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Abstract: This paper studies the finite-time stabilization (FTS) and finite-time contraction
stabilization (FTCS) of parameter-uncertain systems subjected to impulsive disturbances by using an
event-triggered aperiodic intermittent control (EAPIC) method, which combines aperiodic intermittent
control with event-triggered control. By employing the Lyapunov method and linear matrix inequality
techniques, sufficient conditions for FTS and FTCS are derived. Additionally, within the finite-time
control framework, relationships among impulsive disturbance, intermittent control parameters, and
event-triggered mechanism (ETM) thresholds are established under EAPIC to ensure FTS and FTCS.
The sequence of impulsive moments is determined by a predetermined ETM, and Zeno phenomena are
also excluded. Finally, the effectiveness of the EAPIC approach is demonstrated through two numerical
examples.
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1. Introduction

Impulsive systems are a class of dynamical systems characterized by sudden changes in state
or input at discrete time points. Such dynamical properties of impulsive systems have generated
widespread applications in fields such as electrical engineering [1], digital signal processing [2], and
biomedical engineering [3]. In impulsive systems, impulses are typically categorized into stabilizing
impulses and disturbance impulses. Stabilizing impulses represent the stabilizing effect and optimal
performance achieved by the nonlinear system under specific impulsive control, positively influencing
system stability (see, e.g., [4, 5]). Conversely, disturbance impulses may occur when the nonlinear
system is subjected to external perturbations, negatively affecting system stability and potentially
leading to instability (see, e.g., [6, 7]). To maintain system stability and performance, corresponding
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control strategies are required to suppress or compensate for such disturbance impulses.
In certain practical engineering applications, such as wind power management, vehicle control,

and spacecraft trajectory adjustments, continuously feeding control signals into the plant system is
not realistic. Compared to traditional continuous control methods, intermittent control (IC) allows for
inputting control signals into the plant system only at specific control time intervals, making it more
suitable for these actual applications. IC can be divided into periodic intermittent control (PIC) (see
e.g., [8–10]) and aperiodic intermittent control (APIC) (see, e.g., [11–13]). PIC inputs control signals
into the plant system at fixed control period and control width, while APIC is more flexible, allowing
for dynamic adjustments of control strategies as needed. In [14], exponential stability of nonlinear
systems under PIC was investigated, and stability criteria based on linear matrix inequalities (LMI)
and scalar inequalities were proposed. Given that the control period and width in PIC are fixed and
known, the derived conditions may be too conservative. Consequently, there is an urgent need to
introduce the APIC to replace PIC. In [15], the stabilization problem of continuous systems achieving
exponential input-to-state stability through APIC was studied. In [16], the concept of aperiodic time-
triggered IC was introduced, and a lower conservative exponential stability theorem was formulated for
the considered aperiodic time-triggered IC system through the construction of a hybrid time-dependent
Lyapunov functional. In the light of these reporting-based works, the APIC has become a highly
regarded area of interest.

In current research, traditional time-triggered control (TC) and event-triggered control (EC) employ
different approaches for control system design. TC involves sending and executing control signals
at regular intervals, which, although simple and convenient, may lead to resource wastage and
performance degradation due to its fixed-time interval signal transmission. In contrast, EC significantly
reduces resource consumption and enhances system performance by updating control signals under
specific triggering conditions. Recently, EC has achieved significant progress in achieving the satisfied
dynamic performances of control systems (see, e.g., [17–20]). However, EC is unnecessary and
energy-consuming as the event generator and controller continue to keep on running when the control
execution is not required. Hence, an event-triggered intermittent control (EIC) strategy combining IC
with EC has emerged. This strategy operates within specific time periods, allowing for intermittent
updating of control signals, thereby further reducing resource consumption. A dynamic EIC scheme
with input delays was introduced to stabilize the delayed dynamical systems in [21]. The time-triggered
APIC and event-triggered APIC (EAPIC) schemes were developed to achieve exponential stabilization
of continuous-time dynamical systems in [22].

