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1. Introduction

Over the last three decades, a great deal of research has been done on the fascinating nonlinear
phenomenon known as chaos. Mathematical modeling, which promotes deeper insights and well-
informed decision-making, is regarded as a very effective method of formulating and addressing real-
world problems. It has great potential in many fields, including biomedical engineering applications
to the human brain and heart [1], comprehensive liquid mixing with low power consumption, circuit
systems [2], collapse prevention of power systems, chemistry, physics [2, 3], engineering, and climate
science. Within the field of climate research, mathematical models facilitate the simulation and
comprehension of intricate climate systems, empowering scientists to forecast and examine climate
trends. For example, the Lorenz-84 system illustrates the irregularity of the atmosphere [4], and
Yong-Guang’s study examined a low-order model for Hadley circulation [5]. The complexity and
intrinsic unpredictability of weather and climate systems have been acknowledged by chaotic models,
which have revolutionized our understanding of atmospheric dynamics. Although challenges remain
advancements in computer methods and multidisciplinary studies have the potential to improve our
capacity to simulate and forecast atmospheric events. Future atmospheric research will be guided by
the insights provided by chaos theory, which provides a more profound understanding of the complex
and frequently unpredictable nature of the Earth’s atmosphere. The surface of the Earth and the lower
atmosphere are warmed by the absorption and reradiation of heat by atmospheric gases such as carbon
dioxide (CO2), methane (CH4), and water vapor (H2O). The term “greenhouse effect” refers to this
mechanism of heat absorption and radiation. The modeling and control of greenhouse gases (GHGs)
have attracted the attention of numerous scholars in recent years, leading to the development of various
control strategies.

The concept of fractional differentiation [6] is 300 years old; however, in the last 50 years, it has
gained a lot of attention and discussion. One of the most popular trends in applied mathematics has
been the investigation of fractional calculus [7, 8]. Due to its more accurate explanation of physical
occurrences. It has been recently shown that approaches such as integer-order differential operators are
not necessarily appropriate for describing complicated and nonlinear phenomena. Fractional calculus
has increasingly been applied to describe a wide range of real-world events in fields like economics,
biology [9], chemistry, control theory, mechanics, signal and image processing, and electricity. Due
to the limitations of existing methods, scientists and mathematicians are aiming to create complex and
rigorous mathematical operators that can accurately mimic and capture these natural phenomena. In
this sense, the power law and the definition of local differential operators have been employed.

In recent years, researchers have shown interest in the synchronization and control of chaotic
systems [10] with fractional-order dynamics. This led to numerous notable contributions to the
Chua and Liu’s circuit of chaos synchronization [11–13]. Many fractional-order chaotic systems have
been effectively controlled using a variety of techniques such as adaptive controller [14, 15], optimal
controller [16,17], or sliding mode controller (SMC) [18–20], etc. The SMC is one of the most popular
methods to control the chaos. In [21], authors applied adaptive SMC for uncertain fractional reaction-
diffusion systems. In [22, 23], SMC was used for fractional reaction-diffusion neural networks.

Understanding and projecting Earth’s climate system requires the use of climate modeling, which
also offers important insights for adaptation and mitigation strategies related to climate change.
Scientists can estimate future climate scenarios and evaluate the possible implications of human
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activity using these models, which mimic and analyze the intricate interactions between numerous
atmospheric, marine, and land surface systems [5, 24]. Inspired by meteorological models and other
forms of abstract models such as a chaotic atmosphere propagation model [25], atmospheric circulation
systems [26], a model of atmospheric dynamics of carbon dioxide gas [27], post-quantum model
of Navier problem [28], a fractal-fractional model of polluted lakes [29], financial systems in the
sliding modes [30], memristor-based chaotic model of circuits [31], quantum-based model on integro-
differential system [32], hybrid comformable initial value problems [33], and fractal-fractional model
of HIV-1 infection [34], we have developed an atmospheric model describing the interaction between
westerly currents, temperature, and GHGs in the Caputo fractional domain. To conduct the study,
we analyze chaos using fractional-order commensurate and non-commensurate derivatives through
analytical techniques and numerical simulations. A fractional derivative is introduced to obtain
more details about the system’s chaotic behavior. In the presence or absence of uncertainties and
outside disturbances, we formulate sliding mode control (SMC) laws to manage chaos in the proposed
atmospheric fractional-order system. We evaluate the controllers’ efficiency by integrating them into
the westerly current dynamics.

The rest of the paper is organized as follows: In Section 2, we give some basic definitions, lemmas,
theories, and notations related to fractional calculus. Section 3 provides an extensive overview of the
proposed fractional-order atmospheric model. In Section 4, we discuss the existence and boundedness
of solutions, equilibrium points and their stability, and the conservative behavior of the system.
Section 5 presents the detection of the chaos behavior of the system with the help of the Lyapunov
exponent with graphical representations of the Poincaré maps and bifurcation analysis. Section 6
focuses on designing the SMC for chaotic systems and analyzing their stability. In Section 7, we
provide a numerical example of the suggested work. Section 8 draws a conclusion for the current
work.

2. Fundamental concepts

Definition 2.1 ([6]). The Caputo derivative of the continuous function s(t) of fractional order m − 1 <
γ < m is defined as

CDγ
t0 s(t) =

1
Γ(m − γ)

∫ t

t0

s(m)(v)
(t − v)γ+1−m dv,

where Γ(·) is the Gamma function.

Definition 2.2 ( [6]). For the integrable function s(t), the Riemann-Liouville fractional-order integral
is defined as

Iγt0 s(t) =
1

Γ(γ)

∫ t

t0

s(v)
(t − v)1−γ dv, γ > 0,

I0
t0 s(t) = s(t).

Lemma 2.3 ([35]). Let s(t) be a continuous function on [t0,∞] that satisfies

CDγ
t0 s(t) ≤ −αs(t) + ζ, s(t0) = gt0 ,
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here, 0 < γ ≤1, (α, ζ) ∈ R2, and α , 0, then

s(t) ≤ (s(t0) −
ζ

α
)Eγ[−α(t − t0)γ] +

ζ

α
.

