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Abstract: In this paper, polynomial equations with real coefficients and in one variable were
considered which contained a small, positive but specified and fixed parameter ε0 , 0. By using the
classical asymptotic method, roots of the polynomial equations have been constructed in the literature,
which were proved to be valid for sufficiently small ε-values (or equivalently for ε→ 0). In this paper,
it was assumed that for some or all roots of a polynomial equation, the first few terms in a Taylor or
Laurent series in a small parameter depending on ε exist and can be constructed. We also assumed
that at least two approximations x1(ε) and x2(ε) for the real roots exist and can be constructed. For a
complex root, we assumed that at least two real approximations a1(ε) and a2(ε) for the real part of this
root, and that at least two real approximations b1(ε) and b2(ε) for the imaginary part of this root, exist
and can be constructed. Usually it was not clear whether for ε = ε0 the approximations were valid or
not. It was shown in this paper how the classical asymptotic method in combination with the bisection
method could be used to prove how accurate the constructed approximations of the roots were for a
given interval in ε (usually including the specified and fixed value ε0 , 0). The method was illustrated
by studying a polynomial equation of degree five with a small but fixed parameter ε0 = 0.1. It was
shown how (absolute and relative) error estimates for the real and imaginary parts of the roots could
be obtained for all values of the small parameter in the interval (0, ε0].
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1. Introduction

In the field of nonlinear dynamics, finding roots of polynomial equations plays an important
role. Determining equilibrium points of systems of differential equations (or of systems of difference
equations) with polynomial nonlinearities leads, in a lot of cases, to solving a polynomial equation.
Determining the stability (in linearized sense) of equilibrium points of differential equations or of
difference equations (maps) often leads to finding roots of polynomial equations with constant and real
coefficients.

In this paper, we will consider polynomial equations of degree n for which the coefficients in the
equation are real. The fundamental theorem of algebra tells us that such a polynomial equation of
degree n has n roots (of which some roots may be coinciding). It is also well-known that polynomial
equations up to degree 4 can be solved exactly and algebraically, and that for equations of degree 5
and higher that this in general is not possible. A lot of research has been done to compute accurate
approximations of the (real or complex) roots of these polynomial equations by means of numerical
methods or by means of asymptotic methods (when a small or large parameter is present in the
equation which tends to zero or infinity, respectively). Both methods find their origins in the works of
Newton, Euler, etc. Numerical methods obtained a lot of attention with the introduction of computers
in the sixties of the previous century, such as numerical methods to solve nonlinear transcendental
equations, to study polynomial equations, and to analyze some errors; see [1, 2]. Nowadays, some
numerical methods still obtain a lot of attention. Root of polynomials with complex coefficients and
the applied multi-precision algorithm are studied in [3, 4]. Fast algorithms for root finding are studied
in [5, 6]. Furthermore, the iterative method by using polynomiography is studied in [7], and two step
simultaneous is studied in [8].

Several root-finding algorithms exist that use hybrid methods to reduce computational time and save
memory; see [9–11]. Also, asymptotic methods to solve approximately polynomial equations obtained
a lot of attention in the last 60 years. Several root-finding studies are using perturbation methods;
see [12–15]. Singular problems have been studied in [16–19], and the asymptotic analysis has been
discussed in [20–23].

However, in all of these books and papers on perturbation methods to construct approximations of
the roots (or a root) of the polynomial equation, it is only indicated or proved that the approximations
are valid for a sufficiently small parameter or for the parameter tending to zero. These indications
or proofs are based on different forms of the implicit function theorem. For instance, for a function
f (x, ε), which is analytic in both variables:

Theorem 1. Let x0 be a complex number such that f (x0, 0) = 0, and let f (x, ε) be analytic at x = x0

and ε = 0. If ∂ f
∂x (x0, 0) , 0, then there exist constants a > 0 and b > 0 such that for each ε with

|ε | < a, the equation f (x, ε) = 0 has a unique and simple root x = x(ε) for |x − x0| < b, where x(ε) is
an analytic function in ε for |ε| < a with x(0) = x0.

Or, for example, for a real-valued function f (x, ε) in real variables:

Theorem 2. Let x0 be a real number such that f (x0, 0) = 0, and let f (x, ε) be a real-valued function
for which all (mixed) partial derivatives up to order m > 0 are continuous in a neighborhood of x = x0

and ε = 0. If ∂ f
∂x (x0, 0) , 0, then there exists an m times continuously differentiable function x = x(ε)

in a neighborhood of ε = 0 such that f (x(ε), ε) = 0 with x(0) = x0.
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Now, it should be observed that Theorem 1 contains two unknown constants a and b, and that
Theorem 2 involves a similar vagueness concerning the neighborhood of x = x0 and ε = 0. In practice,
ε has a specified and fixed real value ε0, and from both theorems it cannot be concluded that ε0 satisfies
the conditions as mentioned in both theorems. Only in [ [12],p.30] is this issue observed: “For most
problems of actual interest, it is very difficult to carry out these calculations (to obtain these constants
a and b, or to obtain the neighborhood of x = x0 and ε = 0 ), and it is almost never done. In
practice, a result as Theorem 1 or 2 provides a reason to trust the approximations to some extent, and
then one can turn to numerical or experimental data for more detailed information about accuracy and
range of validity”. This is exactly what we see in the literature: the asymptotic approximation for
ε → 0 is compared to numerical approximations or to available, exact roots for different values of ε.
In [12], the author determines the accuracy of the roots of a quadratic polynomial on a certain interval
in ε by estimating the remainder term R(ε) for the polynomial equation P2(x, ε) = 0, where x(ε) is
approximated by x0 + εx1 + ε

2R(ε). The computations to obtain R(ε) and to determine an interval
of validity for ε, are indeed already quite complicated for such a simple problem. In this paper we
propose another method to determine the accuracy of a root on a given interval in ε. In fact, it will
be a method based on the bisection method and the usual perturbation method to determine roots of
polynomial equations.

