0, λ(m+1)10. Obviously,

(a11∂1λ01(m+1), ∂1v)e = 0. (2.14)

For λ1(m+1)0,

(a11∂1λ1(m+1)0, ∂1v)e = β1(m+1)0

∫
e

a11l0(x)ω̃m+1(y)∂1vdxdydz. (2.15)

By (2.3), (2.15), and the properties of Legendre and Lobatto functions, we have

|(a11∂1λ1(m+1)0, ∂1v)e| ≤ Chm+1
e ∥u∥m+2,∞, e ∥v∥1, 1, e. (2.16)

Similarly,
|(a11∂1λ(m+1)10, ∂1v)e| ≤ Chm+1

e ∥u∥m+2,∞, e ∥v∥1, 1, e. (2.17)

From (2.9), (2.12)–(2.14), (2.16), and (2.17),

|(a11∂1(u − Πe
mu), ∂1v)e| ≤ Chm+1

e ∥u∥m+2,∞, e ∥v∥1, 1, e.

Summing over all elements yields

|(a11∂1(u − Πmu), ∂1v)| ≤ Chm+1∥u∥m+2,∞,Ω ∥v∥1, 1,Ω. (2.18)

Similarly to the arguments of the result (2.18),

|(aii∂i(u − Πmu), ∂iv)| ≤ Chm+1∥u∥m+2,∞,Ω ∥v∥1, 1,Ω, i = 2, 3. (2.19)

Now, we bound the terms (ai j∂i(u−Πmu), ∂ jv), i , j. Without loss of generality, we consider (a12∂1(u−
Πmu), ∂2v) =

∑
e(a12∂1(u − Πe

mu), ∂2v)e. Nevertheless, from (2.9),

∂1(u − Πe
mu) = ∂1λ(m+1)00 + ∂1R. (2.20)

Integration by parts results in

(a12∂1λ(m+1)00, ∂2v)e

= β(m+1)00

∫
e
ωm+1(x)(∂2a12∂1v − ∂1a12∂2v)dxdydz

−β(m+1)00

∫
∂e

a12ωm+1(x)∂1v cos < n⃗, y > dS
≡ Ae + Be.

Combined with (2.3), we get
|Ae| ≤ Chm+1

e ∥u∥m+1,∞, e ∥v∥1, 1, e. (2.21)
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As for Be, we need to apply the element canceling technique. At the adjacent element e′ = (xe−ne, xe+

ne) × (ye′ − ke′ , ye′ + ke′) × (ze − de, ze + de) of e, where ke′ − ke = O(he) = O(he′) and ye′ < ye,

Be′ = −β
′
(m+1)00

∫
∂e′

a12ωm+1(x)∂1v cos < n⃗, y > dS .

Obviously, there is the same integration factor between Be and Be′ , the summing of which is

Be+e′ = (β(m+1)00 − β
′
(m+1)00)

∫
I1×I3

a12(x, ye − ke, z)ωm+1(x)∂1v(x, ye − ke, z)dxdz. (2.22)

Here,
|β(m+1)00 − β

′
(m+1)00| ≤ Chm+1.5

e ∥u∥m+2,∞, e′ . (2.23)

Additionally, ∫
I1×I3

a12(x, ye − ke, z)ωm+1(x)∂1v(x, ye − ke, z)dxdz
= 1

2ke

∫
e

a12(x, ye − ke, z)ωm+1(x)∂1v(x, ye − ke, z)dxdz
= 1

2ke

∫
e

a12(x, ye − ke, z)ωm+1(x)∂1v(x, y, z)dxdydz
− 1

2ke

∫
e

a12(x, ye − ke, z)ωm+1(x)(
∫ y

ye−ke
∂2∂1v(x, y, z)dy)dxdydz

≡ M + N.

By the inverse estimate, we have

|M| ≤ Ch−0.5
e ∥v∥1,1,e, |N| ≤ Ch−0.5

e ∥v∥1,1,e.