Lemma 2.4 ([6]). Consider the system

CDγ
t0 h(t) = s(t, h(t)), h(t0) = h0, t > t0,

with γ ∈ (0, 1], s : [t0,∞) × Γ → Rn. When s(t, h) holds the local Lipschitz criteria regarding h on v,
the system has a unique solution.

3. Model formulation

A mathematical representation of atmospheric circulation that incorporates a condensed version
of Earth’s topography and climatic patterns was proposed by Edward N. Lorenz in 1984, becoming
popularized as the Lorenz-84 climate model. The globe-encircling wind, also known as the Hadley
cell circulation [5], is an important atmospheric circulation pattern that transfers heat from the equator
toward the poles, being propelled by their temperature differential. This circulation can be observed in
the Lorenz-84 model using a global wind component. In this model, the globe-encircling wind interacts
with the thermal differential between the equator and the poles to provide poleward heat movement.
As heat gets distributed with the wind, the westerlies get stronger due to greenhouse effect-induced
global warming. In [25], authors demonstrated chaos for the fractional order model (3.1).

Dβ
t ν = −ρ2 − ψ2 − aν + aM + F,

Dβ
t ρ = νρ − bνψ − ρ + P,

Dβ
t ψ = bνρ + νψ − ψ. (3.1)

Figure 1 demonstrates the dynamics of the model (3.1) for β = 1, β = 0.95, β = 0.85, and β = 0.75 for
the parameter values a = 0.24, b = 11, P = 3, M = 8, and the constant CO2 input F = 1.66.

In the present work, instead of using a constant input of CO2, we have incorporated the radiative
forcing of GHGs as a new equation to investigate their continuous impact on the Lorenz-84 climate
circulation system [36]. We aim to examine the change in the strength of the westerly current with
the continuous change in growth rate of GHGs in the atmosphere. Therefore, we have installed
an additional equation representing the radiative force of GHGs; its effect on westerly current is
represented by the incorporation of a term representing the continuous impact of GHGs in the first
equation. The Caputo fractional derivative framework is utilized in this study to further examine the
atmospheric system. The proposed fractional differential equation (FDE) is:

CDβ
t0ν = −ρ2 − ψ2 − aν + aM + nµ,

CDβ
t0ρ = νρ − bνψ − ρ + P,

CDβ
t0ψ = bνρ + νψ − ψ,

CDβ
t0µ = lµ − rµ2, (3.2)

where ν is the force of the symmetrically circling westerly wind current around the Earth. Heat is
transported poleward by a series of superposed large-scale currents, the cosine and sine phases, that
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are represented by ρ and ψ. µ represents the GHGs, M is the symmetric thermal forcing brought on by
the temperature differential across latitudes, and P is the difference in temperature between the ocean
and the continent. The wave advection force that results from the westerly current is expressed as b. n
is the rate of GHGs added to the westerly current, and r is the natural depletion rate of GHGs that may
happen due to chemical reactions.
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Figure 1. Chaotic behavior of 3D model (3.1) for the fractional order β = 1, β = 0.95, β =

0.85, and β = 0.75.
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4. Theoretical dynamics

4.1. Existence and uniqueness of the solution

Our investigation aims to establish whether the solutions to the fractional four-dimensional chaotic
atmospheric model exist and are unique under the Caputo fractional derivative framework. By careful
exploitation of mathematical details, we have confirmed that the solutions not only exist but are unique,
thus ensuring the validity of model (3.2) for further analysis and applications.

Theorem 4.1. In the region B × [0,T ], where B = {(ν, ρ, ψ, µ) ∈ R4 : max{|ν|, |ρ|, |ψ|, |µ|} ≤ F}, and
T < +∞, there exists a unique solution of the system (3.2).

Proof. Let us consider

U(t) = (ν(t), ρ(t), ψ(t), µ(t)), Ū(t) = (ν̄(t), ρ̄(t), ψ̄(t), µ̄(t)), (4.1)

and a function

V(t,U) = (V1(t,U),V2(t,U),V3(t,U),V4(t,U)),

where

V1(t,U) = −ρ2 − ψ2 − aν + aM + nµ,

V2(t,U) = νρ − bνψ − ρ + P,

V3(t,U) = bνρ + νψ − ψ,

V4(t,U) = lµ − rµ2. (4.2)

Here, V(t,U) is defined on B × [0,T ] and let N = supB||V(t,U)||.
We interpret the norm as ||U(t)|| = supt∈[0,T ]|U(t)|. We shall demonstrate the existence of some Φ

such that ∥∥∥V(U) − V(Ū)
∥∥∥ ≤ Φ

∥∥∥U − Ū
∥∥∥ .

Consider that∥∥∥V(U) − VŪ
∥∥∥ = || − ρ2 − ψ2 − aν + aM + nµ + νρ − bνψ − ρ + P + bνρ + νψ − ψ + lµ − rµ2

+ρ̄2 + ψ̄2 + aν̄ − aM − nµ̄ − ν̄ρ̄ + bν̄ψ̄ + ρ̄ − P − bν̄ρ̄ − ν̄ψ̄ + ψ̄ − lµ̄ + rµ̄2||

≤ ||ρ2 − ρ̄2|| + ||ψ2 − ψ̄2|| + a||(ν − ν̄)|| + ||ρ − ρ̄|| + ||ψ − ψ̄|| + (1 + b)||νρ − ν̄ρ̄||
+(1 + b)||νψ − ν̄ψ̄|| + (n + l + 2rF)||µ − µ̄||

≤ {a + 2F(1 + b)}||ν − ν̄|| + {1 + (3 + b)F}||ρ − ρ̄||
+{1 + (3 + b)F}||ψ − ψ̄|| + (n + l + 2rF)||µ − µ̄||.

