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Abstract: The application of a doubly Type-II censoring scheme, where observations are censored at
both the left and right ends, is often used in various fields including social science, psychology, and
economics. However, the observed sample size under this censoring scheme may not be large enough
to apply a likelihood-based approach due to the occurrence of censoring at both ends. To effectively
respond to this difficulty, we propose a pivotal-based approach within a doubly Type-II censoring
framework, focusing on two key aspects: Estimation for parameters of interest and prediction for
missing or censored samples. The proposed approach offers two prominent advantages, compared
to the likelihood-based approach. First, this approach leads to exact confidence intervals for unknown
parameters. Second, it addresses prediction problems in a closed-form manner, ensuring computational
efficiency. Moreover, novel algorithms using a pseudorandom sequence, which are introduced to
implement the proposed approach, have remarkable scalability. The superiority and applicability of the
proposed approach are substantiated in Monte Carlo simulations and real-world case analysis through
a comparison with the likelihood-based approach.
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1. Introduction

In many practical studies, extreme sample values are often excluded when the observations are not
well known or the presence of outliers is suspected. In addition, carelessness or lack of experimental
preparation at the beginning of an experiment can lead to the censoring of the smallest few values in the
observed sample, and limited time or cost issues can lead to experiment termination without observing
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the largest values. When both conditions occur simultaneously, to be more accurate, a scenario where
the smallest and largest values in an ordered sample are censored at both ends is called a doubly
Type-II (DT-II) censoring scheme. Under this censoring scheme, the observed sample size is not often
sufficient to apply valid statistical inference, requiring a very challenging task. This challenge has made
the DT-II censoring scheme less studied than other censoring schemes, and most of the studies related
to it have focused on likelihood-based and Bayesian inference. For example, Fernández [1] introduced
a Bayesian inference for a Rayleigh distribution with a scale parameter. Raqab and Madi [2] discussed
the prediction problem for the total amount of the remaining testing time from the same distribution
and resolved it using Gibbs sampling. Khan et al. [3] provided a prediction for a single future
response in a two-parameter Rayleigh distribution, using a Bayesian approach. Kim and Song [4]
discussed parameter estimation for a generalized exponential distribution using the likelihood-based
and Bayesian methods. Kotb and Raqab [5] derived maximum likelihood estimators (MLEs) as well
as Bayes estimators for a modified Weibull distribution. Panahi [6] provided likelihood-based and
Bayesian estimation methods for a Burr Type XII distribution. Sindhu and Hussain [7] dealt with the
estimation problem of a power function II distribution, using non-informative and informative priors in
a Bayesian approach. Besides these methods, some studies have employed a pivotal quantity to obtain
a joint confidence region for unknown parameters under the DT-II censoring scheme. Wu [8] obtained
a joint confidence region in an exponential distribution with two parameters. Wu [9] discussed interval
inference for a Pareto distribution with two parameters.

However, the likelihood-based approach has the drawback of being able to cause substantial bias
and invalid inference results for a small sample size. In particular, this approach for interval inference
yields approximate, rather than exact, confidence intervals (CIs) for unknown parameters, and these CIs
may not meet a nominal level in small sample scenarios. On the other hand, the Bayesian approach has
stress related to the elicitation of prior information for each parameter and requires very demanding
calculations such as the expected Fisher information for objective Bayesian inference if there is not
enough prior information.

To provide solutions to these challenging problems in a frequentist approach, this study proposes
a pivotal-based approach under the DT-II censoring scheme, yielding valid statistical inference results
even in a situation where the available sample size falls short of being sufficiently large. Notably,
the proposed approach leads to not only exact CIs for unknown parameters but also closed-form
results in prediction problems for missing or censored samples, unlike the likelihood-based approach.
Furthermore, this study introduces novel algorithms using a pseudorandom sequence to implement the
proposed approach, which is attractive due to its excellent scalability. The superiority and validity of
the proposed approach are demonstrated in the simulation study and real-world case analysis, showing
that its performance does not lag behind and rather performs better compared with the most popular
likelihood-based approach for small and medium sample sizes.

The study is outlined as follows: Section 2 briefly describes a distribution family used for inference
and the DT-II censoring scheme. Section 3 provides an estimation method for unknown parameters
and a prediction method for missing or censored samples based on a likelihood function within the
DT-II censoring framework. Section 4 proposes the parameter estimation and prediction methods using
pivotal quantities within the same framework. Section 5 demonstrates the superiority and validity of
the proposed method by applying the theoretical results to simulated and real-life datasets. Finally,
Section 6 concludes the study with a concise recapitulation of the results.
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2. Model description

Let Θ = (α, β) be an unknown parameter vector. To implement our argument, it is assumed that a
continuous random variable X has the following family of distributions with Θ:

F(x; Θ) = 1 − [G(x;α)]h(β) , x > 0, α > 0, β > 0, (2.1)

where G(x;α) denotes a function of X involving α, and h(β) denotes a function of β. The
distribution (2.1) is a cumulative distribution function (CDF) of X, and its members are given in
Appendix (Table 5).