We assume that at least two real approximations x1(ε) and x2(ε) for a real root x(ε) exist and can be
constructed. For a complex root, we assume that at least two real approximations a1(ε) and a2(ε) for the
real part of this root and that at least two real approximations b1(ε) and b2(ε) for the imaginary part of
this root exist and can be constructed. This paper is organized as follows. In Section 2 of this paper, we
formulate and prove two theorems in which the accuracies of the approximations of real and complex
roots of polynomial equations can be obtained for all ε on a given interval for ε. In Section 3 of this
paper, the two theorems will be applied to a polynomial equation of degree 5, which contains a small
parameter ε. The equation contains real and complex roots, and some of the roots turn out to be large.
Absolute and relative errors in the approximations of the roots will be determined for all ε ∈ (0, ε0]
with ε0 = 0.1. In Section 4 of this paper, we will formulate a general algorithm to possibly determine
approximations of roots of polynomial equations ( including error estimates on a given interval for ε).
Finally, in Section 5, we draw some conclusions and discuss some directions for future research.

2. On the accuracy of an approximation of a real or complex root for all ε ∈ (0, ε0].

In this section of the paper, we consider nth degree polynomial equations with real coefficients.
Based on the fundamental theorem of algebra, we know that such a polynomial equation has n roots
(which are not necessarily all different). These roots can be real or complex-valued. Information on
how many positive (or negative) real roots might be present can be obtained from Descartes’ rule of
signs, which states for a polynomial equation pn(x) = 0 in standard form that the number of positive
real roots of pn(x) = 0 is either equal to the number of variations in sign of pn(x) or less than that by
an even number, and that the number of negative real roots is either equal to the number of variations
in sign of pn(−x) or less than that by an even number. In Descartes’ rule of signs, zero coefficients are
ignored.

For polynomial equations, the implicit function theorem (as formulated in the introduction of this
paper) can be applied. So, straightforward perturbation expansions in ε (or in another small parameter
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depending on ε and which is obtained after a rescaling procedure) can be used to approximate roots of
the polynomial equation for ε tending to zero. In the following theorem 3 for real roots and in theorem
4 for complex roots, it will be shown under what conditions these perturbation expansions can be used
for all ε ∈ (0, ε0], where ε0 is a fixed, real parameter. Moreover, explicit error estimates can be given,
which are valid for all ε ∈ (0, ε0].

Theorem 3. Consider the polynomial equation of degree n with n ∈ Z+:

pn (x, ε) ≡ anxn + an−1xn−1 + ... + a1x + a0 = 0, (1)

where the real coefficients a0, a1, ..., an depend on ε. If functions x1(ε) ∈ R and x2(ε) ∈ R can be found
such that pn (x1(ε), ε) > 0 and pn (x2(ε), ε) < 0 for all ε = (0, ε0], then at least one real root x(ε) in
between x1(ε) and x2(ε) exists, and this root can be approximated by x1(ε)+x2(ε)

2 with an absolute error
less than or equal to 1

2 |(x2(ε) − x1(ε))|.

Proof. Let x1(ε) ∈ R and x2(ε) ∈ R, for which pn(x1(ε), ε) and pn(x2(ε), ε) have opposite signs for all
ε ∈ (0, ε0]. Since pn(x, ε) is a polynomial with real coefficients, we then also know that a real root
exists, satisfying x1(ε) < x(ε) < x2(ε) for all ε ∈ (0, ε0] (where it has been assumed without loss of
generality that x1(ε) < x2(ε) and that pn(x1, ε) > 0 and pn(x2, ε) < 0). Since pn(x, ε) is continuous,
then the mean value theorem guarantees that there exists a x(ε) in between x1(ε) and x2(ε) such that
pn(x(ε), ε) = 0. In fact, this is a simple application of the bisection method. From the inequality for
x1(ε) ≤ x(ε) ≤ x2(ε), it follows that

x(ε) =
1
2

(x1(ε) + x2(ε)) + Eabs(ε),

where the absolute error Eabs(ε) satisfies:|Eabs(ε)| < 1
2 (x2(ε) − x1(ε)) for all ε ∈ (0, ε0]. □

Theorem 4. Let x(ε) = a(ε) + ib(ε) be a complex valued root of the polynomial equation (1), and let
a(ε) and b(ε) be real functions in ε. By substituting a(ε) + ib(ε) into the polynomial equation (1), and
by taking apart the real and imaginary parts in the so-obtained equation, one obtains a system of two
real and nonlinear polynomial equations{

f1 (a(ε), b(ε), ε) ≡ Re (pn(a(ε) + ib(ε), ε)) = 0,
f2 (a(ε), b(ε), ε) ≡ Im (pn(a(ε) + ib(ε), ε)) = 0.

(2)

This system of polynomial equations (2) can be reduced to a triangular system of real polynomial
equations {

g1 (a(ε), ε) = 0,
g2 (a(ε), b(ε), ε) = 0,

or
{

g3 (a(ε), b(ε), ε) = 0,
g4 (b(ε), ε) = 0.

(3)

If functions a1(ε), a2(ε), b1(ε), and b2(ε) can be constructed such that

g1 (a1(ε), ε) > 0, g1 (a2(ε), ε) < 0, g4 (b1(ε), ε) > 0, and g4 (b2(ε), ε) < 0

for all ε ∈ (0, ε0], then the polynomial equation (1) has a complex-valued root a(ε) + ib(ε), which can
be approximated by 1

2 (a1(ε) + a2(ε)) + i
2 (b1(ε) + b2(ε)), where the absolute error in the real part and

in the imaginary part are at most 1
2 |(a2(ε)−a1(ε))| and 1

2 |(b2(ε)−b1(ε))|, respectively, for all ε ∈ (0, ε0].
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Proof. Let a complex-valued root x(ε) be given by a(ε) + ib(ε), where a(ε) and b(ε) are real-valued
functions in ε with b(ε) , 0. By taking apart the real part and the imaginary part of pn(a(ε)+ ib(ε), ε) =
0, we obtain {

Re (pn(a(ε) + ib(ε), ε)) = 0,
Im (pn(a(ε) + ib(ε), ε)) = 0.