This implies ∥∥∥V(U) − VŪ
∥∥∥ ≤ Φ1||ν − ν̄|| + Φ2||ρ − ρ̄|| + Φ3||ψ − ψ̄|| + Φ4||µ − µ̄||, (4.3)
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where

Φ1 = a + 2F(1 + b),
Φ2 = 1 + (3 + b)F,
Φ3 = 1 + (3 + b)F, (4.4)
Φ4 = n + l + 2rF.

Consider

Φ = max{Φ1,Φ2,Φ3,Φ4}.

This gives ∥∥∥V(U) − VŪ
∥∥∥ ≤ Φ||U − Ū ||.

Let ∆ represent the Picard’s operator that is being constructed through the utilization of the fractional
integral and function V. Consequently, we get the following equation

∆U = U(0) + IβV(t,U). (4.5)

It is necessary to demonstrate that this operator is a contraction mapping and that it maps a whole
non-empty metric space into itself.

Consider

||U − U(0)|| ≤ m,

where m is a constant. Using (4.5) as the norm, we obtain

||∆U − U(0)|| ≤ ||V(t,U)||Iβ(1)

≤ n
T β

Γ(β + 1)
< m. (4.6)

The above inequality in (4.6) holds if

T β

Γ(β + 1)
<

m
N
.

We now isolate a condition in which the operator ∆ is contraction. We take the following actions to
fulfill this requirement:

||∆U − ∆Ū || = ||Iβ(V(t,U) − V(t, Ū))||
≤ Iβ||(V(t,U) − V(t, Ū))||
≤ ||(V(t,U) − V(t, Ū))||Iβ(1)

≤
T β

Γ(β + 1)
Φ||U − Ū ||. (4.7)
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The preceding formula demonstrates that when the relationship is defined by the Picard’s operator ∆,
it turns into a contraction, and

T β

Γ(β + 1)
≤

1
Φ
.

In this way, it is proven that the Picard’s operator ∆ is a contraction. We determine that the operator
∆ has a unique fixed point by applying the Banach fixed-point theorem. As a result, there is only one
solution for the FDE (3.2). �

Here, note that

T β

Γ(β + 1)
< min{

m
n
,

1
Φ
}.

Based on the model’s parameters, we can interpret Φi, where i = 1, 2, 3, 4, as follows:
Φ1= Strength of the westerly current due to the impact of sinusoidal waves;
Φ2= Strength of the sine waves;
Φ3= Strength of the cosine waves;
Φ4= Total amount of greenhouse gas present in the armosphere;
All these Φi, i = 2(1)4, indicate the strength of the westerly current.

(1) The combined effect of the sine and cosine waves maximizes the strength of the westerly current
if Φ1 is at its maximum.

(2) Suppose that Φ4 represents the maximum. If the depletion rate increases in the atmosphere, then
the rate of GHGs reduces, and due to this effect, the strength of the westerly waves decreases.

4.2. Boundedness

In this section, we establish that the solutions of system (3.2) are bounded.

Theorem 4.2. The solutions of system (3.2) are bounded uniformly.

Proof. Define a function,
Q(t) = ν(t) + ρ(t) + ψ(t) + µ(t).

Utilizing the Caputo fractional derivative, we obtain

CDβ
t0Q(t) +Q(t) = CDβ

t0ν(t) +C Dβ
t0ρ(t) +C Dβ

t0ψ(t) +C Dβ
t0µ(t) + [ν(t) + ρ(t) + ψ(t) + µ(t)],

= (−ρ2 − ψ2 − aν + aM + nµ) + (νρ − bνψ − ρ + P) + (bνρ + νψ − ψ)
+(lµ − rµ2) + (ν(t) + ρ(t) + ψ(t) + µ(t))

≤ aM + nµ + νρ + P + bνρ + νψ + lµ + ν + ρ + ψ + µ

≤ aM + P + (n + l + 1)µ + (1 + b)νρ + (1 + ν)ψ + ν + ρ.

There is a unique and existing solution in

B = {(ν, ρ, ψ, µ) : max{|ν|, |ρ|, |ψ|, |µ|} ≤ F}.
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The inequality stated above gives that

CDβ
t0Q(t) +Q(t) ≤ (n + l + 4)F + (2 + b)F2 + aM + P

=
(√

2 + bF +
(n + l + 4)

2
√

2 + b

)2
−

( (n + l + 4)

2
√

2 + b

)2
+ aM + P

≤
(√

2 + bF +
(n + l + 4)

2
√

2 + b

)2
+ aM + P.

By Lemma (2.3), we have

CDβ
t0Q(t) ≤

(
Q(t0) −

(√
2 + bF +

(n + l + 4)

2
√

2 + b

)2
+ aM + P

)
Eβ[−(t − t0)β]

+
(√

2 + bF +
(n + l + 4)

2
√

2 + b

)2
+ aM + P.

Clearly,

Q(t)→
(√

2 + bF +
(n + l + 4)

2
√

2 + b

)2
+ aM + P

as t→∞.
Thus, the system (3.2) that initiates in 0 and its whole solution remained bounded in

Θ = {(ν, ρ, ψ, µ) ∈ 0+|Q(t) ≤
(√

2 + bF +
(n + l + 4)

2
√

2 + b

)2
+ aM + P + ε, ε > 0}.

�

4.3. Stability of the equilibrium points

The stability of the system (3.2) is examined here at each equilibrium point. The following system
of equations must be solved in order to determine the equilibrium points:

− ρ2 − ψ2 − aν + aM + nµ = 0, (4.8)
νρ − bνψ − ρ + P = 0, (4.9)
νρ + νψ − ψ = 0, (4.10)
lµ − rµ2 = 0. (4.11)

Solving the aforementioned system, we obtain more than one equilibrium point. Let (ν∗, ρ∗, ψ∗, µ∗) be
one such equilibrium point. From Eq (4.11), we get

lµ∗ − rµ∗2 = 0,

µ∗ = 0, and µ∗ =
l
r
.