Suppose that X1, . . . , Xn is a random sample with CDF (2.1), and X(1) ≤ · · · ≤ X(n) is an order statistic
from this sample. In experiments concerning life-testing or reliability, negligence or poor preparation
at the start of the experiment may result in censoring the first few observations, while the limitation
of the experiment duration may result in censoring the last few observations. Specifically, when the
r smallest and the s largest observations are simultaneously censored in a situation where n identical
components are placed in the test, it is called a DT-II censoring scheme. In addition, the remaining
X =

(
X(r+1), . . . , X(n−s)

)
can be regarded as a DT-II censored sample.

3. Likelihood-based inference

This section provides the most widely used likelihood-based approach for comparison with the
pivotal-based approach to be proposed in Section 4.

3.1. Estimation

The likelihood and its logarithm functions for the DT-II censored sample X from the probability
distribution with CDF (2.1) are formulated as

L(Θ) ∝
(
1 −

[
G(x(r+1);α)

]h(β)
)r [

G(x(n−s);α)
]sh(β) [h(β)

]n−s−r
n−s∏

i=r+1

[
G(x(i);α)

]h(β)−1 [
−g(x(i);α)

]
, (3.1)

and

`(Θ) ∝ r log
(
1 −

[
G(x(r+1);α)

]h(β)
)

+ sh(β) log G(x(n−s);α) + (n − s − r) log h(β)

+ (h(β) − 1)
n−s∑

i=r+1

log G(x(i);α) +

n−s∑
i=r+1

log
[
−g(x(i);α)

]
, (3.2)

respectively, where `(·) = log L(·), and g(x(i);α) = ∂G(x(i);α)/∂x(i). Then, the MLEs α̂ and β̂ are
obtained by optimizing the log-likelihood function (3.2) for α and β, respectively. In addition, by the
asymptotic normality of the MLEs, the approximate 100(1 − γ)% CIs are formulated as

α̂ ± zγ/2

√
V̂ar (α̂),

and

β̂ ± zγ/2
√

V̂ar
(
β̂
)
,

AIMS Mathematics Volume 9, Issue 10, 28508–28525.



28511

for 0 < γ < 1, where zγ/2 is the (γ/2)th upper percentile of a standard normal distribution, and V̂ar(·) is
the diagonal element of the asymptotic variance-covariance matrix of the MLEs

Σ̂ =

 V̂ar (α̂) Ĉov
(
α̂, β̂

)
Ĉov

(
α̂, β̂

)
V̂ar

(
β̂
)  ,

which is obtained by inverting the observed Fisher information matrix with the MLEs

I
(
α̂, β̂

)
=

−∂2`(Θ)
∂α2 −

∂2`(Θ)
∂α∂β

−
∂2`(Θ)
∂α∂β

−
∂2`(Θ)
∂β2


∣∣∣∣∣∣∣
(α=α̂, β=β̂)

.

3.2. Prediction

In the presence of the DT-II censored sample, the predictive likelihood function requires two
conditional probability density functions (PDFs) because censoring occurs at both ends. One is the
conditional PDF of X(l) given X(r+1) = x(r+1) for l = 1, . . . , r, and the other is the conditional PDF of X(l)

given X(n−s) = x(n−s) for l = n − s + 1, . . . , n. The former is formulated as

f
(
x(l) | X(r+1) = x(r+1)

)
=

r!
(l − 1)!(r − l)!

h(β)
[
G(x(l);α)

]h(β)−1 [
−g(x(l);α)

]
1 −

[
G(x(r+1);α)

]h(β)

×


[
G(x(l);α)

]h(β)
−

[
G(x(r+1);α)

]h(β)

1 −
[
G(x(r+1);α)

]h(β)


r−l  1 −

[
G(x(l);α)

]h(β)

1 −
[
G(x(r+1);α)

]h(β)


l−1

. (3.3)

The latter is formulated as

f
(
x(l) | X(n−s) = x(n−s)

)
=

s!
(l − n + s − 1)!(n − l)!

h(β)
[
G(x(l);α)

]h(β)−1 [
−g(x(l);α)

][
G(x(n−s);α)