Within a finite-time control framework, two particular stability concepts are under scrutiny:
asymptotic stability, where system trajectories converge to equilibrium states (see, e.g., [23, 24]),
and finite-time stability (FTS), where the system does not exceed a predefined threshold in finite-
time. Building upon the FTS concept, finite-time contraction stability (FTCS) further emphasizes
the “boundedness” and “contraction” nature of the system itself. Numerous theoretical results exist
regarding FTS and FTCS (see, e.g., [25–27]). Additionally, some guidelines for FTS and FTCS are also
presented for impulsive systems (see, e.g., [28–30]). In [31], some sufficient conditions of FTS/FTCS
for nonlinear impulsive systems were constructed via the Lyapunov function method. In [32],
FTS and FTCS of nonlinear systems subject to impulsive disturbances with parameter uncertainties
were obtained by designing APIC. A further exploration about FTS for nonlinear systems involving
impulsive disturbances under the EAPIC strategy faces a series of challenges. This includes how
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to build the relationship between the IC parameters and event-triggering mechanism (ETM) threshold
under EAPIC, as well as whether the designing APIC can suppress the effects of impulsive disturbance.
These issues constitute the focal points of further study. From the above discussion, the strengths of
this paper can be concluded as below:

(1) Based on the Lyapunov method and LMI techniques, this paper combines EC and APIC to
investigate the FTS and FTCS of uncertain systems with uncertain impulsive disturbance using EAPIC,
where the impulsive instants are generated by the predesigned ETM.

(2) Four elements of uncertain systems–FTS/FTCS, APIC, and impulse disturbances–are combined
simultaneously. Moreover, under EAPIC, the correlation among finite-time interval, impulsive
disturbance, inspection period, and ETM threshold is revealed. Additionally, the adopted EAPIC can
exclude the Zeno phenomenon.

(3) You et al. [32] apply time-triggered APIC to stabilize uncertain nonlinear systems with impulse
disturbance. This method involves control actions at fixed time intervals, which can lead to unnecessary
computations and communications. In contrast, the EAPIC considered in this paper triggers control
based on the actual changes in the system state, thus being more universal and flexible.

Notations: R and R+ represent the sets of real and non-negative real numbers, respectively. Z+ stands
for the set of positive integers. Rn denotes the n-dimensional real space with the Euclidean norm
|| · ||. Rn×m indicates the n × m dimensional real space. Y ≥ 0 or Y ≤ 0 means that matrix Y is a
positive definite or negative definite symmetric matrix. YT and Y−1 are used to describe the transpose
and inverse of Y separately. λmax(Y) and λmin(Y) represent the maximum and minimum eigenvalues
of matrix Y , respectively. ∗ stands for a symmetric block within a symmetric matrix. I denotes
the unit matrix possessing suitable dimension. C([−θ, 0];Rn) is the family of continuous functions
ψ : [−θ, 0] → Rn. A locally Lipschitz function ν : Rn → R+ has the upper right-hand Dini derivative
determined by

D+ν(ι) = lim sup
a→0+

ν(ι + a) − ν(ι)
a

.

2. Model description and preliminaries

The uncertain system is considered as follows:ι̇(t) = A(t)ι(t) + B(t)σ(ι(t − θ)) + C(t)u(t), t ≥ 0,
ι(t) = ς(t), t ∈ [−θ, 0],

(2.1)

where ι(t) ∈ Rn is state vector, A(t),B(t) ∈ Rn×n, as well as C(t) ∈ Rn×m. Assume that
A(t) = A + ∆A(t), B(t) = B + ∆B(t), and C(t) = C + ∆C(t), in which A,B, and C are
known real matrices, whereas ∆A(t),∆B(t), and ∆C(t) are uncertain unknown matrices. σ(ι(t)) =