Solving (4.10) for ψ∗, we get

ψ∗ = −
bν∗ρ∗

−1 + ν
. (4.12)
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Solving (4.9) for ρ∗ and then substituting the value of ψ∗, it gives

ρ∗ =
−(−1 + ν∗)P

1 − 2ν∗ + ν∗2 + b2ν∗2
. (4.13)

From Eqs (4.12) and (4.14),

ψ∗ =
bν∗P

1 − 2ν∗ + (1 + b2)ν∗2
. (4.14)

Substituting the values of ρ∗, ψ∗, µ∗ in (4.8), we obtain an equation in terms of ν∗.

B1ν
∗3 + B2ν

∗2 + B3ν
∗ + B4 = 0, (4.15)

where,

B1 = −a(1 + b2), B2 = 2a + a(1 + b2)M, B3 = −a − 2aM − 2nµ∗, B4 = aM + nµ∗ − P2.

Here, two cases arise, because µ has two values:
i) If µ∗=0, then

B1 = −a(1 + b2), B2 = 2a + a(1 + b2)M, B3 = −a − 2aM, B4 = aM − P2. (4.16)

Since B1 < 0, B2 > 0, B3 < 0, if aM < P2, by Descartes’ rule of signs, Eq (4.16) has at most two real
roots. If aM > P2, then Eq (4.16) has at most three real roots.

ii) If µ∗ = l
r , then

B1 = −a(1 + b2), B2 = 2a + a(1 + b2)M, B3 = −a − 2aM −
2lµ
r
, B4 = aM +

l
r
− P2. (4.17)

Since B1 < 0, B2 > 0, B3 < 0, if (aM + l
r ) < P2 then by Descartes’ rule of signs, Eq (4.15) has at most

two real roots. If (aM + l
r ) > P2, then Eq (4.15) has at most three real roots. Consequently, there is a

coexistence point of equilibrium.
The Jacobian matrix of system (3.2) is

J =


−a −2ρ −2ψ n

ρ − bψ −1 + ν −bν 0
bρ + ψ bν −1 + ν 0

0 0 0 l − 2rµ

 .
Theorem 4.3. The axial equilibrium point, E0 = (0, 0, 0), is always present, but it is unstable.

Proof. The eigenvalues of the Jacobian matrix J at E0 are

λ11 = −a, λ12 = −1, λ13 = −1, λ14 = l.

It is clear that E0 is unstable. �

Theorem 4.4. When P , 0 and b = 0, there are two unstable equilibrium points E1 = (ν1, ρ1, 0, 0) =

E1(ν1,
−P
ν1−1 , 0, 0) and E2 = (ν1, ρ1, 0, µ1) = E2(ν1,

−P
ν1−1 , 0,

l
r ).
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Proof. (i) At E1, the Jacobian matrix is

J =


−a −2ρ1 0 n
ρ1 −1 + ν1 0 0
0 0 −1 + ν1 0
0 0 0 l

 .
Eigenvalues of J at E1 are

λ11 = ν1 − 1,
λ12 = l,

λ13 =
1
2
(
− (1 − ν1 − a) +

√
(ν1 − 1 − a)2 −

8P2

(ν1 − 1)2

)
,

λ14 =
1
2
(
− (1 − ν1 − a) −

√
(ν1 − 1 − a)2 −

8P2

(ν1 − 1)2

)
.

λ12 > 0 indicates that the equilibrium point E1 is unstable.
(ii) At E2, the Jacobian matrix is

J =


−a −2ρ1 0 n
ρ1 −1 + ν1 0 0
0 0 −1 + ν1 0
0 0 0 −l

 .
The corresponding eigenvalues are

λ21 = ν1 − 1,
λ22 = −l,

λ23 =
1
2
(
− (1 − ν1 + a) +

√
(ν1 − 1 + a)2 −

8P2

(ν1 − 1)2

)
,

λ24 =
1
2
(
− (1 − ν1 + a) −

√
(ν1 − 1 + a)2 −

8P2

(ν1 − 1)2

)
.

When b = 0, system (3.2) yields

a(M − ν1)(1 − ν1)2 +
nl
r

(1 − ν1)2 = P2. (4.18)

If a > 0, then Eq (4.18) has a solution ν1 < 1, then λ21 < 0. Since 8P2

(ν1−1)2 > 0 and (ν1 − 1 − a) > 0,
ν1 > 1+a and it clearly shows that Re(λ23) < 0 and Re(λ24) < 0. Hence, E2 is a stable equilibrium
point.

�
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4.4. Conservative behavior

The system (3.2) is expressed in vector form as CDβ
t0U = V(U) such that

V(U) =


V1(U)
V2(U)
V3(U)
V4(U)

 ,
where V1–V4 are defined in Eq (4.2). In this paper, we consider the values of the parameters as:

a = 0.24, b = 11, P = 3, n = 0.25, l = 0.3, r = 0.0001,M = 8.

The vector region f on R4 has a divergence [37] that can be expressed as

divV =
δV1(U)
δν

+
δV2(U)
δρ

+
δV3(U)
δψ

+
δV4(U)
δµ

,

= −a + ν − 1 + ν − 1 + l − 2rµ,

< −1.94 + 2F < 0.

Consider any smooth-boundary region in R4 denoted by B. Let B(t) = Pt(B), where Pt is the path
of the vector field f . Let V(t) represent B hyper-volume. According to Liouville’s theorem, it implies
that

dV(t)
dt

=

∫
B(t)

(divV)dνdρdψdµ. (4.19)

The (divV) value can be substituted in (4.19) to get

dV(t)
dt

≤ (−1.94 + 2F)
∫
B(t)

dνdρdψdµ ≤ (−1.94 + 2F)V(t). (4.20)

When the linear differential inequation (4.20) is integrated, we get

V(t) ≤ V0e(−1.94+2F)t, where, (−1.94 + 2F) < 0. (4.21)

We can conclude that −1.94 + 2F < 0 that is F < 0.97 is essential for the dissipativeness of the
system (3.2). The volume V(t) decreases exponentially to zero as t → ∞, according to Eq (4.21). As a
result, the novel chaotic system (3.2) is dissipative.