]h(β)

×


[
G(x(n−s);α)

]h(β)
−

[
G(x(l);α)

]h(β)[
G(x(n−s);α)

]h(β)


l−n+s−1 [

G(x(l);α)
G(x(n−s);α)

](n−l)h(β)

. (3.4)

Then, under the DT-II censoring scheme, prediction is made from the following predictive likelihood
function:

L(x(l),Θ) ∝



[
h(β)

]n−s−r+1 [
G(x(l);α)

]h(β)−1 [
−g(x(l);α)

] [
G(x(n−s);α)

]sh(β)
n−s∏

i=r+1

[
G(x(i);α)

]h(β)−1 [
−g(x(i);α)

]
×

{
1 −

[
G(x(l);α)

]h(β)
}l−1 {[

G(x(l);α)
]h(β)
−

[
G(x(r+1);α)

]h(β)
}r−l

, l = 1, . . . , r,[
h(β)

]n−s−r+1 [
G(x(l);α)

](n−l+1)h(β)−1 [
−g(x(l);α)

] n−s∏
i=r+1

[
G(x(i);α)

]h(β)−1 [
−g(x(i);α)

]
×

{
1 −

[
G(x(r+1);α)

]h(β)
}r {[

G(x(n−s);α)
]h(β)
−

[
G(x(l);α)

]h(β)
}l−n+s−1

, l = n − s + 1, . . . , n,
(3.5)

which is derived by multiplying the likelihood function (3.1) with the conditional PDFs (3.3) and (3.4).
The point prediction for X(l), denoted by X̂(l), and the predictive MLEs for α and β are obtained
by optimizing the natural logarithm of the predictive likelihood function (3.5) for X(l), α, and β,
respectively. Here, our focus is on the prediction of X(l), so only the results related to it are reported in
Section 5.
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4. Pivotal-based inference

The goal of this section is to propose an estimation method for α and β and a prediction method
for missing or censored samples, using pivotal quantities within the DT-II censoring framework.
The foremost advantage of the proposed approach is its provision of exact CIs for α and β, unlike
the likelihood-based approach in Section 3. Moreover, the proposed approach excels in resolving
prediction problems for missing or censored samples by yielding closed-form results.

Before introducing the essential pivotal quantities used for inference in the subsequent subsection,
we define the following notations for some distributions to simplify their expressions.

• χ2
v : Chi-squared distribution with v degrees of freedom.

• Be(a, b) : Beta distribution with parameters (a, b).

4.1. Pivotal quantity

Let

Y(i) = − log
[
1 − F(x(i); Θ)

]
= −h(β) log G(x(i);α), i = r + 1, . . . , n − s.

Since a DT-II censored sample Y(r+1) ≤ · · · ≤ Y(n−s) has a standard exponential distribution with a mean

E(Y(i)) =
i∑

j=1
(n − j + 1)−1, it induces the normalized spacings

Si = (n − i + 1)
(
Y(i) − Y(i−1)

)
= (n − i + 1)h(β) log

(
G(x(i−1);α)
G(x(i);α)

)
, i = r + 2, . . . , n − s,

which are standard exponential random variables, all independent and identically distributed (iid).
Then, the following pivotal quantity can be led by the independence of the spacings:

T j (Θ) = 2
r+1+ j∑
i=r+2

Si

= − 2(n − r)Y(r+1) + 2(n − r − j)Y(r+ j+1) + 2
r+ j∑

i=r+1

Y(i)

= 2h(β)M1, j(x;α), j = 1, . . . , n − s − r − 1,

which are independent random variables from χ2
2 j, where

M1, j(x;α) = (n − r) log G(x(r+1);α) − (n − r − j) log G(x(r+ j+1);α) −
r+ j∑

i=r+1

log G(x(i);α).

The subsequent lemma provides some pivotal quantities derived from the pivotal quantity T j (Θ), which
are instrumental in inference for α and β.

AIMS Mathematics Volume 9, Issue 10, 28508–28525.
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Lemma 4.1. Let X(r+1) ≤ · · · ≤ X(n−s) be a DT-II censored sample from the probability distribution with
CDF (2.1). Then,

(i) W1 (Θ) = 2h(β)M2(x;α),

and

(ii) W2 (α) = −2
n−s−r−2∑

j=1

log
(

M1, j(x;α)
M2(x;α)

)
,

which have χ2
2(n−s−r−1) and χ2

2(n−s−r−2), respectively, where

M2(x;α) = (n − r) log G(x(r+1);α) − (s + 1) log G(x(n−s);α) −
n−s−1∑
i=r+1

log G(x(i);α).