(σ1(ι1(t)), σ2(ι2(t)), · · · , σn(ιn(t)))T
∈ Rn with σ(0) = 0. θ denotes time delay. The APIC u(t) ∈ Rm is

given as below

u(t) =

H ι(t), tk ≤ t < tk + τk,

0, tk + τk ≤ t < tk+1,
(2.2)

in which H signifies the control strength. tk, τk respectively denote the start time and control width of
each control period, which satisfy 0 < τk < tk+1 − tk. It can be noted that the controller (2.2) requires
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operation only on control intervals. That is, the absence of transmitting control input information
during the rest interval implies that system (2.1) operates alternately between the open-loop control
mode and the closed-loop control mode. Moreover, it is considered that the state of system (2.1) jumps
in certain cases due to the activation of the aperiodic interval controller, namely, the generation of
impulsive phenomena, and we regard them as disturbance impulses. Thus, system (2.1) with impulses
involved can be formulated as


ι̇(t) = A(t)ι(t) + B(t)σ(ι(t − θ)) + C(t)u(t), t , tk, t ≥ 0,
ι(t) = D(t)ι(t−), t = tk,

ι(t) = ς(t), t ∈ [−θ, 0],
(2.3)

whereD(t) represents the impulse gain matrix, which satisfiesD(t) = D+∆D(t). D is a known matrix,
and ∆D(t) is an unknown matrix. Assume system (2.3) is right continuous. Put ι(t, 0, ς) to indicate the
solution of system (2.3) through (0, ς), ς ∈ Rn. The series {tk}

+∞
k=1 fulfills 0 = t0 < t1 < · · · < tk < · · ·

and limk→+∞ = +∞.

It is assumed that the intermittent sequence {tk} is created through the ETM as follows:

tk+1 =

 inf {t : t ∈ Γk(tk + τk, tk + ω]} , if Γk(tk + τk, tk + ω] , ∅,
tk + ω, if Γk(tk + τk, tk + ω] = ∅,

(2.4)

where Γk(ε, t] =
{
t : t > ε + τk,U(ι(t)) ≥ eζU(ι(ε + τk))

}
, eζ , ζ > 0 denotes the threshold value, ω > 0

stands for the inspection period, which is generally devised as a constant large enough, as well asU(·)
indicates the Lyapunov function with respect to the state of the system (2.3). Figures 1 and 2 describe
the EAPIC loop and framework of EAPIC, respectively.

Plant ETM

Impulsive 
Disturbance

t=tk

Controller

Continuous signal Discrete signal

Figure 1. EAPIC loop.
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Figure 2. Framework of EAPIC.

The following describes some assumptions, definitions, and lemmas.

Assumption 2.1 ( [29]). Suppose there are positive constants $ j, which make

|σ j(β1) − σ j(β2)| ≤ $ j|β1 − β2|, β1, β2 ∈ R, j = 1, 2, . . . , n,

hold.

Assumption 2.2 ( [32]). The parameter uncertainties ∆A(t),∆B(t),∆C(t), and ∆D(t) satisfy

(∆A(t),∆B(t),∆C(t)) = NK1(t) (M1,M2,M3) , ∆D(t) = FK2(t)M4,

where N ,F ,M1,M2,M3, andM4 are known matrices as well as Ki(t) is an uncertain matrix-valued
function of suitable dimension fulfilling

KT
i (t)Ki(t) ≤ I, i = 1, 2.

Definition 2.1. For specified constants T , δ1, δ2, π, ρ with 0 < ρ < δ1 < δ2 and π ∈ (0,T ), along with
an arbitrary trajectory ι(t), the existence of a controller making ||ι(0)|| ≤ δ1 implies that ||ι(t)|| ≤ δ2 for
t ∈ [0,T ], then system (2.3) is called FTS with respect to (w.r.t) (T , δ1, δ2). Moreover, for t ∈ [T−π,T ],
if ||ι(t)|| ≤ ρ, then system (2.3) is called FTCS w.r.t (T , δ1, δ2, ρ, π).