5. Existence of chaos

5.1. Lyapunove experiment

In this section, we explain the chaos that results from different fractional-order derivatives
concerning time. β = 1 and β = 0.95 are chosen for this purpose. Values of the Lyapunov exponent
for β = 1 and β = 0.95 are presented in Tables 1 and 2. Since at least two Lyapunov exponents are
positive, for β = 1, β = 0.95, the system exhibits hyperchaotic behavior as shown in Figure 2. Hence,

AIMS Mathematics Volume 9, Issue 10, 28560–28588.



28572

system (3.2) is a hyper-chaotic model. Authors of [7, 38, 39] have uncovered certain fractional-order
hyperchaotic systems with a one-positive Lyapunov exponent.

Table 1. LE of the atmospheric system (3.2) for α = 1.

T LE1 LE2 LE3 LE4

100 0.6808 0.7047 -0.5422 0.2999
200 0.8787 -0.4683 -1.2725 0.2999
300 0.9245 -0.2770 -1.0604 0.2999
400 0.3552 -0.1723 -0.9711 0.2998
500 0.4961 -0.0017 -1.2033 0.2998
600 0.6279 -0.0093 -1.1763 0.2997
700 0.6552 0.0670 -1.1259 0.2995
800 0.8235 0.1597 -1.2415 0.2993
900 0.8645 0.0018 -1.1701 0.2989
1000 0.7542 0.0581 -1.1636 0.2982

Table 2. LE of the atmospheric system (3.2) for α = 0.95.

T LE1 LE2 LE3 LE4

100 1.9752 -0.3531 -1.5458 0.3722
200 1.5186 -0.7385 -1.8590 0.3722
300 1.0170 -0.153 -1.7393 0.3721
400 0.8684 0.0294 -1.5641 0.3720
500 0.7705 -0.0592 -1.6395 0.3719
600 0.6112 0.0205 -1.5097 0.3716
700 0.9984 0.0283 -1.6295 0.3710
800 1.0916 0.0289 -1.6073 0.3699
900 1.2012 0.0938 -1.6858 0.3680
1000 1.3357 0.0448 -1.7237 0.3643
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Figure 2. The dynamics of LEs for different fractional-order system (3.2) for (a) β = 1 and
(b) β = 0.95.

AIMS Mathematics Volume 9, Issue 10, 28560–28588.



28573

5.2. Poincaré map

An additional technique to describe the chaotic reaction is a Poincaré map or a return map. It
forecasts the point on the trajectory where the current Poincaré section [40] crosses over. This mapping
aims to achieve a minimum of two objectives:

(1) It helps to reveal any sequential order from the recurrent visit of paths to a phase space cross-
section in graphical form.

(2) It aids in the prediction of the system’s subsequent states in that Poincaré section.

In this section, we have considered two Poincaré sections: U = {ρ(t), ψ(t) ∈ R2|ν(t) = −0.1} and
V = {ν(t), ψ(t) ∈ R2|ρ(t) = 1}.

While the Poincaré sections across chaotic attractors of the system (3.2) are relatively complex,
they typically exhibit some form of structure. We aim to observe the Poincaré section for changes
concerning the growth rate l and depletion rate r of GHGs in the atmosphere. r = 0.001, l = 0.3 leads
to Figure 3a, while r = 0.0001, l = 0.0037 leads to Figure 3b. Both figures represent the Poincaré
sections parallel to the ρ − ψ plane sectioned by ν = −0.1. On the other hand, r = 0.001, l = 0.0037
lead to the Poincaré section of Figure 3c parallel to ν − ψ plane sectioned by ρ = 1. Moreover, a
Poincaré section traversing a chaotic attractor typically consists of an infinite number of points. It
is significant to remember that each surface in the phase plane’s Poincaré section refers to a chaotic
attractor. Thus, for β = 1, it is expected that system (3.2) will produce chaotic attractors. The outcomes
of the modeling shown in Figure 4a are validated in this section via the Poincaré section parallel to ρ−ψ
and ν − ψ plane.
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Figure 3. Poincaré section parallel to (a) ρ−ψ plane sectioned by ν = −0.1 for r = 0.001, l =

0.0037, (b) ρ − ψ plane sectioned by ν = −0.1 for r = 0.001, l = 0.3, and (c) ν − ψ plane
sectioned by ρ = 1 for r = 0.001, l = 0.0037.
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Figure 4. Dynamics of the system (3.2). (a–d) 3D projection of ν, ρ, ψ; (e–h) 2D parametric
curve of ν and ρ; (i–l) 2D parametric curve of ν and ψ; (m–p) 2D parametric curve of ρ and
ψ, for fractional order β = 1, β = 0.95, β = 0.85, β = 0.75.
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5.3. Bifurcation

Quantitative bifurcation analysis is a tool to observe the existence of chaos in a system. Here, we
examine the dynamics of the system (3.2) for the change of the values of the parameter a. The presence
of chaos is shown in Figure 5 for b = 11, P = 3, n = 0.25, l = 0.3, r = 0.0001, and M = 8. The
a − ν, a − ρ, a − ψ phase portraits for a range of parameter a values can be seen in Figure 5. These
figures indicate the existence of chaos.
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Figure 5. Impact of parameter a on (a) westerly current, (b) sine waves, (c) oncosine waves.