Proof. W1 (Θ) is clear from W1 (Θ) = Tn−s−r−1 (Θ). In addition, since
(
T j (Θ) /T j+1 (Θ)

) j
( j = 1, . . . , n−

s − r − 2) are standard uniform random variables, (ii) is derived as

W2 (α) = − 2
n−s−r−2∑

j=1

j log
(

T j (Θ)
T j+1 (Θ)

)

= − 2
n−s−r−2∑

j=1

log
(

T j (Θ)
Tn−s−r−1 (Θ)

)
.

This completes the proof. �

It is worth noting that the pivotal quantity W2 (α) is a function of α only, not dependent on β. This
quantity plays a very important role in inference not only for α itself but also for the parameters of
interest or functions of interest, even in a situation where α is a nuisance parameter.

The process of deriving the essential pivotal quantities used for inference under the DT-II censoring
scheme is summarized in Figure 1, where Exp(1) denotes a standard exponential distribution.
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Figure 1. Flowchart of the essential pivotal quantities used for inference under the DT-II
censoring scheme.

4.2. Estimation

Using the pivotal quantities in Lemma 4.1, exact CIs for α and β are provided now. For α, since the
pivotal quantity W2 (α) in Lemma 4.1 has χ2

2(n−s−r−2), it leads to

1 − γ = P
[
χ2

1−γ/2,2(n−s−r−2) < W2 (α) < χ2
γ/2,2(n−s−r−2)

]
,

for 0 < γ < 1, where χ2
γ/2,v is the (γ/2)th upper percentile of χ2

v . Then, an exact 100(1 − γ)% CI of α is
formulated as [

W−1
2

(
χ2

1−γ/2,2(n−s−r−2)

)
,W−1

2

(
χ2
γ/2,2(n−s−r−2)

)]
,

or [
W−1

2

(
χ2
γ/2,2(n−s−r−2)

)
,W−1

2

(
χ2

1−γ/2,2(n−s−r−2)

)]
,

when the pivotal quantity W2(α) in Lemma 4.1 is the increasing or decreasing functions of α,
respectively, where W−1

2 (k) is a solution of α for the equation W2(α) = k. In a similar manner, using the
pivotal quantity W1(Θ) in Lemma 4.1, an exact 100(1 − γ)% CI of β for known α can be formulated ash−1

χ2
1−γ/2,2(n−s−r−1)

2M2(x;α)

 , h−1

χ2
γ/2,2(n−s−r−1)

2M2(x;α)

 ,
or h−1

χ2
γ/2,2(n−s−r−1)

2M2(x;α)

 , h−1

χ2
1−γ/2,2(n−s−r−1)

2M2(x;α)

 ,
AIMS Mathematics Volume 9, Issue 10, 28508–28525.
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for 0 < γ < 1 when h(β) is the increasing or decreasing functions of β, respectively, where h−1(t) is
the solution of β for the equation h(β) = t. However, if the nuisance parameter α is unknown, this CI
cannot be used. To resolve this issue, we propose a method of constructing a generalized CI for β by
defining a generalized pivotal quantity (GPQ) and introducing a new algorithm based on it.

Let α∗ be a unique solution of α for the equation W2(α) = ω, whereω is a realization from χ2
2(n−s−r−2).

Then, from the pivotal quantity W1(Θ) in Lemma 4.1, we define a GPQ for β as

ψ1 (β | α∗) = h−1
(

W1(α∗, β)
2M2(x;α∗)

)
,

with the observed values x, according to the argument of Weerahandi [10, 11]. To obtain its percentile
required to construct a generalized CI for β, we propose utilizing a pseudorandom sequence from χ2

2
based on the principles used to derive the pivotal quantities W1(Θ) and W2(α) in Lemma 4.1. This
approach is detailed in Algorithm 1.

Algorithm 1.

Step 1. Generate ζ1, ζ2, . . . , ζn from χ2
2.

Step 2. Compute υ j =
r+1+ j∑
i=r+2

ζi for j = 1, . . . , n − s − r − 1 and ω = −2
n−s−r−2∑

j=1
log

(
υ j

υn−s−r−1

)
.

Step 3. Obtain α∗ by solving the equation W2(α) = ω for α.

Step 4. Compute ψ1 (β | α∗) = h−1

(
υn−s−r−1

2M2(x;α∗)

)
.

Step 5. Repeat N(≥ 10, 000) times.