Remark 2.1. According to [33], FTS depicts the “boundedness” of the described systems. In contrast,
FTCS demonstrates the “boundedness” and “contraction” of the described systems simultaneously. In
particular, to attain the “contraction” feature, FTCS requires the additional condition that the reasoned
systems can remain in a comparatively smaller boundary than the initial boundary until the end time
is implemented. Figure 3 visually depicts the FTS and FTCS, which also consider the possible impact
on the system of impulsive disturbance.
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Figure 3. FTS w.r.t (T , δ1, δ2) and FTCS w.r.t (T , δ1, δ2, ρ, π).

Lemma 2.1 ( [34]). For matrices D,S,F ,M, and K(t) with appropriate dimensions and S >

0,KTK(t) ≤ I, scalars κ > 0 and S − κFF T > 0, it follows that

(D + FK(t)M)TS−1(D + FK(t)M) ≤ DT (S − κFF T )−1D + κ−1MTM.

Lemma 2.2 ( [35]). For a symmetric and positive matrix Q, constant % > 0, one has

2eT f ≤ %eTQe + %−1 f TQ−1 f , e, f ∈ Rn.

Lemma 2.3 ( [36]). The N andM are matrices with proper dimensions. Let K(t) meet KTK(t) ≤ I.
For any γ > 0, then

NK(t)M +MTKT (t)NT ≤ γNNT + γ−1MTM.

Lemma 2.4 ( [29]). Let ι ∈ C([χ − θ,∞); [0,∞)) satisfy

ι̇(t) ≤ −cι(t) + d max {ιt} , t ≥ χ.

If c > d > 0, then
ι(t) ≤

[
max

{
ιχ
}]

exp (−λ(t − χ)) , t ≥ χ,

in which max {ιt} = supt−θ≤φ≤t ι(φ), and λ is the smallest positive real root in the following equation

c − λ − deλθ = 0.

Lemma 2.5 ( [37]). For t ∈ (−θ,+∞), if function ι ≥ 0 meets

ι̇(t) ≤ a1ι(t) + a2ι(t − θ), a1, a2 > 0, t ≥ 0,

it follows that
ι(t) ≤ ||ι(0)|| exp ((a1 + a2)t).
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3. Main results

In this section, sufficient conditions for FTS and FTCS of system (2.3) are obtained through EAPIC.

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold, there exists symmetric and positive matrix
P, positive constants λ, δ1, δ2,T , ρ, π, µ1, µ2, γ1, γ2, γ3, γ4, α1, α2, η1, η2, ϑ, where ρ < δ1 < δ2, π ∈

(0,T ), µ1 ≤ µ2, and ϑ ≥ 1 to satisfy

(A) µ1I ≤ P ≤ µ2I;

(B)


−ϑP DTP MT

4
∗ −P + γ4PFF

TP 0
∗ ∗ −γ4I

 < 0;

(C)
(
ψ̃1 PB

∗ −α1I + γ−1
2 M

T
2M2

)
< 0, where

ψ̃1 = PA +ATP +PCH +HTCTP + (γ1 + γ2 + γ3)PNNTP + γ−1
1 M

T
1M1 + γ−1

3 H
TMT

3M3H + η1P;

(D)
(
ψ̃2 PB

∗ −α2I + γ−1
2 M

T
2M2

)
< 0, where

ψ̃2 = PA +ATP + (γ1 + γ2)PNNTP + γ−1
1 M

T
1M1 − η2P;

(E) ζ

λ
≤ τ̄ ≤ τk ≤ ω −

ζ

η2+h2
;

(F) n(0, t) lnϑ − λ(
∑n(0,t)

i=0 τi) + (n(0, t) + 1)ζ ≤ ln(µ1δ
2
2) − ln(µ2δ

2
1), t ∈ [0,T ],

in which λ is the smallest positive solution of the formula η1 − λ − h1eλθ = 0 and η1 > h1. τ̄ =

lim inf
∑k−1

i=0 τi

k denotes the minimum average control width. n(0, t) represents the control period count
on (0,T ], T , tk. Thus, the Zeno phenomenon is ruled out, and system (2.3) is FTS w.r.t (T , δ1, δ2)
under APIC (2.2). Besides, for t ∈ [T − π,T ], if the following relation.