Combined with (2.22) and (2.23), we obtain

|Be+e′ | ≤ Chm+1
e ∥u∥m+2,∞, e′ ∥v∥1, 1, e. (2.24)

From (2.21) and (2.24), summing over all elements yields

|
∑

e

(a12∂1λ(m+1)00, ∂2v)e| ≤ Chm+1∥u∥m+2,∞,Ω ∥v∥1, 1,Ω. (2.25)

As for the main parts of ∂1R in (2.20), it is easy to see

(a12∂1λ01(m+1), ∂2v)e = (a12∂1λ0(m+1)1, ∂2v)e = 0. (2.26)

For λ1(m+1)0, λ10(m+1), λ(m+1)10, λ(m+1)01, by (2.3) and the properties of Legendre and Lobatto functions,
we immediately obtain

(a12∂1λ1(m+1)0, ∂2v)e ≤ Chm+1
e ∥u∥m+2,∞, e ∥v∥1, 1, e. (2.27)

(a12∂1λ10(m+1), ∂2v)e ≤ Chm+1
e ∥u∥m+2,∞, e ∥v∥1, 1, e. (2.28)

(a12∂1λ(m+1)10, ∂2v)e ≤ Chm+1
e ∥u∥m+2,∞, e ∥v∥1, 1, e. (2.29)

(a12∂1λ(m+1)01, ∂2v)e ≤ Chm+1
e ∥u∥m+2,∞, e ∥v∥1, 1, e. (2.30)
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From (2.25)–(2.30), and summing over all elements, we obtain

|(a12∂1(u − Πm), ∂2v)| ≤ Chm+1∥u∥m+2,∞,Ω ∥v∥1, 1,Ω. (2.31)

Hence,
|(ai j∂i(u − Πm), ∂ jv)| ≤ Chm+1∥u∥m+2,∞,Ω ∥v∥1, 1,Ω, i , j. (2.32)

It remains to bound the terms (ai∂i(u − Πmu), v) and (a0(u − Πmu), v). Using the integration by parts,
the element canceling technique, and the interpolation error estimate, we have

|(ai∂i(u − Πmu), v)| = | − (u − Πmu, ∂i(aiv))| ≤ Chm+1∥u∥m+1,∞,Ω ∥v∥1, 1,Ω. (2.33)

Obviously, by the interpolation error estimate, we immediately get

|(a0(u − Πmu), v)| ≤ Chm+1∥u∥m+1,∞,Ω ∥v∥1, 1,Ω. (2.34)

The desired result (2.7) follows from (2.18), (2.19), and (2.32)–(2.34).
Let’s prove (2.8) when m ≥ 2. From (2.20), we first bound (a11∂1λ(m+1)00, ∂1v)e. By the integration

by parts and the orthogonality of Lobatto functions, we have

(a11∂1λ(m+1)00, ∂1v)e

= β(m+1)00

∫
e

D−1ωm+1(x)∂1(∂1a11∂1v)dxdydz
−β(m+1)00

∫
e
(a11 − a11(xe, ye, ze))ωm+1(x)∂2

1vdxdydz.

Combined with (2.3), (2.11), and the properties of Lobatto functions,

|(a11∂1λ(m+1)00, ∂1v)e| ≤ Chm+2
e ∥u∥m+1,∞, e ∥v∥2, 1, e. (2.35)

Now consider the main parts of ∂1R in (2.20). As the symmetry, we only need to discuss
∂1λ01(m+1), ∂1λ1(m+1)0, ∂1λ(m+1)10. For ∂1λ1(m+1)0, integration by parts yields

(a11∂1λ1(m+1)0, ∂1v)e

= β1(m+1)0

∫
e

a11l0(x)ω̃m+1(y)∂1vdxdydz
= −β1(m+1)0

∫
e

l0(x)D−1ω̃m+1(y)∂2(a11∂1v)dxdydz.