We assume that pn(x, ε) is a polynomial of degree n. These real and imaginary parts are both real
polynomials in a(ε) and b(ε). So, in fact, we obtain : f1(a(ε), b(ε), ε) = 0 and f2(a(ε), b(ε), ε) = 0,
where f1 and f2 are both polynomials in a(ε) and b(ε). Now, this system of polynomial equations can
be transformed into regular chains (or equivalently, into a triangular system of polynomial equations)
by using the triangular decomposition method for polynomial systems (see [2, 5, 24], for the existence
proofs of this decomposition). There are a few algorithms to compute such a triangular decomposition
of a polynomial system into regular chains or into regular semi-algebraic systems (see again [2,5,24]),
and we obtain {

g1 (a(ε), ε) = 0,
g2 (a(ε), b(ε), ε) = 0,

or
{

g3 (a(ε), b(ε), ε) = 0,
g4 (b(ε), ε) = 0,

where g1, g2, g3, and g4 are real polynomial functions in their arguments. Obviously, such triangular
systems are ready to be solved by evaluating the unknown one after the other (just like for triangular,
linear systems of equations). From g1(a(ε), ε) = 0 and from g4(b(ε), ε) = 0, we construct
approximations for a(ε) and for b(ε). Observe that g1 and g4 are both real functions (and a(ε) and
b(ε) are real). We assume that two approximations for a(ε) exist, let’s say, a1(ε) and a2(ε) for which
g1(a1(ε), ε) and g1(a2(ε), ε) have opposite signs for all ε ∈ (0, ε0]. Similarly for b(ε), we assume that
two approximations for b(ε) exist, let’s say, b1(ε) and b2(ε) for which g4(b1(ε), ε) and g4(b2(ε), ε) have
opposite signs for all ε ∈ (0, ε0]. The bisection method then simply implies that (assuming without
loss of generality that a1(ε) < a2(ε) and b1(ε) < b2(ε)):

a(ε) =
1
2

(a1(ε) + a2(ε)) + Ea
abs(ε),

b(ε) =
1
2

(b1(ε) + b2(ε)) + Eb
abs(ε), (4)

where the absolute errors Ea
abs(ε) and Eb

abs(ε) satisfy |Ea
abs(ε)| <

1
2 (a2(ε)−a1(ε)) and |Eb

abs(ε)| <
1
2 (b2(ε)−

b1(ε)) for all ε ∈ (0, ε0]. □

So far we showed how the accuracy of approximations of (real or complex-valued) roots of
polynomial equations can be obtained not only for ε tending to zero, but also for all ε ∈ (0, ε0].
In the next section, it will be shown for a nontrivial example how these two theorems can be applied.

3. Accurate approximations of roots of a 5th degree polynomial equation.

In this section, we will consider the following 5th degree polynomial equation:

p5(x, ε) ≡ εx5 + x2 − 1 = 0, (5)

AIMS Mathematics Volume 9, Issue 10, 28542–28559.



28547

where ε is a small, real but fixed parameter, that is, ε = ε0 = 0.1. When we assume for equation (5)
that ε is a small but positive parameter, that is, 0 < ε ≪ 1, then we can apply the classical perturbation
method to construct the formal approximations of the five roots of equation (5) for ε sufficiently small.
However, does “ε sufficiently small” include ε = ε0 = 0.1? This question is usually never answered in
the classical literature on perturbation methods for polynomial equations (see, for instance, [12–16]).
By using a straightforward perturbation expansion for the root x(ε), that is,

x (ε) ∼ x0 + εx1 + ε
2x2 + ..., (6)

where (for i = 0, 1, 2, ..) xi are constants independent of ε, one will find two approximations for the
roots. The other three approximations are found by the rescaling procedure (also referred to as the
method of maximal balance, or of distinguished limits,..., or Newton’s Polyhedron method):

x = εαy, (7)

where α is a constant and y = y(ε) is a strict O(1) function depending on ε. By substituting (7) into (5),
one obtains:

ε1+5α.y5 + ε2α.y − 1 = 0⇔ ε1+5α.y5 + ε2α.y − ε0.1 = 0. (8)

For (8), the rescaling procedure implies that values for α should be determined such that two terms
in (8) are dominating the remaining term (or the remaining term is of the same order of magnitude
as the other two terms). It is not difficult to see that only two values for α will lead to what is called
significant balances in the equation, that is, α = 0 or α = −1

3 . In Section 3.1 of this paper, we will
study the approximations of the roots and their accuracies for ε ∈ (0, 0.1] when α = 0, and in Section
3.2 we will do the same for the case α = −1

3 . It will turn out in Section 3.1 that two real roots have to
be approximated, and in Section 3.2 that one large real root and two large complex-valued roots have
to be approximated.

For the polynomial equation (5), the following theorem will be proved in the following subsection.

Theorem 5. Consider the polynomial equation (5). For all ε ∈ (0, 0.1], the equation will have three
real roots and two complex roots, and these roots can be approximated by (for all ε ∈ (0, 0.1]):

(i) 1 − 1
2ε +

9
16ε

2 with an absolute error of at most 7
16ε

2.

(ii) −1 − 1
2ε −

25
16ε

2 with an absolute error of at most 7
16ε

2.

(iii) ε−
1
3

(
−1 + 1

3ε
2
3 + + 1

3ε
4
3

)
with an absolute error of at most 1

3ε.