(G) n(0, t) lnϑ− λ(
∑n(0,t)

i=0 τi) + (n(0, t) + 1)ζ ≤ ln(µ1ρ
2)− ln(µ2δ

2
1) holds, then system (2.3) is FTCS w.r.t

(T , δ1, δ2, ρ, π) under APIC (2.2).

Proof. For 0 < ||ι(0)|| ≤ δ1, assume that ι(t) = ι(t, 0, ς) is a solution of system (2.3) via (0, ς). Consider
the Lyapunov function as follows:

U(ι(t)) = ιT (t)Pι(t).

From (B) in Theorem 3.1, it follows that

−ϑP +DT (P−1 − γ4FF
T )−1D + γ−1

4 M
T
4M4 ≤ 0.
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For t = tk, by using Lemma 2.1, we obtain

U(ι(tk)) = ιT (tk)Pι(tk) = ιT (t−k )DT (tk)PD(tk)ι(t−k )
= ιT (t−k )(D + ∆D(tk))TP(D + ∆D(tk))ι(t−k )
= ιT (t−k )(D + FK2(t)M4)TP(D + FK2(t)M4)ι(t−k )

≤ ιT (t−k )
[
DT (P−1 − γ4FF

T )−1D + γ−1
4 M

T
4M4

]
ι(t−k )

≤ ϑU(ι(t−k )).

(3.1)

For t , tk, when t ∈ [tk, tk + τk), we obtain

D+U(ι(t)) = 2ιT (t)Pι̇(t) = 2ιT (t)P ((A(t) + C(t)H)ι(t) + B(t)σ(ι(t − θ)))

= 2ιT (t)P ((A + ∆A(t) + CH + ∆C(t)H)ι(t) + (B + ∆B(t))σ(ι(t − θ)))

= ιT (t)
(
PA +ATP + PCH +HTCTP

)
ι(t) + 2ιT (t)P∆A(t)ι(t)

+ 2ιT (t)P∆C(t)H ι(t) + 2ιT (t)PBσ(ι(t − θ)) + 2ιT (t)P∆B(t)σ(ι(t − θ)).

(3.2)

Next, together with Assumption 2.2, Lemma 2.2, and Lemma 2.3 to obtain

2ιT (t)P∆A(t)ι(t) = 2ιT (t)PNK1(t)M1ι(t)

= ιT (t)
(
PNK1(t)M1 +MT

1K
T
1 (t)NTPT

)
ι(t)

≤ ιT (t)
(
γ1PNN

TP + γ−1
1 M

T
1M1

)
ι(t),

(3.3)

2ιT (t)P∆B(t)σ(ι(t − θ)) = 2ιT (t)PNK1(t)M2σ(ι(t − θ))
≤ ιT (t)γ2PNN

TPι(t) + σT (ι(t − θ))γ−1
2 M

T
2M2σ(ι(t − θ)),

(3.4)

2ιT (t)P∆C(t)H ι(t) = 2ιT (t)PNK1(t)M3H ι(t)

= ιT (t)
(
PNK1(t)M3H +HTMT

3K
T
1 (t)NTPT

)
ι(t)

≤ ιT (t)
(
γ3PNN

TP + γ−1
3 H

TMT
3M3H

)
ι(t).

(3.5)

Bringing (3.3)–(3.5) into (3.2), we have, according to (C) in Theorem 3.1, that

D+U(ι(t)) ≤ιT (t)
[
PA +ATP + PCH +HTCTP + (γ1 + γ2 + γ3)PNNTP + γ−1

1 M
T
1M1

+ γ−1
3 H

TMT
1M1H

]
ι(t) + 2ιT (t)PBσ(ι(t − θ)) + σT (ι(t − θ))γ−1

2 M
T
2M2σ(ι(t − θ))

≤
(
ιT (t) σT (ι(t − θ))

) (ψ̃1 PB

∗ −α1I + γ−1
2 M

T
2M2

) (
ι(t)

σ(ι(t − θ))

)
− η1ι

T (t)Pι(t) + α1σ
T (ι(t − θ)σ(ι(t − θ)

≤ − η1U(ι(t)) + h1U(ι(t − θ)),

where h1 = α1$σλmax(P−1) with $σ = max
{
$2

1, $
2
2, . . . , $

2
n

}
. For t ∈ [tk, tk + τk), by Lemma 2.4, one

has
U(ι(t)) ≤ U(ι(tk)) exp (−λ(t − tk)). (3.6)

AIMS Mathematics Volume 9, Issue 10, 28487–28507.