6. Design of sliding mode controller (SMC)

The fundamental principle of the SMC rule is to drive the system state trajectories to certain,
predefined sliding surfaces where stability and other desirable system properties are present by use
of a discontinuous control. This is accomplished by establishing the sliding surface, which facilitates
the assessment of the fractional-order system’s efficacy in sliding mode. The sliding mode controller
is created after the sliding surface is determined. It is composed of two parts:

• We need to construct a sliding surface that depicts the intended system dynamics prior to creating
a sliding mode controller.
• We need to create a switching control rule such that, at each point on the sliding surface, it will

result in a sliding mode and drive any states that are outside of it to the surface in a finite amount
of time.
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A useful control method that guarantees both the occurrence of sliding motion and chaotic system
control is the SMC law. Among its many fascinating characteristics are the resistance to parameters
such as uncertainty and the desensitization to outside disruptions.

With the aid of an initial numerical analysis, we found that controlling the first equation is
crucial to control the chaos within the system. The SMC law is a practical control strategy that
ensures both chaotic system control and sliding motion. Resistance to constraints like uncertainty
and desensitization to outside disruptions are only two of its many intriguing traits. Let us assume that
A(t) represents a control input that has to be applied in the following manner to the first state equation
of the fractional-order system (3.2)

CDβ1
t0 ν = −ρ2 − ψ2 − aν + aM + nµ + A(t),

CDβ2
t0 ρ = νρ − bνψ − ρ + P,

CDβ3
t0 ψ = bνρ + νψ − ψ,

CDβ4
t0 µ = lµ − rµ2.

(6.1)

We propose a sliding surface λ(U(t)) as a function of the system states U(t) = (ν(t), ρ(t), ψ(t), µ(t)) as
follows:

λ(U(t)) = CDβ1−1ν(t) + CD−1(δ(U(t))

= CDβ1−1ν(t) +

∫ t

0
δ(U(τ))dτ, (6.2)

in which the function δ(U(t)) is described as

δ(U(t)) = ρ2 + ψ2 − mµ + sν, (6.3)

such that it involves all the state variables. Here, the constant s > 0 is arbitrary.
The sliding surface and its derivative in a sliding mode must satisfy

λ(U(t)) = 0,
λ′(U(t)) = 0. (6.4)

From (6.2) and (6.4), we get λ′(U(t)) =C Dβ1ν(t) + δ(U(t)) = 0. Hence,

CDβ1ν(t) = −δ(U(t)) = −
(
ρ2(t) + ψ2(t) − mµ + sν(t)

)
. (6.5)

Hence, from the SMC theory, the first equation of systems (6.1) and (6.5) is applied to determine the
corresponding control law

Aeq(t) = Dβ1ν(t) + ρ2 + ψ2 + aν − aM − nµ

= −ρ2 − ψ2 + mµ − sν + ρ2 + ψ2 + aν − aM − nµ

= (a − s)ν − aM + (m − n)µ. (6.6)

With respect to the sliding criterion, the reaching law can be selected as follows:

Ar = Wr sign(λ),
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where

sign(λ) =


+1, λ > 0,
0, λ = 0,
−1, λ < 0,

and the controller gain is represented as Wr.
Here, the total control law can be defined as follows:

A(t) = Aeq + Ar = (a − s)ν − aM + (m − n)µ + Wr sgn(λ). (6.7)

Theorem 6.1. The fractional system (6.1) with the influence of the control law (6.7) is globally
asymptotically stable if the controller gains Wr < 0.

Proof. Let us choose the Lyapunov candidate

X =
1
2

(λ(U(t)))2. (6.8)

Its derivative is computed by

Ẋ(U(t)) = λ(U(t))λ̇(U(t))
= λ(U(t))[Dβ1ν + ρ2 + ψ2 − mµ + sν]
= λ(U(t))[−ρ2 − ψ2 − aν + aM + nµ + A + ρ2 + ψ2 − mµ + sν]
= λ(U(t))[−aν + aM + nµ + aν − sν − aM + mµ − nµ + Wr sgn(λ(U(t))) − mµ + sν]
= Wr|λ(U(t))| < 0.

Thus, the Lyapunov function X meets the conditions of the Lyapunov theorem, that is X > 0 and Ẋ < 0.
Hence, the controller system (6.1) with the impact of the control law (6.7) is globally asymptotically
stable when Wr < 0. �

Theorem 6.2. The finite-time interval for fractional system (6.1) to reach the sliding surface is [0, τr]
with τr = − 1

2Wr
(λ(U(0)))2.

Proof. For stability and finite-time convergence, the control gain Wr must be chosen such that Ẋ(U(t))
is negative definite. From Theorem 6.1, we have

Ẋ(U(t)) = Wr|λ(U(t))|, (6.9)

where Wr < 0. We consider the time to reach the sliding surface to be τr. Integrating both sides of
Eq (6.9), from the initial time t = 0 to the time τr, when λ(U(t)) tends to zero, we get∫ τr

0

d(X(U(t)))
|λ(U(t))|

=

∫ τr

0
Wrdt. (6.10)

We have X(U(τr)) = 0 and X(U(0)) = 1
2 (λ(U(0)))2. This yields that

τr = −
1

2Wr
(λ(U(0)))2,

where λ(U(0)) is the value of the sliding surface at the initial state. By decreasing Wr, one can reduce
the finite-time interval, ensuring the system reaches the sliding surface faster. �
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Theorem 6.3. When there are uncertainities and an external disturbance, the fractional system (6.5)
takes on the following form:

CDβ1
t0 ν = −ρ2 − ψ2 − aν + aM + nµ + A(t) + ∆h(ν, ρ, ψ, µ) + f ,

CDβ2
t0 ρ = νρ − bνψ − ρ + P,

CDβ3
t0 ψ = bνρ + νψ − ψ, (6.11)

CDβ4
t0 µ = lµ − rµ2.

Where ∆h(ν, ρ, ψ, µ) and f (t) are considered to be bounded such that ∆h(ν, ρ, ψ, µ) < g1, and f (t) <
g2, where g1, g2 > 0. Then, the above system (6.11) with the impact of SMC law (6.7) is globally
asymptotically stable if Wr < −(g1 + g2).

Proof. We consider here the Lyapunov function as

X =
1
2
λ2.