(iv) ε−
1
3

(
1
2 −

1
6ε

2
3 + 1

6ε
4
3

)
± iε−

1
3

(
1
2

√
3 + 1

6

√
3ε

2
3 − 2

9

√
3ε

4
3

)
with an absolute error in the real part of at

most 1
6ε, and with an absolute error in the imaginary part of at most 1

3

√
3ε.

3.1. Two real roots using straightforward perturbation expansions where α = 0.

In this subsection, we will determine accurate approximations of two roots of (5), which can be
obtained by using the straightforward perturbation expansion (6). By substituting (6) into (5), and by
collecting terms of O(1), terms of O(ε), and so on, one finds the following problems:

O(1) − terms : x2
0 − 1 = 0,
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O(ε) − terms : x5
0 + 2x0x1 = 0, (9)

O(ε2) − terms : 2x0x2 + x2
1 + 5x4

0x1 = 0, and so on.

From (9) x0, x1, x2, .. can readily be determined, yielding:

x0 = 1, x1 = −
1
2
, x2 =

9
8
, x3 = −

7
2
, ..., or

x0 = −1, x1 = −
1
2
, x2 = −

9
8
, x3 = −

7
2
, ...

In this way, we found two formal approximations of two roots of p5(x, ε) = 0. At this moment, we
do not know whether these roots are real or not, and we do not know how accurate these approximations
are for all ε ∈ (0, 0.1]. However, from the implicit function theorem, we know that a unique root of
p5(x, ε) = 0 branches off from x0 = 1, and that a unique root branches off from x0 = −1 for sufficiently
small values of ε. Now, let’s consider the first root with x0 = 1, x1 = −

1
2 , x2 =

9
8 , and so on, and observe

that for all ε ∈ (0, 0.1]:

p5(x0, ε) = p5(1, ε) = ε > 0,

p5(x0 + εx1, ε) = p5(1 −
1
2
ε, ε) = −

9
4
ε2 +

5
2
ε3 −

5
4
ε4 +

5
16
ε5 −

1
32
ε6 < 0,

p5(x0 + εx1 + ε
2x2, ε) = p5(1 −

1
2
ε +

9
8
ε2, ε) = 7ε3 −

719
64
ε4 +

685
32
ε5 −

1397
64
ε6

+
6165
256
ε7 −

2025
128
ε8 +

47385
4096

ε9 −
32805
8192

ε10

+
59049
32768

ε11 > 0,

and so on. Now it should be observed that p5(x, ε) is a polynomial function in x with real coefficients,
and that p5(x, ε) takes positive and negative values. Since p5(x, ε) is a continuous and real function
for real values of x, the bisection method now implies that in between the real x-values for which a
positive and a negative function value occur, there should exist a real zero (or root) of p5(x, ε) = 0. For
the root x(ε) of the polynomial equation (5) which branches off from x0 = 1, we can now conclude that
this root is real and satisfies for all ε ∈ (0, 0.1]:

1 −
1
2
ε < x(ε) < 1,

1 −
1
2
ε < x(ε) < 1 −

1
2
ε +

9
8
ε2.

From the last inequalities, we can conclude that (based on the bisection method)

x(ε) = 1 −
1
2
ε +

9
16
ε2 + E1

abs(ε), (10)

where the absolute error E1
abs(ε) satisfies:

∣∣∣E1
abs(ε)

∣∣∣ < 9
16ε

2 for all ε ∈ (0, 0.1]. So, when we take
as approximation of this first root, 1 − 1

2ε +
9

16ε
2, then we now know that both the relative error,

and the absolute error are less then 1% for all ε ∈ (0, 0.1]. Now let’s consider the second root with
x0 = −1, x1 = −

1
2 , x2 = −

9
8 , and so on, and observe that for all ε ∈ (0, 0.1]:

p5(−1, ε) = −ε < 0,
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p5(−1 −
1
2
ε, ε) = −

9
4
ε2 −

5
2
ε3 −

5
4
ε4 −

5
16
ε5 −

1
32
ε6 < 0,

p5(−1 −
1
2
ε −

9
8
ε2, ε) = −7ε3 −

719
64
ε4 −

685
32
ε5 −

1397
64
ε6 −

6165
256
ε7

−
2025
128
ε8 −

47385
4096

ε9 −
32805
8192

ε10 −
59049
32768

ε11 < 0,

and so on. So far, we found a decreasing sequence of approximations for the unique root of p5(x, ε)
which branches off from x0 = −1. For these approximations, we found that p5 is negative. In order to
apply the bisection method, we now will try to find an x-value for which p5 is positive. For instance,
consider x = −1 − 1

2ε − 2ε2. Then,

p5(−1 −
1
2
ε − 2ε2, ε) =

7
4
ε2 −

21
2
ε3 −

69
4
ε4 −

885
16
ε5 −

2081
32
ε6 −

885
8
ε7

− 85ε8 − 100ε9 − 40ε10 − 32ε11 > 0

for all ε ∈ (0, 0.1]. This can easily be checked analytically or by plotting p5(−1 − 1
2ε − 2ε2; ε) for

0 ≤ ε ≤ 0.1. As for the first root, we can now conclude for the second root that this root is real, and
that it satisfies:

−1 −
1
2
ε − 2ε2 < x(ε) < −1 −

1
2
ε −

9
8
ε2 ⇒

x(ε) = −1 −
1
2
ε −

25
16
ε2 + E2

abs(ε), (11)

where the absolute error E2
abs(ε) satisfies

∣∣∣E2
abs(ε)

∣∣∣ < 7
16ε

2. So, for the approximation −1− 1
2ε−

25
16ε

2 for
the second root, we can now also conclude that the absolute error and the relative error are less than
1% for all ε ∈ (0, 0.1].