28495

Similarly, for t ∈ [tk + τk, tk+1), it follows that

D+U(ι(t)) ≤ ιT (t)
[
PA +ATP + (γ1 + γ2)PNNTP + γ−1

1 M
T
1M1

]
ι(t)

+ 2ιT (t)PBσ(ι(t − θ)) + σT (ι(t − θ))γ−1
2 M

T
2M2σ(ι(t − θ))

≤
(
ιT (t) σT (ι(t − θ))

) (ψ̃2 PB

∗ −α2I + γ−1
2 M

T
2M2

) (
ι(t)

σ(ι(t − θ))

)
+ η2ι

T (t)Pι(t) + α2σ
T (ι(t − θ))σ(ι(t − θ))

≤ η2U(ι(t)) + h2U(ι(t − θ)),

where h2 = α2$σλmax(P−1). Based on Lemma 2.5, when t ∈ [tk + τk, tk+1), we obtain

U(ι(t)) ≤ U(ι(tk + τk)) exp ((η2 + h2)(t − tk − τk)). (3.7)

Thus,
U(ι(tk+1)) ≤ U(ι(tk + τk)) exp ((η2 + h2)(tk+1 − tk − τk)). (3.8)

If Γk(tk + τk, tk +ω] , ∅, then tk+1 − tk ≤ ω and only when the event occurrence function to be zero will
trigger the next event, namely

U(ι(tk+1)) = eζU(ι(tk + τk)). (3.9)

Consequently, together with (3.8) and (3.9), we derive

τk +
ζ

η2 + h2
≤ tk+1 − tk ≤ ω. (3.10)

If Γk(tk + τk, tk + ω] = ∅, then tk+1 − tk = ω, (3.10) still stands. Because ζ

η2+h2
> 0, combining (3.10)

with (E) in Theorem 3.1, it follows that

0 <
(
1
λ

+
1

η2 + h2

)
ζ ≤ tk+1 − tk ≤ ω. (3.11)

Therefore, the Zeno behavior of system (2.3) is excluded.
For t ∈ [tk + τk, tk+1), by ETM (2.4), we obtain

U(ι(t)) ≤ eζU(ι(tk + τk)). (3.12)

When t ∈ [0, τ0), by (3.6), it is obtained that

U(ι(t)) ≤ U(ι(0)) exp (−λt)

and
U(ι(τ0)) ≤ U(ι(0)) exp (−λτ0).

When t ∈ [τ0, t1), based on (3.12), one obtains

U(ι(t)) ≤ eζU(ι(τ0)) ≤ U(ι(0)) exp(ζ − λτ0),

and
U(ι(t−1 )) ≤ U(ι(0)) exp(ζ − λτ0).
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When t ∈ [t1, t1 + τ1), it follows from (3.1) and (3.6) that

U(ι(t)) ≤ U(ι(t1)) exp (−λ(t − t1)) ≤ ϑU(ι(t−1 )) exp (−λ(t − t1)) ≤ ϑU(ι(0)) exp (ζ − λ(τ0 + t − t1)),

and
U(ι(t1 + τ1)) ≤ ϑU(ι(0)) exp (ζ − λ(τ0 + τ1)).

When t ∈ [t1 + τ1, t2), we obtain

U(ι(t)) ≤ eζU(ι(t1 + τ1)) ≤ ϑU(ι(0)) exp (2ζ − λ(τ0 + τ1)),

and
U(ι(t−2 )) ≤ ϑU(ι(0)) exp (2ζ − λ(τ0 + τ1)).