Algorithm 1 generates a sequence ψ1 =
{
ψ1,1 (β | α∗) , . . . , ψ1,N (β | α∗)

}
. Then, a generalized 100(1 −

γ)% CI of β is formulated as (
ψ1,([(γ/2)N]) (β | α∗) , ψ1,([(1−γ/2)N]) (β | α∗)

)
,

for 0 < γ < 1, where ψ1,([(γ/2)N]) (β | α∗) is the [(γ/2)N]th smallest of the sequence ψ1, and [·] denotes
the greatest integer function.

Furthermore, the pivotal quantities W1(Θ) and W2(α) in Lemma 4.1 lead to a valid and statistically
good estimation equation for α and β. When the parameter of interest is α, the pivotal quantity W2 (α)
plays a very important role in estimating α since it is independent of β, unlike the pivotal quantity
W1 (Θ). To derive an estimator of α, the following lemma is introduced.

Lemma 4.2. Let V (α) = W2 (α) / [2(n − s − r − 3)]. Then, V (α) converges to one in probability as
n − s − r → ∞.

Proof. Since V (α) has a gamma distribution with parameters (n − s − r − 2, n − s − r − 3), it follows
that

P (|V (α) − 1| > ε) ≤
4Var (V (α))

ε2

→ 0,

for any ε > 0 as n − s − r → ∞. This completes the proof. �
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From Lemma 4.2, the estimation equation for α is derived as W2 (α) = 2(n − s − r − 3). In addition,
the subsequent theorem establishes the uniqueness of the solution to the equation.

Theorem 4.3. The equation W2 (α) = 2(n − s − r − 3) has a unique solution α̃ for α.

This requires different proofs depending on the form of the probability distribution with CDF (2.1),
and the proofs are given in Appendix.

If the parameter of interest is β for known α, then the following estimator of h(β) can be used:

h̃β(α) =
n − s − r − 2

M2(x;α)
, (4.1)

which has an inverse gamma distribution with parameters (n − s − r − 1, (n − s − r − 2)h(β)) from the
pivotal quantity W1(Θ) in Lemma 4.1. It is noted that the estimator (4.1) has unbiasedness. From it, an
estimation equation for β is derived and the consequent estimator of β is formulated as

β̃ (α) = h−1
(
n − s − r − 2

M2(x;α)

)
. (4.2)

For unknown α in the estimator (4.2), it can be substituted with the estimator α̃. The validity of the
estimators α̃ and β̃ (α̃) is examined by Monte Carlo simulations, and the excellence is demonstrated
through a comparison with the MLEs α̂ and β̂ in Section 5.

4.3. Prediction

To predict missing or censored samples using the pivotal quantity, the following Lemmas are first
introduced.

Lemma 4.4. Let UL =
1 −

[
G(x(l);α)

]h(β)

1 −
[
G(x(r+1);α)

]h(β) for l = 1, . . . , r in the conditional PDF (3.3). Then, UL has

Be(l, r − l + 1).

Lemma 4.5. Let UR =
[ G(x(l);α)

G(x(n−s);α)

]h(β)
for l = n− s + 1, . . . , n in the conditional PDF (3.4). Then, UR has

Be(n − l + 1, l − n + s).

Lemmas 4.4 and 4.5 are easily proved by the variable transformation in the conditional PDFs (3.3)
and (3.4), respectively. From these Lemmas, the prediction for X(l) is formulated as

X(l) =

 G−1
((

1 − UL

{
1 −

[
G(x(r+1);α)

]h(β)
})1/h(β)

)
, l = 1, . . . , r,

G−1
(
U1/h(β)

R G(x(n−s);α)
)
, l = n − s + 1, . . . , n,

(4.3)

where G−1(·) is an inverse function of G(x;α). Note that the proposed approach induces a closed-form
prediction result for X(l), unlike the likelihood-based approach in Section 3.

To obtain the predicted value for X(l) in (4.3), the realizations of UL and UR are required. These
can be obtained from the fact that if X1 and X2 are independent random variables from χ2

2a and χ2
2b,

respectively, then X1/(X1+X2) hasBe(a, b). In this study, as in the case of Algorithm 1, a pseudorandom
sequence is used to generate these realizations, and the detailed procedure is provided in Algorithm 2.

AIMS Mathematics Volume 9, Issue 10, 28508–28525.
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Moreover, α and β in (4.3) can be substituted with α̃ and β̃ (α̃), respectively, then the consequent point
prediction is denoted by X̃(l).

Additionally, a predictive interval (PI) for X(l) can be constructed based on its GPQ ψ2
(
X(l)

)
which is

defined by substituting α and βwith α∗ and ψ1 (β | α∗) in (4.3), respectively, unlike the likelihood-based
approach in Section 3. The percentiles of ψ2

(
X(l)

)
, required to construct the PI for X(l), are obtained

along the lines of Algorithm 1, with the realizations of UL and UR generated from two independent
χ2 random variables as in the case of X̃(l). The implementation process is detailed step-by-step within
Algorithm 2.