3.2. Third real root using perturbation expansions after rescaling: α = −1
3 .

In the previous subsection, we proved the existence of two real roots for Eq (5). Also, we
constructed accurate approximations of these two real roots for all ε ∈ (0, 0.1]. In this subsection,
we will construct accurate approximations for the other three roots for all ε ∈ (0, 0.1]. To do that, we
have to use the rescaling (7) for x, that is, x = εαy with α = −1

3 . By substituting this rescaling into (5),
we obtain:

y5 + y2 − ε
2
3 = 0. (12)

To find approximations of the roots of the polynomial equation (12), we will use the following
straightforward perturbation expansion

y(ε) ∼ y0 + δy1 + δ
2y2 + ..., (13)

where δ = ε
2
3 , and where yi are constants independent of δ (for i = 0, 1, 2, ...). By substituting (13) into

(12), and by collecting terms of O(1), terms of O(δ), and so on, one finds the following equations to
solve:
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O(1) − terms : y5
0 + y2

0 = 0,
O(δ) − terms : 5y4

0y1 + 2y0y1 − 1 = 0, (14)
O(δ2) − terms : 5y4

0y2 + 10y3
0y2

1 + 2y0y2 + y2
1 = 0,

and so on. From Eq (14), y0, y1, y2, ... can readily be computed. From y5
0 + y2

0 = 0, it follows that
y0 = 0 (double root), y0 = −1, y0 =

1
2 +

i
2

√
3, or y0 =

1
2 −

i
2

√
3. The double root y0 = 0 can be

disregarded (because it leads to the case as studied in Subsection 3.1). For the three other roots, it
follows from the implicit function theorem that three large roots of equations (5) are branching off
from y0 = −1, y0 =

1
2 +

i
2

√
3, and y0 =

1
2 −

i
2

√
3. In Subsection 3.2.1, we will study the root which

is branching off from y0 = −1, and in Subsection 3.2.2 we will explain how for complex-valued roots
the real and imaginary parts can be approximated and how the accuracies of the approximations of the
real and imaginary parts can be determined.

3.2.1. The root branching off from y0 = −1.

From Eq (14), y1, y2, and so on can easily be determined, yielding y1 =
1
3 , y2 =

1
3 , and so on. For the

polynomial equation (12), or equivalently for

h(y, δ) ≡ y5 + y2 − δ = 0

with δ = ε
2
3 , it should be observed that for all ε ∈ (0, 0.1] (or equivalently, for all δ with 0 < δ <

0.21544), we have:

h(−1, δ) = −δ < 0,

h(−1 +
1
3
δ, δ) = −δ2 +

10
27
δ3 −

5
81
δ4 +

1
243
δ5 < 0,

h(−1 +
1
3
δ +

1
3
δ3, δ) = −

44
27
δ3 +

4
81
δ4 +

211
243
δ5 +

5
243
δ6 −

50
243
δ7 −

5
243
δ8

+
5

243
δ9 +

1
243
δ10 < 0,

and so on. Observe that all h-values are negative. When we find a y-value for which h(y, δ) is positive,
then we know that a real root exists and we are able to give an interval in which this root can be found.
Now, take for instance y = −1 + 1

3δ +
2
3δ

2. Then,

h(−1 +
1
3
δ +

2
3
δ2, δ) = δ2 −

98
27
δ3 −

149
81
δ4 +

961
243
δ5 +

370
243
δ6 −

440
243
δ7 −

160
243
δ8 +

80
243
δ9 +

32
243
δ10 > 0,

for all δ with 0 < δ ≤ 0.21544..(⇔ 0 < ε ≤ 0.1). So, a third, real root of the polynomial equation (5)
exists. This root x(ε) = ε−

1
3 y(ε) satisfies

ε−
1
3

(
−1 +

1
3
ε

2
3 +

1
3
ε

4
3

)
< x(ε) < ε−

1
3

(
−1 +

1
3
ε

2
3 +

2
3
ε

4
3

)
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for all ε ∈ (0, 0.1]. From these inequalities, it follows that the third real root

x(ε) = ε−
1
3

(
−1 +

1
3
ε

2
3 +

1
3
ε

4
3

)
+ E3

abs(ε), (15)

where the absolute error E3
abs(ε) satisfies

∣∣∣E3
abs(ε)

∣∣∣ < 1
6ε, for all ε ∈ (0, 0.1]. As for the other two real

roots, it can easily be shown that when this third real root is approximated by ε−
1
3 (−1 + 1

3ε
2
3 + 1

3ε
4
3 ),

then the absolute error and the relative error are both less then 1% for all ε ∈ (0, 0.1].

3.2.2. Two conjugate complex-valued roots.

In Subsection 3.2, the existence of two complex-valued roots of the polynomial equation (5) is
guaranteed by the implicit function theorem for ε sufficiently small. In this subsection, we will study
the complex-valued roots of (5). We will study and approximate the real and imaginary parts of the
roots separately. Moreover, we will show how accurate the real and imaginary parts are approximated
for all ε ∈ (0, 0.1]. Let’s consider the polynomial equation (5) again, and let’s assume that x = a + ib
with a, b ∈ R, and b , 0. By substituting x = a+ ib into (5), and by taking apart the real and imaginary
parts in the so-obtained equation, one obtains:ε

(
a5 − 10a3b2 + 5ab4

)
+ a2 − b2 − 1 = 0,

ε
(
5a4b − 10a2b3 + b5

)
+ 2ab = 0.

(16)

Since b , 0, a factor b can be divided out in the last equation of (16). System (16) can now be rewritten
in the form: 5εab4 −

(
10εa3 + 1

)
b2 = 1 − a2 − εa5,

εb4 − 10εa2b2 = −2a − 5εa4.
(17)

or in matrix form Ab = c, where

A =
5εa −

(
10εa3 + 1

)
ε −10εa2

 ,b = [
b4

b2

]
, c =

[
1 − a2 − εa5

−2a − 5εa4

]
.