When t ∈ [t2, t2 + τ2), one has

U(ι(t)) ≤ U(ι(t2)) exp (−λ(t − t2)) ≤ ϑU(ι(t−2 )) exp (−λ(t − t2))

≤ ϑ2U(ι(0)) exp (2ζ − λ(τ0 + τ1 + t − t2)),

and
U(ι(t2 + τ2)) ≤ ϑ2U(ι(0)) exp (2ζ − λ(τ0 + τ1 + t − t2)).

When t ∈ [t2 + τ2, t3), there holds

U(ι(t)) ≤ eζU(ι(t2 + τ2)) ≤ ϑ2U(ι(0)) exp (3ζ − λ(τ0 + τ1 + τ2)).

By mathematical induction, when t ∈ [tk + τk, tk+1), one obtains

U(ι(t)) ≤ ϑkU(ι(0)) exp

(k + 1)ζ − λ(
k∑

i=0

τi)

 = U(ι(0)) exp

k lnϑ − λ(
k∑

i=0

τi) + (k + 1)ζ

 ,
which means

U(ι(t)) ≤ U(ι(0)) exp

n(0, t) lnϑ − λ(
n(0,t)∑
i=0

τi) + (n(0, t) + 1)ζ

 , t ∈ [0,T ]. (3.13)

Using (A) and (F) in Theorem 3.1, we derive

µ1||ι(t)||2 ≤ U(ι(t)) ≤ µ2||ι(0)||2U(ι(0)) exp

n(0, t) lnϑ − λ(
n(0,t)∑
i=0

τi) + (n(0, t) + 1)ζ


≤ µ2δ

2
1 exp

n(0, t) lnϑ − λ(
n(0,t)∑
i=0

τi) + (n(0, t) + 1)ζ


≤ µ1δ

2
2,
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which implies ||ι(t)|| ≤ δ2, and hence, ||ι(t)|| ≤ δ2 holds on [0,T ]. So, system (2.3) can achieve FTS
under APIC (2.2). When t ∈ [T − π,T ], if (G) in Theorem 3.1 is satisfied, it follows from (3.13) that

µ1||ι(t)||2 ≤ U(ι(t)) ≤ µ2||ι(0)||2U(ι(0)) exp

n(0, t) lnϑ − λ(
n(0,t)∑
i=0

τi) + (n(0, t) + 1)ζ


≤ µ2δ

2
1 exp

n(0, t) lnϑ − λ(
n(0,t)∑
i=0

τi) + (n(0, t) + 1)ζ


≤ µ1ρ

2,

which shows that ||ι(t)|| ≤ ρ for all t ∈ [T − π,T ]. Then, system (2.3) can achieve FTCS under
APIC (2.2). �

Remark 3.1. It is important to note that conditions (C) and (D) in Theorem 3.1 regulate the continuous
dynamics so that (3.6) and (3.7) hold, where the parameters η1 and η2 imply the decay rate and
potential growth for system (2.3), respectively. This means that system (2.3) shows a decreasing trend
in the control intervals, which makes system (2.3) to some extent divergent in the resting intervals.
Furthermore, ϑ ≥ 1 in condition (B) of Theorem 3.1 suggests that impulses may have destabilizing
effects.

As a matter of fact, when τk = τ, tk+1 − tk − τ = c with τ, c > 0, APIC (2.2) can be turned into PIC
as follows:

u(t) =

H ι(t), kJ ≤ t < kJ + τ,

0, kJ + τ ≤ t < (k + 1)J ,
(3.14)

where J > 0 denotes the control period as well as 0 < τ < J indicates the control width, then the
following corollary is obvious.