Algorithm 2.

Step 1. Generate ζ1, ζ2, . . . , ζn from χ2
2.

Step 2. Compute υ j =
r+1+ j∑
i=r+2

ζi for j = 1, . . . , n − s − r − 1 and ω = −2
n−s−r−2∑

j=1
log

(
υ j

υn−s−r−1

)
.

Step 3. Obtain α∗ by solving the equation W2(α) = ω for α.

Step 4. Compute ψ1 (β | α∗) = h−1

(
υn−s−r−1

2M2(x;α∗)

)
.

Step 5. Substitute α and β with α∗ and ψ1 (β | α∗) in (4.3), respectively.

Step 6. Compute uL =

l∑
i=1
ζi

l∑
i=1
ζi +

r+1∑
i=l+1

ζi

or uR =

n∑
i=l
ζi

n∑
i=l
ζi +

l−1∑
i=n−s

ζi

.

Step 7. Substitute UL and UR with uL and uR in (4.3), respectively, to compute ψ2
(
X(l)

)
.

Step 8. Repeat N(≥ 10, 000) times.

Algorithm 2 generates a sequence ψ2 =
{
ψ2,1

(
X(l)

)
, . . . , ψ2,N

(
X(l)

)}
. Then, a generalized 100(1 − γ)%

PI of X(l) is formulated as (
ψ2,([(γ/2)N])

(
X(l)

)
, ψ2,([(1−γ/2)N])

(
X(l)

))
,

for 0 < γ < 1, where ψ2,([(γ/2)N])
(
X(l)

)
is the [(γ/2)N]th smallest of ψ2. It is worth noting that

Algorithm 2 includes some steps of Algorithm 1. So, it can be viewed as an extended version of
Algorithm 1. This means that if the function of interest contains α and β, then its percentile and
the consequent generalized PI can be obtained without difficulty, as in the case of prediction using
Algorithm 2.

5. Application

This section substantiates the superiority and validity of the proposed method by making a
comparison with the likelihood-based method in Monte Carlo simulations and real-world case analysis.

5.1. Simulation study

In the probability distribution with CDF (2.1), Weibull and bathtub-shaped distributions are
prominent statistical probability distributions employed in life data analysis. In addition, most
distributions in this family have an unknown parameter α as a shape parameter which describes the
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shape of the distributions. This parameter may be an important parameter of interest because it allows
us to model various characteristics of lifetime distributions. For example, the hazard function of a
Weibull distribution increases over time for α > 1, and vice versa for α < 1. A bathtub-shaped
distribution has an increasing hazard function for α ≥ 1, while it has a bathtub shape for α < 1. Based
on those characteristics, results for the Weibull and bathtub-shaped distributions with α = (0.5, 1.5)
and β = 0.5 are only reported here. Additionally, to highlight the superiority of the proposed method
for small and medium sample sizes, the following censoring schemes are used:

Scheme I : n = 20, r = 2, s = 2,
II : n = 20, r = 3, s = 3,
III : n = 30, r = 3, s = 3,
IV : n = 30, r = 4, s = 4.

Monte Carlo simulations are conducted by generating 1,000 DT-II censored samples for each censoring
scheme, and the results are presented through various statistical measures. First, the coverage
probabilities (CPs) of 95% CIs provided in Sections 3 and 4 are reported in Figure 2. Here, the ACI and
PCI denote the approximate and proposed CIs, respectively. In the case of the PCI for β, it is computed
based on N = 10, 000 in Algorithm 1. In addition, the mean squared errors (MSEs) and biases of the
estimators are reported in Figures 3 and 4.

Through Figures 2–4, the following results are led: The CPs of the PCI are generally found to be
more aligned with the desired nominal level of 0.95 than those of the ACI. Notably, for β, the PCI has
a CP much closer to 0.95 than the ACI, indicating that the generalized CI obtained from the proposed
Algorithm 1 yields superior results for small and medium sample sizes. In terms of the MSE and bias, α̃
shows superior MSE and bias results to the MLE counterpart when α = 1.5. For a Weibull distribution,
the biases of β̃ (α̃) are generally more efficient than those of the MLE counterpart when α = 0.5,
despite performing poorly in terms of MSE. On the other hand, for a bathtub-shaped distribution, β̃ (α̃)
exhibits generally superior performance in terms of bias when α = 0.5 and 1.5, compared to the MLE
counterpart.