We have

Ẋ = λ(t)λ̇(t)
= λ[Dβ1ν + ρ2 + ψ2 − mµ + sν]
= λ[−ρ2 − ψ2 − aν + aM + nµ + A + ∆h(ν, ρ, ψ, µ) + f + ρ2 + ψ2 − mµ + sν]
= λ[−aν + aM + nµ + aν − aM − nµ + Wr sgn(λ) + ∆h(ν, ρ, ψ, µ) + f ]
≤ (Wr + g1 + g2)|λ|. (6.12)

Hence, Ẋ < 0 and Wr < −(g1 + g2). �

7. Numerical simulations

Using the Adams-Bashforth-Moulton approach, which is compatible with FDEs, numerical
simulations are performed [41]. We consider the parameter values at which the projected atmospheric
model (3.2) becomes chaotic, namely a = 0.24, b = 11, P = 3, n = 0.25, l = 0.3, r = 0.0001, and
M = 8. (ν0, ρ0, ψ0, µ0) = (−0.1, −0.1, −0.1, 0.1) represents the initial approximation of state variable
of the atmospheric model (3.2).

7.1. Numerical validation of stability profile

The equilibrium points corresponding to the model (3.2) are E1(7.995, 0.002, 0.033, 0),
E2(0.184, 0.509, 1.271, 0), E3(−0.163, 0.759,−1.175, 0), E4(3133, 0, 0.00008, 3000), E5(0.008 −
0.089i, 248.584 + 22.469i, 22.605−247.08i, 3000), and E6(0.008 + 0.089i, 248.584−22.469i, 22.605 +

247.08i, 3000).
Here, equilibrium points E1–E4 are real, whereas E5, and E6 are complex conjugate. As atmospheric

events are real phenomena, we shall consider only real equilibrium points.

(1) Eigenvalues of the Jacobian matrix at E1 are

λ1,1 = 6.995 + 87.947i, λ1,2 = 6.995 − 87.947i, λ1,3 = 0.3, λ1,4 = −0.239.
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From the Matignon criterion provided by [42],

|arg(λ1,1)| = 1.491 <
π

2
, |arg(λ1,2)| = 1.491 <

π

2
,

|arg(λ1,3)| = 0 <
π

2
, |arg(λ1,4)| = 3.142 >

π

2
.

As |arg(λ1,3)| < βπ

2 holds for any values of fractional derivative β, the equilibrium point E1 is
unstable.

(2) Eigenvalues of the Jacobian matrix at E2 are

λ2,1 = −2.56 + 4.318i, λ2,2 = −2.56 − 4.318i, λ2,3 = 3.183, λ2,4 = 0.3.

|arg(λ2,1)| = 2.105 >
π

2
, |arg(λ2,2)| = 2.105 >

π

2
, |arg(λ2,3)| = 0 <

π

2
, |arg(λ2,4)| = 0 <

π

2
.

Since |arg(λ2, j)| <
βπ

2 , 3 ≤ j ≤ 4, for 0 < β ≤ 1, the equilibrium point E2 is unstable.
(3) At E3, the eigenvalues of the Jacobian matrix are

λ3,1 = −4.569, λ3,2 = 1.001 + 4.149i, λ3,3 = 1.001 − 4.149i, λ3,4 = 0.3.

|arg(λ3,1)| = π >
π

2
, |arg(λ3,2)| = 1.33 <

π

2
, |arg(λ3,3)| = 1.33 <

π

2
, |arg(λ3,4)| = 0 <

π

2
.

Since |arg(λ3,4)| ≤ βπ

2 , for 0 < β ≤ 1, the equilibrium point E3 is always unstable.
(4) Eigenvalues of the Jacobian matrix at E4 are

λ4,1 = 3132 + 34463i, λ4,2 = 3132 − 34463i, λ4,3 = −0.3, λ4,4 = −0.24.

|arg(λ4,1)| = 1.48 <
π

2
, |arg(λ4,2)| = 1.48 <

π

2
, |arg(λ4,3)| = π >

π

2
, |arg(λ4,4)| = π >

π

2
.

Since |arg(λ4,i)| <
βπ

2 , 1 ≤ i ≤ 2, 0.945 < β ≤ 1, the system (3.2) is unstable at E4 for 0.945 <

β ≤ 1.

7.2. Dynamics of system (3.2)

We consider β1 = β2 = β3 = β4 = β. Figures 1 and 6 display the system trajectories of Eq (3.2) for
commensurate orders β = 1, β = 0.95, β = 0.85, and β = 0.75. Figure 1 represents the dynamics of the
system (3.1) illustrating the impact of a fixed input of CO2. On the other hand, Figure 6 depicts the
dynamics of the system (3.2) illustrating a continuous input of GHGs.
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Figure 6. Time series analysis of the system (3.2). (a–d) for ν, (e-h) for ρ, (i–l) for ψ, (m–p)
for µ for fractional order β, i.e., β = 1, β = 0.95, β = 0.85, β = 0.75.

The Southern Hemisphere westerlies (SHWs) are crucial for regulating global climate and ocean
circulation, but their future changes under varying levels of greenhouse gases (GHG) remain uncertain.
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According to this study, GHG-induced surface warming is unevenly distributed in the Southern
Hemisphere under moderate to high GHG forcing, with the greatest warming occurring in sub-
Antarctic coastal regions. Additionally, land areas on the continent are expected to warm more rapidly
than the surrounding oceans. As a result, the equator-to-pole temperature gradient is likely to increase
south of 600S latitude and decrease north of 600S latitude. This could lead to a strengthening of
westerly wind speeds and a poleward shift of the SHWs [43]. The fourth equation of system (3.2)
represents the changes in GHGs’ intake in the atmosphere, highlighting the fact that, along with the
growth of GHGs, there are depletions of GHGs due to their internal reactions. Chaotic behaviors are
strongly observed in both Figures 1 and 6. However, in Figure 1, for various values of β, we observe the
identical pattern of the strength of the westerly current, cosine, and sine waves. Whereas in Figure 6,
an increasing strength of sine and cosine waves concerning time is noticeable. Also, the presence of
continuous input of GHGs delays the amplitude of westerlies. This suggests that stronger westerlies
result in more intense westerly currents compared to the new 4D atmospheric model (3.2) for the
fractional order shown in Figure 6. 3D and 2D portfolios are shown in Figure 4. The increase in the
strength of the westerlies can influence sea surface temperatures and marine ecosystems by affecting
ocean circulation. Therefore, controlling these westerlies is critical.