The determinant of A, should be observed that is, det A = ε − 40ε2a3. For ε > 0, it can be shown
elementarily that the case det A = 0 does not lead to solutions of the nonlinear system of equations
(17). For det A , 0, system Ab = c can readily be solved for b, yielding:

b4 =
−2a + ε

(
−10a2 − 15a4

)
− 40ε2a7

ε − 40ε2a3 ,

b2 =
−ε

(
9a2 + 1

)
− 24ε2a5

ε − 40ε2a3 . (18)

Since b ∈ R|0, it follows from (18) that the righthand sides should be positive. From (18), b can
be eliminated by observing that b4 = (b2)2, and after some manipulations one finds the following
polynomial equation for a:

2a + ε
(
16a4 + 28a2 + 1

)
+ ε2

(
−352a5 − 128a7

)
− 1024ε3a10 = 0, (19)
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where a ∈ R, and ε ∈ (0, 0.1]. To find asymptotic approximations for a, one again can apply the
rescaling procedure a = εαa, and as before one finds α = −1

3 as a significant rescaling parameter (the
computations to obtain α = −1

3 are omitted here for convenience, and are similar to the computations
as presented in the beginning of Section 2). By substituting a = ε−

1
3 a into (19), one obtains:

g(a, ε) ≡ 1024a10
+ 128a7

− 16a4
− 2a + ε

2
3 .(352a5

− 28a2) − ε
4
3 = 0. (20)

For a, we now use the straightforward perturbation expansion

a(ε) ∼ a0 + ε
2
3 a1 + ε

4
3 a2 + ..., (21)

where ai are constants independent of ε (with a0 , 0, and i = 0, 1, 2, ..). By substituting (21) into (20),
and by collecting terms of O(1), O(ε

2
3 ), and so on, one finds the following:

O(1) − terms : 1024a10
0 + 128a7

0 − 16a4
0 − 2a0 = 0,

O(ε
2
3 ) − terms : 10240a9

0a1 + 896a6
0 + 352a5

0 − 64a3
0a1 − 28a2

0 − 2a1 = 0,

O(ε
4
3 ) − terms : 10240a9

0a2 + 46080a8
0a2

1 + 896a6
0a2 + 2688a5

0a2
1 + 1760a4

0a1

−64a3
0a2 − 96a2

0a2
1 − 56a0a1 − 2a2 − 1 = 0, (22)

and so on. The equation for a0 in (22) can readily be solved, but the only feasible solution (satisfying
a ∈ R, b , 0, and for which the righthand sides of (18) are positive) is a0 =

1
2 . Then, it follows from

the second equation, and from the third equation in (22) that a1 = −
1
6 and a2 =

1
3 . From (20) it now

follows that

g (a0, ε) = g(
1
2
, ε) = −4ε

2
3 + ε

4
3 ,

g(a0 + ε
2
3 a1, ε) = g(

1
2
−

1
6
ε

2
3 , ε) = 8ε

4
3 −

158
127
ε

6
3 +

86
81
ε

8
3 +

4
9
ε

10
3 −

184
729
ε

12
3

+
121

2187
ε

14
3 −

5
729
ε

16
3 +

10
19683

ε
18
3 −

1
59049

ε
20
3 ,

g(a0 + ε
2
3 a1 + ε

4
3 a2, ε) = g(

1
2
−

1
6
ε

2
3 +

1
3
ε

4
3 , ε) = −

176
27
ε

6
3 −

1084
81
ε

8
3 +

1736
81
ε

10
3

−
54094

729
ε

12
3 +

209119
2187

ε
14
3 −

291257
2187

ε
16
3 +

2515006
19683

ε
18
3

−
7088149
59049

ε
20
3 +

5304548
59049

ε
22
3 −

421588
6561

ε
24
3

+
750272
19683

ε
26
3 −

422752
19683

ε
28
3 +

21632
2183

ε
30
3 −

85120
19683

ε
32
3

+
28160
19683

ε
34
3 −

8960
19683

ε
36
3 +

5120
59049

ε
38
3 −

8960
19683

ε
36
3

+
5120

59049
ε

38
3 −

1024
59049

ε
40
3 ,

and so on. For ε ∈ (0, 0.1], it can be shown (by considering the leading order terms, by comparing
pair-wise the other terms with each other, or by plotting as function in ε) that

g(
1
2
, ε) < 0,
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g(
1
2
−

1
6
ε

2
3 , ε) > 0,

g(
1
2
−

1
6
ε

2
3 +

1
3
ε

4
3 , ε) < 0,

and so on. So far, we can conclude that for all ε with 0 < ε ≤ 0.1, we have:

ε−
1
3

(
1
2
−

1
6
ε

2
3

)
< a (ε) <

1
2
ε−

1
3 ,

ε−
1
3

(
1
2
−

1
6
ε

2
3

)
< a (ε) < ε−

1
3

(
1
2
−

1
6
ε

2
3 +

1
3
ε

4
3

)
.

These inequalities are based on the bisection method and imply that

a(ε) = ε−
1
3

(
1
2
−

1
6
ε

2
3 +

1
6
ε

4
3

)
+ Ea

abs(ε), (23)

where the absolute error Ea
abs(ε) satisfies |Ea

abs(ε)| <
1
6ε for all ε ∈ (0; 0.1]. To approximate the

imaginary part b(ε) of the roots of equation (5), we will now try to eliminate a(ε) from system (17).
This can be accomplished by introducing the transformation

b(ε) = a(ε)̂b(ε), (24)

into system (17), yielding 5ε̂b4 −
(
10ε + 1

a3

)
b̂2 = 1

a5 −
1
a3 − ε,

5ε + ε̂b4 − 10ε̂b2 = − 2
a3 ,

and this system can simply be rewritten into− ε2 b̂4 − 5
2 ε̂b

2 − 3
2ε +

ε
2 b̂6 = 1

a5 ,

5ε̂b2 − ε2 b̂4 − 5
2ε =

1
a3 .