Furthermore, to assess the validity of the pivotal-based prediction approach proposed, the prediction
errors for censored samples are computed. Specifically, the prediction error is computed as X(l) − X̂(l)

and X(l) − X̃(l) for likelihood-based and pivotal-based predictions, respectively. The resulting prediction
errors for the simulated 1,000 DT-II censored samples are visualized in Figures 5–8 as box plots, which
indicates that the medians of prediction errors obtained from the pivotal-based method are consistently
closer to zero than those of prediction errors obtained from the likelihood-based method in all settings.
This finding substantiates the superior predictive performance of the proposed method for small and
medium sample sizes, revealing its competitiveness compared to the likelihood-based method.
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Figure 2. CPs of 95% CIs for α and β in (a) Weibull and (b) bathtub-shaped distributions.
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Figure 3. (a) MSEs and (b) biases of estimators for α and β in a Weibull distribution.
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Figure 4. (a) MSEs and (b) biases of estimators for α and β in a bathtub-shaped distribution.
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Figure 5. Box plots of prediction errors for a Weibull distribution under (a) Scheme I and
(b) Scheme II.

X(1)

0.5 1.5
-0.50

-0.25

0.00

0.25

0.50

X(2)

0.5 1.5

-0.50

-0.25

0.00

0.25

0.50

X(3)

0.5 1.5

-0.4

-0.2

0.0

0.2

0.4

X(28)

0.5 1.5

-20

-10

0

10

20

X(29)

0.5 1.5

-50

-25

0

25

50

X(30)

0.5 1.5

-100

-50

0

50

100

α

P
re

d
ic

tio
n

 e
rr

o
r

(a)

X(1)

0.5 1.5
-0.50

-0.25

0.00

0.25

X(2)

0.5 1.5
-0.50

-0.25

0.00

0.25

0.50

X(3)

0.5 1.5

-0.4

-0.2

0.0

0.2

0.4

X(4)

0.5 1.5

-0.2

0.0

0.2

X(27)

0.5 1.5

-20

-10

0

10

20

X(28)

0.5 1.5

-40

-20

0

20

40

X(29)

0.5 1.5

-50

-25

0

25

50

X(30)

0.5 1.5

-100

-50

0

50

100

Likelihood-based
Pivotal-based

α

P
re

d
ic

tio
n

 e
rr

o
r

(b)

Figure 6. Box plots of prediction errors for a Weibull distribution under (a) Scheme III and
(b) Scheme IV.
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Figure 7. Box plots of prediction errors for a bathtub-shaped distribution under (a) Scheme
I and (b) Scheme II.
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Figure 8. Box plots of prediction errors for a bathtub-shaped distribution under (a) Scheme
III and (b) Scheme IV.

5.2. Real data analysis

To illustrate the practical application of the proposed pivotal-based approach, an analysis is
conducted on a fraction of COVID-19 mortality rates provided by Alsuhabi et al. [12]. The COVID-19
mortality rates are obtained by calculating the ratio of the daily number of deaths to daily new cases
in the United States of America (USA) from June 18 to July 7, 2020, and reported in Table 1. For
analytical purposes, the data are multiplied by 100, from which a DT-II censored sample (Table 2) is
generated through the setting of r = 2 and s = 2. Tables 3 and 4 provide the analysis results. Here, the
PCIs for β are computed based on N = 20, 000 in Algorithm 1. From Tables 3 and 4, it can be seen
that the length of the PCI for α and β is longer compared with the ACI counterpart. However, it may be
more reasonable than the ACI because the proposed method yields satisfactory performance in terms
of CP according to the simulation results in Section 5.1.

Table 1. COVID-19 mortality rates in the USA from June 18 to July 7, 2020.

0.0259 0.0333 0.0318 0.0188 0.0172 0.0112 0.0155 0.0229 0.0184 0.0621
0.0146 0.0114 0.0216 0.0103 0.0129 0.0134 0.0117 0.0143 0.0032 0.0054

Table 2. DT-II censored sample generated from COVID-19 mortality rates.

1.03 1.12 1.14 1.17 1.29 1.34 1.43 1.46
1.55 1.72 1.84 1.88 2.16 2.29 2.59 3.18

Table 3. 95% CIs and estimates of α and β for a Weibull distribution.

95% CI Estimates
ACI for α PCI for α ACI for β PCI for β α̂ α̃ β̂ β̃(α̃)
(1.344, 2.997) (0.000, 2.773) (0.036, 0.393) (0.103, 5.543) 2.171 2.004 0.215 0.264
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Table 4. 95% CIs and estimates of α and β for a bathtub-shaped distribution.