By (2.3) and the properties of Legendre and Lobatto functions, we have

|(a11∂1λ1(m+1)0, ∂1v)e| ≤ Chm+2
e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.36)

For ∂1λ(m+1)10, integration by parts yields

(a11∂1λ(m+1)10, ∂1v)e

= β(m+1)10

∫
e

a11lm(x)ω̃1(y)∂1vdxdydz
= −β(m+1)10

∫
e

D−1lm(x)ω̃1(y)∂1(a11∂1v)dxdydz.

By (2.3) and the properties of Legendre and Lobatto functions again, we get

|(a11∂1λ(m+1)10, ∂1v)e| ≤ Chm+2
e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.37)
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From (2.14), (2.35)–(2.37), and summing over all elements,

|(a11∂1(u − Πmu), ∂1v)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.38)

Similarly,
|(aii∂i(u − Πmu), ∂iv)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω, i = 2, 3. (2.39)

Next, we bound the terms (ai j∂i(u − Πmu), ∂ jv), i , j. Applying integration by parts twice, we have

(a12∂1λ(m+1)00, ∂2v)e

= β(m+1)00

∫
e

D−1ωm+1(x)(∂2
1a12∂2v + 2∂1a12∂1∂2v − ∂2a12∂

2
1v)dxdydz

+β(m+1)00

∫
∂e

a12D−1ωm+1(x)∂2
1v cos < n⃗, y > dS

≡ Ce + De.

Combined with (2.3) and the properties of Lobatto functions,

|Ce| ≤ Chm+2
e ∥u∥m+1,∞, e ∥v∥2, 1, e. (2.40)

At the adjacent element e′ = (xe − ne, xe + ne) × (ye′ − ke′ , ye′ + ke′) × (ze − de, ze + de) of e, where
ke′ − ke = O(he) = O(he′) and ye′ < ye,

De′ = β
′
(m+1)00

∫
∂e′

a12D−1ωm+1(x)∂2
1v cos < n⃗, y > dS .

Obviously, there is the same integration factor between De and De′ , the summing of which is

De+e′ = (β′(m+1)00 − β(m+1)00)
∫

I1×I3

a12(x, ye − ke, z)D−1ωm+1(x)∂2
1v(x, ye − ke, z)dxdz.

Similarly to the arguments of (2.24),

|De+e′ | ≤ Chm+2
e ∥u∥m+2,∞, e′ ∥v∥2, 1, e. (2.41)

From (2.40) and (2.41), summing over all elements yields

|
∑

e

(a12∂1λ(m+1)00, ∂2v)e| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.42)

Obviously,
(a12∂1λ01(m+1), ∂2v)e = (a12∂1λ0(m+1)1, ∂2v)e = 0. (2.43)

Next, we discuss ∂1λ1(m+1)0, ∂1λ10(m+1), ∂1λ(m+1)10, and ∂1λ(m+1)01. By the integration by parts and the
properties of Legendre and Lobatto functions, we immediately obtain

|
∑

e

(a12∂1λ1(m+1)0, ∂2v)e| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.44)

|
∑

e

(a12∂1λ10(m+1), ∂2v)e| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.45)
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|
∑

e

(a12∂1λ(m+1)10, ∂2v)e| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.46)

|
∑

e

(a12∂1λ(m+1)01, ∂2v)e| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.47)

From (2.20) and (2.42)–(2.47),

|(a12∂1(u − Πmu), ∂2v)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω.

Hence,
|(ai j∂i(u − Πmu), ∂ jv)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω, i , j. (2.48)

It remains to bound
3∑

i=1

(ai∂i(u − Πmu), v) + (a0(u − Πmu), v).

As for (a1∂1(u − Πmu), v) =
∑

e(a1∂1(u − Πe
mu), v)e, we first consider (a1∂1λ(m+1)00, v)e. Integration by

parts twice yields

(a1∂1λ(m+1)00, v)e = β(m+1)00

∫
e

D−1ωm+1(x)∂2
1(a1v)dxdydz.