(25)

From system (25), we now easily eliminate a, yielding(
ε

2
b̂6 −

ε

2
b̂4 −

5
2
ε̂b2 −

3
2
ε

)3

= (5ε̂b2 −
ε

2
b̂4 −

5
2
ε)5, or equivalently

h(̂b, ε) ≡
(
(̂b2 − 3)(̂b2 + 1)

)3
−
ε2

4

(
10̂b2 − b̂4 − 5

)5
= 0. (26)

From (26), it can be deduced that b̂(ε) has to be expanded in the form:

b̂(ε) = b0 + ε
2
3 b1 + ε

4
3 b2 + ..., (27)

where b0 , 0, b1, b2, ... are ε-independent, real constants. By substituting the expansion (27) into (26),
by collecting terms of O(1), O(ε

2
3 ), O(ε

4
3 ), and so on, and by solving the O(1)-equation, the O(ε

2
3 )-

equation, and so on, one finally finds

b0 =
√

3, b1 =
2
3

√
3, b2 = −

4
9

√
3, ...
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or

b0 = −
√

3, b1 = −
2
3

√
3, b2 = +

4
9

√
3, ...

For ε ∈ (0, 0.1], it can be shown (for instance, by plotting h(̂b(ε); ε) as function in ε) that

h(b0, ε) = h(±
√

3, ε) < 0,

h(b0 + ε
2
3 b1, ε) = h(±

√
3 ±

2
3

√
3ε

2
3 , ε) > 0, (28)

h(b0 + ε
2
3 b1 + ε

4
3 b2, ε) = h(±

√
3 ±

2
3

√
3ε

2
3 ∓

4
9

√
3ε

4
3 , ε) > 0,

From the first two inequalities in (28), it follows that:

√
3 < b̂(ε) <

√
3 +

2
3

√
3ε

2
3

or

−
2
3

√
3ε

2
3 −
√

3 < b̂(ε) < −
√

3.

Since there is not a sign-change in the last two inequalities of (28), we cannot directly use the bisection
approach. However, as before, we can look for nearby values of b̂(ε) such that h(̂b(ε), ε) is negative.
By plotting h(̂b(ε), ε) as function of ε, one can readily find for ε ∈ (0, 0.1] that

h(±
√

3 ±
2
3

√
3ε

2
3 ∓

6
9

√
3ε

4
3 , ε) < 0.

So, we obtain for b̂(ε) that

√
3 +

2
3

√
3ε

2
3 −

6
9

√
3ε

4
3 < b̂(ε) <

√
3 +

2
3

√
3ε

2
3 −

4
9

√
3ε

4
3 ,

or

−
√

3 −
2
3

√
3ε

2
3 +

4
9

√
3ε

4
3 < b̂(ε) < −

√
3 −

2
3

√
3ε

2
3 +

6
9

√
3ε

4
3 .

This implies that

b̂(ε) = ±
√

3 ±
2
3

√
3ε

2
3 ∓

5
9

√
3ε

4
3 ± Eb̂

abs(ε), (29)

where the absolute error Eb̂
abs(ε) satisfies |Eb̂

abs(ε)| <
1
9

√
3ε

4
3 for all ε ∈ (0; 0.1]. From (23), (24), and

(29), we can now determine approximations of the imaginary parts b(ε) of the roots of the polynomial
equation (5):

b(ε) = a(ε)̂b(ε) =
(
ε−

1
3 (

1
2
−

1
6
ε

2
3 +

1
6
ε

4
3 ) + Ea

abs(ε)
) (
±
√

3 ±
2
3

√
3ε

2
3
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∓
5
9

√
3ε

4
3 ± Eb̂

abs(ε)
)
,

= ... = ±ε−
1
3

(
1
2

√
3 +

1
6

√
3ε

2
3 −

2
9

√
3ε

4
3

)
+ Eb

abs(ε), (30)

where the absolute error Eb
abs(ε) satisfies : |Eb

abs(ε)| <
1
3

√
3ε for all ε ∈ (0, 0.1]. This completes the

proof of Theorem 5.
So far, we constructed accurate approximations of the five roots of the polynomial equation (5) for

all ε ∈ (0, 0.1]. This example clearly shows how approximations of real or complex-valued roots can
be constructed for all ε ∈ (0, 0.1], and how Theorem 3 and Theorem 4 out of Section 2 of this paper
can be applied to obtain these results.

4. An algorithmic approach to approximate a root

In this paper, we consider nth degree polynomial equations with real coefficients (ai ∈ R, i =
0, ..., n, and an , 0), that is,

Pn(x, ε) ≡ anxn + an−1xn−1 + ... + a1x + a0 = 0,

where the coefficients ai depend on ε. We consider polynomial equations which contain a small, but
fixed parameter ε (which is equal to ε0). For ε tending to zero, we apply perturbation expansions to
approximate the roots of the polynomial equation. Implicitly, it is assumed that for ε = 0 the (reduced)
polynomial equation is solvable, or that after a rescaling (or balancing approach), the so-obtained
equation is solvable (by setting a new parameter depending on ε equal to zero). Furthermore, it is
assumed that perturbation expansions for these roots can be constructed.

For polynomial equations, the implicit function theorem (as formulated in the introduction of this
paper) can be applied. So, straightforward perturbation expansions in ε (or in another small parameter
depending on ε and which is obtained after a rescaling procedure) can be used to approximate roots of
the polynomial equation for ε tending to zero. The question now is can these perturbation expansions
be used for all ε ∈ (0, ε0]? The answer is affirmative when we have (or we can construct from the
expansions) two real expansions, let’s say, x1(ε) and x2(ε), for which pn(x1(ε), ε) and pn(x2(ε), ε)
have opposite signs for all ε ∈ (0, ε0]. Since pn(x; ε) is a polynomial with real coefficients, we then
also know that a real root exists, satisfying x1(ε) < x(ε) < x2(ε) for all ε ∈ (0, ε0] (where it has been
assumed without loss of generality that x1(ε) < x2(ε)). In fact, this is a simple application of the
bisection method. From the inequality for x(ε), it follows that

x(ε) =
1
2

(x1(ε) + x2(ε)) + Eabs(ε),

where the absolute error Eabs(ε) satisfies:|Eabs(ε)| < 1
2 (x2(ε) − x1(ε)) for all ε ∈ (0, ε0].