95% CI Estimates
ACI for α PCI for α ACI for β PCI for β α̂ α̃ β̂ β̃(α̃)
(0.663, 1.135) (0.000, 0.994) (0.049, 0.281) (0.120, 4.255) 0.899 0.787 0.165 0.266

Additionally, we evaluate the effectiveness of the proposed prediction approach using the COVID-
19 mortality rates. The generalized 95% PIs for X(l) (l = 1, 2, 19, 20) are computed based on
N = 20, 000 in Algorithm 2, and the results are plotted in Figure 9. It shows that the observations for
the censored samples and the predicted values obtained from the proposed method lie within a 95%
interval well. In addition, the proposed method has superior predictive performance compared with the
likelihood-based method because its prediction results are closer to the observations for the censored
samples.

(a) (b)

Figure 9. Generalized 95% PIs and predicted values for (a) left and (b) right censored
samples.

6. Conclusions

The observed sample size under the DT-II censoring scheme is likely to be very small, which
can yield highly biased results when using the likelihood-based method. Our proposed pivotal-based
estimation and prediction methods overcome these obstacles by providing exact interval estimation
and prediction results that are valid in small sample scenarios. The proposed prediction method
is particularly valuable in that it yields closed-form results, unlike the likelihood-based method. In
addition, novel algorithms utilizing a pseudorandom sequence, introduced to implement the proposed
approach, offer outstanding scalability.

The superiority and effectiveness of the proposed method were demonstrated through a comparison
with the likelihood-based method in Monte Carlo simulations and real-world case analysis. According
to simulation results, the proposed intervals achieve closer CP to the considered nominal level than the
ACIs for small and medium sample sizes. In addition, the proposed prediction method outperforms the

AIMS Mathematics Volume 9, Issue 10, 28508–28525.



28523

likelihood-based method, showing that the medians of prediction errors for the proposed method are
close to zero. These results reveal that the proposed method has superior competitiveness compared
to the likelihood-based method when focusing on interval estimation and prediction. Based on these
findings, we strongly recommend the use of the proposed method to estimate intervals for unknown
parameters and predict censored samples, particularly in situations where the available sample size
is not sufficiently large. Furthermore, the applicability of the proposed method was confirmed by
analyzing COVID-19 mortality rates in the USA.

The proposed method is applicable to inference not only for unknown parameters but also for
functions of interest involving these parameters, as demonstrated through Algorithm 2 in this study.
For example, the proposed method can be extended to inference for more complex functions involving
unknown parameters, such as the reliability function, entropy, and hazard rate under various censoring
schemes. This scalability is highly valuable and presents promising opportunities for future research.

Appendix

Proof of Theorem 4.3.

The term M2(x;α)/M1, j(x;α) in W2 (α) can be written as

M2(x;α)
M1, j(x;α)

= 1 +

n−s∑
i=r+2+ j

Q(i),(r+ j+1) + sQ(n−s),(r+ j+1) − (n − r − j − 1)

r+1+ j∑
i=r+1

Q(i),(r+ j+1) − (n − r)Q(r+1),(r+ j+1) + (n − r − j − 1)
,

where

Q(i),( j) =
log G(x(i);α)
log G(x( j);α)

.

This proof can then be completed by simply showing that Q(i),( j) is a strictly increasing or decreasing
function of α for any α > 0. The quantity Q(i),( j) for each distribution is given in Table 5. For the Weibull
distribution, it is clear that Q(i),( j) is a strictly increasing function of α. For the bathtub-shaped and
Gompertz distributions, see Lemma 2 in Chen [13] and Example 3.1 in Wang et al. [14], respectively.
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Table 5. Members of distribution family (2.1).

Distribution F(x; Θ) G(x;α) h(β) Parameter Q(i),( j)

α β

Weibull 1 − e−βxα , x > 0 e−xα β Shape Scale
(

xi
x j

)α
Bathtub-shaped 1 − eβ

(
1−exα

)
, x > 0 e1−exα

β Shape
1 − exαi

1 − exαj

Lomax 1 − (1 + αx)−β, x > 0 (1 + αx)−1 β Scale Shape
log (1 + αxi)

log
(
1 + αx j

)
Gompertz 1 − e−(β/α)(eαx−1), x > 0 e−(eαx−1)/α β Shape Scale

eαxi − 1
eαx j − 1

Burr-XII 1 − (1 + xα)−β , x > 0 (1 + xα)−1 β Shape Shape
log

(
1 + xαi

)
log

(
1 + xαj

)
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