From (2.3) and the properties of Lobatto functions,

|(a1∂1λ(m+1)00, v)e| ≤ Chm+2
e ∥u∥m+1,∞, e ∥v∥2, 1, e. (2.49)

In addition,
(a1∂1λ01(m+1), v)e = (a1∂1λ0(m+1)1, v)e = 0. (2.50)

Utilizing the integration by parts and the properties of Legendre and Lobatto functions, we get

|(a1∂1λ1(m+1)0, v)e| ≤ Chm+2
e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.51)

|(a1∂1λ10(m+1), v)e| ≤ Chm+2
e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.52)

|(a1∂1λ(m+1)10, v)e| ≤ Chm+2
e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.53)

|(a1∂1λ(m+1)01, v)e| ≤ Chm+2
e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.54)

From (2.20), (2.49)–(2.54), and summing over all elements,

|(a1∂1(u − Πmu), v)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω.

Thus,
|(ai∂i(u − Πmu), v)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω, i = 1, 2, 3. (2.55)

For (a0(u − Πmu), v), integration by parts results in

(a0λ(m+1)00, v)e = −β(m+1)00

∫
e

D−1ωm+1(x)∂1(a0v)dxdydz.
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From (2.3) and the properties of Lobatto functions,

|(a0λ(m+1)00, v)e| ≤ Chm+2
e ∥u∥m+1,∞, e ∥v∥2, 1, e. (2.56)

Similarly,
|(a0λ0(m+1)0, v)e| ≤ Chm+2

e ∥u∥m+1,∞, e ∥v∥2, 1, e. (2.57)

|(a0λ00(m+1), v)e| ≤ Chm+2
e ∥u∥m+1,∞, e ∥v∥2, 1, e. (2.58)

Obviously,
|(a0R, v)e| ≤ Chm+2

e ∥u∥m+2,∞, e ∥v∥2, 1, e. (2.59)

From (2.9), (2.56)–(2.59), and summing over all elements,

|(a0(u − Πmu), v)| ≤ Chm+2∥u∥m+2,∞,Ω ∥v∥h2, 1,Ω. (2.60)

The desired result (2.8) follows from (2.38), (2.39), (2.48), (2.55), and (2.60).

3. Superconvergence of the finite element

In this section, we will use the weak estimates and the estimates for discrete Green’s function and
discrete derivative Green’s function to obtain superconvergence estimates of the finite element.

Theorem 3.1. Suppose {T h} is a regular family of rectangular partitions ofΩ, u ∈ Wm+2,∞(Ω)∩H1
0(Ω),

and uh ∈ S h
0(Ω) and Πmu ∈ S h

0(Ω) are the finite element approximation and interpolant of projection
type to u, respectively. Then, we have

|uh − Πmu|1,∞,Ω ≤ Chm+1 |ln h|
4
3 ∥u∥m+2,∞,Ω , m ≥ 1, (3.1)

|uh − Πmu|1,∞,Ω ≤ Chm+1 ∥u∥m+2,∞,Ω , m ≥ 2, (3.2)

|uh − Πmu|0,∞,Ω ≤ Chm+2 |ln h|
2
3 ∥u∥m+2,∞,Ω , m ≥ 2. (3.3)

Proof. For every Z ∈ Ω, applying the definitions of Gh
Z and ∂Z,ℓGh

Z as well as the Galerkin orthogonality
relation (1.5), we derive

∂ℓ(uh − Πmu)(Z) = a(uh − Πmu, ∂Z,ℓGh
Z) = a(u − Πmu, ∂Z,ℓGh

Z), (3.4)

and
(uh − Πmu)(Z) = a(uh − Πmu, Gh

Z) = a(u − Πmu, Gh
Z). (3.5)

From (1.8), (2.7), and (3.4), the result (3.1) is obtained. Combining (1.9), (2.8), and (3.4) yields the
result (3.2). The result (3.3) is immediately proved by using (1.10), (2,8), and (3.5).