When application of the perturbation expansion method leads to complex-valued expansions, we
only know that the expansions are valid for ε tending to zero. Moreover, it is beforehand not clear how
to prove that the approximations of the complex-valued roots are accurate for all ε ∈ (0, ε0]. To prove
this, we propose the following approach. Let a complex-valued root x(ε) be given by x(ε) = a(ε)+ib(ε)
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with a(ε) and b(ε) real-valued functions in ε and b(ε) , 0. By taking apart the real part and the
imaginary part of pn(a(ε) + ib(ε), ε) = 0, we obtain{

Re (pn(a(ε) + ib(ε), ε)) = 0,
Im (pn(a(ε) + ib(ε), ε)) = 0.

These real and imaginary parts are both polynomials in a(ε) and b(ε). So, in fact we obtain :
f1(a(ε), b(ε), ε) = 0 and f2(a(ε), b(ε), ε) = 0, where f1 and f2 are both polynomial in a(ε) and b(ε).
Now, this system of polynomial equations can be transformed into regular chains (or equivalently,
into a triangular system of polynomial equations) by using the triangular decomposition method for
polynomial systems. There are a few algorithms to compute such a triangular decomposition of a
polynomial system into regular chains or into regular semi-algebraic systems (see [2], [3], [24]), and
we obtain {

g1 (a(ε), ε) = 0,
g2 (a(ε), b(ε), ε) = 0,

or
{

g3 (a(ε), b(ε), ε) = 0,
g4 (b(ε), ε) = 0,

where g1, g2, g3, and g4 are real polynomial functions in their arguments. It should be observed that
formula manipulation packages like MAPLE or Mathematica have these triangular decomposition
methods available in their libraries. Obviously, such triangular systems are ready to be solved by
evaluating the unknown one after the other. So, if we have (or we can construct from the expansions)
two real expansions for a(ε), let’s say, a1(ε) and a2(ε) for which g1(a1(ε), ε) and g1(a2(ε), ε) have
opposite signs for all ε ∈ (0; ε0]. Similarly for b(ε), if we have (or we can construct from the
expansions) two real expansions, let’s say, b1(ε) and b2(ε) for which g4(b1(ε), ε) and g4(b2(ε), ε) have
opposite signs for all ε ∈ (0, ε0]. The bisection method then simply implies that (assuming without
loss of generality that a1(ε) < a2(ε) and b1(ε) < b2(ε)):

a(ε) =
1
2

(a1(ε) + a2(ε)) + Ea
abs(ε),

b(ε) =
1
2

(b1(ε) + b2(ε)) + Eb
abs(ε), (31)

where the absolute errors Ea
abs(ε) and Eb

abs(ε) satisfy |Ea
abs(ε)| <

1
2 (a2(ε) − a1(ε)) and |Eb

abs(ε)| <
1
2 (b2(ε) − b1(ε)) for all ε ∈ (0, ε0].

So, in this section of this paper we indicated how in an algorithmic approach, accurate
approximations of (real or complex-valued) roots of polynomial equations can be obtained not only
for ε tending to zero, but also for all ε ∈ (0, ε0].

5. Discussion and conclusions

In this paper, accurate approximations of roots of polynomial equations (with real coefficients and
in one variable ) have been constructed. The polynomial equations contain a small, positive, and
fixed parameter ε0 , 0. It has been indicated and proved how accurate approximations of a real or
complex-valued root can be obtained for all ε ∈ (0, ε0]. Of course, it is assumed in this paper (see also
Theorem 3 and Theorem 4) that the asymptotic expansions for the roots of the polynomial equations
(described by the first few terms in a Taylor or Laurent series in a small parameter depending on ε)
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exist and can be constructed. We assume that at least two real approximations x1(ε) and x2(ε) for
a real root x(ε) exist and can be constructed. For a complex root, we assume that at least two real
approximations a1(ε) and a2(ε) for the real part of this root and that at least two real approximations
b1(ε) and b2(ε) for the imaginary part of this root exist and can be constructed. The emphasis in
this paper is on the classical perturbation approach leading to (truncated) Taylor or Laurent series as
approximations for the roots. All computations that might be necessary can be done by hand or on a
simple laptop by using Mathematica or Maple. So, the computational costs are not high. Instead of
using the bisection method, other more advanced methods can be used, such as the Newton-Raphson
method. By using this method, one will obtain quotients of polynomials in ε as approximations for
the roots. This is, of course, directly related to the famous Padé approximants. Again, the algorithmic
approach to approximate roots as described in Section 4 of this paper can be followed. The so-obtained
Padé approximants for the roots of the polynomial equation can be an interesting subject for further
and future research. This work was motivated by the first author’s thesis [25] in which polynomial
equations with small but fixed parameters occurred. Also in [25], a 5th-degree polynomial equation
containing a small but fixed parameter was studied to determine the equilibrium points in a system of
nonlinear differential equations describing the influence of a medical treatment on cancer cells, immune
cells (effector cells), and compound (IL-2). The polynomial equation in [25] only contains real roots,
and for that reason we studied in this paper Eq (5) which contains both real and complex-valued roots.
In our opinion, the simple method as presented in this paper fills up a gap in the literature concerning
the justification of (asymptotic) approximations of roots of the polynomial equation containing a small
but fixed parameter. Furthermore, the method based on the perturbation approach and the bisection
procedure most likely can be applied to a large class of problems such as determining approximations
of roots of the system of polynomial equations containing a small but fixed parameter, or determining
approximations of roots of characteristic equations for differential-delay equations which contain a
small but fixed parameter. These problems might be interesting subjects for future research.
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