A preliminary numerical investigation reveals that the installation of the control variable in the first
equation of (3.2) will induce control in the underlying chaos. As a result, we obtained the resulting
control system (6.1). The dynamics of the system’s solution under the impact of SMC are projected in
Figure 7, demonstrating that the resultant solution shows that chaotic behavior becomes controlled.
The strength of the westerlies in the new 4D model increases as the fractional differential order
decreases from β = 1 to β = 0.75. Moreover, we observe that when the fractional order decreases,
the corresponding GHGs also decrease.

Figure 8a–d shows the dynamics of the non-commensurate fractional-order system (3.2) without
controller, and Figure 8e–h shows the dynamics of the non-commensurate fractional-order system (6.1)
with controller, for β1 = 0.85, β2 = 0.95, β3 = 0.9, and β4 = 1.

We observed the dynamics of the controlled system (6.1) under the influence of uncertainties and
external disturbances, namely ∆h(ν, ρ, ψ, µ) = 0.11 sin(ν3 + ρ3) and f (t) = 0.04 sin(πt), respectively.
Here, |∆h(ν, ρ, ψ, µ)| ≤ g1 = 0.11 and | f (t)| ≤ g2 = 0.04. By incorporating these parameters, we obtain
the system (6.11). Figure 9 represent the dynamics of the non-commensurate ordered system (6.11)
in the presence of assigned uncertainties and external disturbances. Westerlies, sine, and cosine waves
remain in control even when external disturbances and uncertainties are applied. The system converges
toward stability as pressure over the poles increases and the strong westerlies weaken. Figure 10
illustrates that even in the face of uncertainty, the controlled system (6.11) is efficient in controlling
the chaos. In Figure 10, we show the power of the controller in system (6.11) for non-commensurate
fractional derivatives β1 = 0.85, β2 = 0.95, β3 = 0.9, and β4 = 1. The controller has forced the
states of the system onto the sliding plane, where they remain for all following times. The simulation
results demonstrate that in all three scenarios, the system responds to the derived control law (6.7).
Put differently, the findings of the simulation demonstrate that the theoretical conclusions drawn are
workable and effective for regulating the fractional-order atmospheric system.
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Figure 7. Dynamics of ν, ρ, and ψ with reference to the controlled system (6.3) for fractional
order β = 1, β = 0.95, β = 0.85, and β = 0.75.
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Figure 8. (a–d): Non-commensurate system (3.2) without controller. (e–h): Non-
commensurate system (6.1) with controller for β1 = 0.85, β2 = 0.95, β3 = 0.9, and β4 = 1.
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Figure 9. The dynamics of the controlled system (6.11) with uncertainty and external
disturbance for commensurate order (a) β = 1, (b) β = 0.95, (c) β = 0.85, and (d) β = 0.75.
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Figure 10. Dynamics of the non-commensurate system (6.11) for β1 = 0.85, β2 = 0.95, β3 =

0.9, and β4 = 1.

AIMS Mathematics Volume 9, Issue 10, 28560–28588.



28584

7.3. Validation of existence of Theorem 4.1

Using the following set of parameter values, we validated the existence of the solution for the
projected model: a = 0.24, b = 11, P = 3, n = 0.25, l = 0.3, r = 0.0001, M = 8. Furthermore,
taking the guidance from the bounds shown in Figure 6, we considered η1 = 4, η2 = 6.5, η3 = 6.5, and
η4 = 170.

(1) For a maximum Φ1, we examined the values of fixed parameters. Thus, we obtained Φ1 =

156.24,Φ2 = 57.2,Φ3 = 57.2,Φ4 = 0.584. In this case, the strength of the westerly current is
maximized due to the combined impact of sine and cosine waves; these observations are shown in
Figures 4a, 6a, 6e, and 6i.

(2) To get the Φ4 maximum in comparison to others, we increased the depletion rate to r = 0.5,
maintaining the same values for the other parameters. Consequently, we obtained Φ1 = 156.24,Φ2 =

57.2,Φ3 = 57.2,Φ4 = 170.55. When the depletion rate of GHGs increases, the exponential growth of
GHGs (Figure 6m–p) converts to steady growth (Figure 11d), and this leads to depleting the amplitude
of the strength of the westerly current. These observations are shown in Figure 11.
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Figure 11. Dynamics of the system (3.2) for maximized Φ4 for a = 0.24, b = 11, P = 3, n =

0.25, r = 0.5, and l = 0.3.
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8. Conclusions

In summary, our research on the fractional four-dimensional chaotic atmospheric model has yielded
significant insights into the existence and uniqueness of solutions, the system’s dissipative nature,
and methods for controlling chaos. We calculated the Lyapunov exponents, which are critical for
understanding the system’s stability and chaotic behavior. Poincaré map and bifurcation analysis
strengthened the existence of chaos in the projected model. To address the chaos in the atmospheric
system, we derived a sliding-mode controller. This control mechanism is designed to globally stabilize
the system, ensuring it can operate under the influence of external disturbances. The numerical
simulations illustrate that the sliding-mode controller successfully stabilizes the chaotic system,
thereby proving its practical applicability. The control law we proposed effectively mitigates chaos
for both commensurate and non-commensurate orders of the system. All theoretical findings are well-
supported by numerical simulations and graphical representations, enhancing our understanding of
complex atmospheric models.
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