Example 3.1. Consider the following equation:{
−∇ · (a∇u) = f in Ω = (0, 1)3,

u = 0 on ∂Ω,
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where a = ex+y+z, and the exact solution is u = sin πx sin πy sin πz. Let uh and Π2 be the tensor-product
quadratic finite element approximation and the interpolation operator of projection type, respectively.
We solve Example 3.1 and obtain the following numerical results (see Table 1):

Table 1. Numerical results of superconvergence on uniform meshes.

1/h |uh − Π2u|0,∞,Ω reduction |uh − Π2u|1,∞,Ω reduction
2 8.696e-002 - 2.261e-001 -
4 9.838e-003 8.84 5.116e-002 4.42
8 7.861e-004 12.51 8.175e-003 6.26

16 5.322e-005 14.77 1.107e-003 7.38

The numerical results demonstrate our theoretical results.

Comments. The domain treated in the paper is a rectangular block in R3, which is also discussed by
Goodsell [10]. Actually, as the Brandts and M. Křı́žek discussed [7], the results of the paper hold for a
bounded polyhedral domain, which is usually presented in engineering problems.

4. Conclusions

In this paper, we generalized superconvergence results of the FEM from constant coefficient elliptic
equations to variable coefficient settings in three dimensions. Applying the properties of interpolation
operator of projection type, we obtained the weak estimates. Combined with the estimates for discrete
Green’s function and discrete derivative Green’s function, superconvergence results were derived.
Among the arguments, how to deal with the given variable coefficients is a challenging issue. The
methods presented in the paper can also be applied to other high-dimensional second-order variable
coefficient elliptic equations.
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7. J. Brandts, M. Křı́žek, Superconvergence of tetrahedral quadratic finite elements, J. Comput. Math.,
23 (2005), 27–36.

8. C. M. Chen, Optimal points of the stresses for the linear tetrahedral element (in Chinese), Nat. Sci.
J. Xiangtan Univ., 3 (1980), 16–24.

9. L. Chen, Superconvergence of tetrahedral linear finite elements, Int. J. Numer. Anal. Mod., 3
(2006), 273–282.

10. G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral
element, Numer. Methods Partial Differential Equations, 10 (1994), 651–666.
https://doi.org/10.1002/num.1690100511

11. R. C. Lin, Z. M. Zhang, Natural superconvergence points in three-dimensional finite elements,
SIAM J. Numer. Anal., 46 (2008), 1281–1297. https://doi.org/10.1137/070681168

12. J. H. Liu, Superconvergence of tensor-product quadratic pentahedral elements for variable
coefficient elliptic equations, J. Comput. Anal. Appl., 14 (2012), 745–751.

13. J. H. Liu, G. Hu, Q. D. Zhu, Superconvergence of tetrahedral quadratic finite elements for a variable
coefficient elliptic equation, Numer. Methods Partial Differential Equations, 29 (2013), 1043–1055.
https://doi.org/10.1002/num.21744

14. J. H. Liu, Q. D. Zhu, Pointwise supercloseness of tensor-product block finite elements, Numer.
Methods Partial Differential Equations, 25 (2009), 990–1008. https://doi.org/10.1002/num.20384

15. J. H. Liu, Q. D. Zhu, Superconvergence of the function value for pentahedral finite elements
for an elliptic equation with varying coefficients, Bound Value Probl., 2020 (2020), 1–15.
https://doi.org/10.1186/s13661-019-01318-y

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 10, 28611–28622.

http://dx.doi.org/https://doi.org/10.1007/bfb0096835
http://dx.doi.org/https://doi.org/10.1002/num.1690100511
http://dx.doi.org/https://doi.org/10.1137/070681168
http://dx.doi.org/https://doi.org/10.1002/num.21744
http://dx.doi.org/https://doi.org/10.1002/num.20384
http://dx.doi.org/https://doi.org/10.1186/s13661-019-01318-y
http://creativecommons.org/licenses/by/4.0

	Introduction
	Weak estimates for the finite element
	Superconvergence of the finite element
	Conclusions