Corollary 3.1. Suppose that Assumptions 2.1 and 2.2 hold, there exists symmetric and positive matrix
P, positive constants λ, δ1, δ2,T , ρ, π, µ1, µ2, γ1, γ2, γ3, γ4, α1, α2, η1, η2, ϑ, where ρ < δ1 < δ2, π ∈

(0,T ), µ1 ≤ µ2, and ϑ ≥ 1 to satisfy (A) − (D) in Theorem 3.1, and for any t ∈ [0,T ], if the following
relation

n(0, t) (lnϑ + (η2 + h2)c − λc) ≤ ln(µ1δ
2
2) − ln(µ2δ

2
1) − (η2 + h2)c

holds, then system (2.3) is FTS w.r.t (T , δ1, δ2) under PIC (3.14). Besides, for t ∈ [T − π,T ], if

n(0, t) (lnϑ + (η2 + h2)c − λc) ≤ ln(µ1ρ
2) − ln(µ2δ

2
1) − (η2 + h2)c

holds, then system (2.3) is FTCS w.r.t (T , δ1, δ2, ρ, π) under PIC (3.14).

Remark 3.2. It should be noted that (3.14), as a special case of (2.2), is time-triggered, meanwhile,
both J and τ are fixed.

Next, when parameter uncertainties ∆A(t) = ∆B(t) = ∆C(t) = ∆D(t) = 0, the uncertain
system (2.3) is transformed into the following deterministic system:

ι̇(t) = Aι(t) + Bσ(ι(t − τ)) + Cu(t), t , tk, t ≥ 0,
ι(t) = Dι(t−), t = tk,

ι(t) = ς(t), t ∈ [−θ, 0].
(3.15)
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Corollary 3.2. Suppose that Assumption 2.1 holds and there exists symmetric positive matrices P,
positive constants λ, δ1, δ2,T , ρ, π, µ1, µ2, α1, α2, η1, η2, ϑ, where ρ < δ1 < δ2, π ∈ (0,T ), µ1 ≤ µ2, and
ϑ ≥ 1 such that (A) in Theorem 3.1 and

(B′)
(
−ϑP DTP

∗ −P

)
< 0;

(C′)
(
ψ̃1 PB

∗ −α1I

)
< 0, where ψ̃1 = PA +ATP + PCH +HTCTP + η1P;

(D′)
(
ψ̃2 PB

∗ −α2I

)
< 0, where ψ̃2 = PA +ATP − η2P;

(E′) ζ

λ
≤ τ̄ ≤ τk ≤ ω −

ζ

η2+h2
;

hold, then system (3.15) is FTS w.r.t (T , δ1, δ2) under APIC (2.2) if (F) in Theorem 3.1 is true and
the Zeno phenomenon is excluded. Furthermore, system (3.15) is FTCS w.r.t (T , δ1, δ2, ρ, π) under
APIC (2.2) if (G) in Theorem 3.1 is satisfied when t ∈ [T − π,T ].

4. Numerical examples

The validity of the theoretical results will be verified by two numerical examples.

Example 4.1. Consider the uncertain system as follows:

ι̇(t) = A(t)ι(t) + B(t)σ(ι(t − θ)) (4.1)

on t ≥ 0, where

A =

(
−0.7 0

0 −0.8

)
, B =

(
1.8 0
0 2

)
,

σ(ι(t − θ)) =

(
0.3(|0.85ι1(t) + 2| − |0.85ι1(t) − 2|)

0.3(|0.85ι2(t − θ) + 2| − |0.85ι2(t − θ) − 2|)

)
,

θ = 0.5, ∆A(t) = ∆B(t) =

(
0.1 sin(0.5t) 0

0 0.1 sin(0.5t)

)
.

Consider the initial condition ι(0) = (1.05, 0.6)T , parameters δ1 = 1.21, δ2 = 2, and T = 9.5. Based
on the state trajectories of system (4.1) shown in Figure 4, we know that system (4.1) is not FTS w.r.t
(9.5,1.21,2).

When APIC u(t) and impulsive disturbance are accounted for, system (4.1) can be rewritten as
ι̇(t) = A(t)ι(t) + B(t)σ(ι(t − τ)) + C(t)u(t), t , tk, t ≥ 0,
ι(t) = D(t)ι(t−), t = tk,

ι(t) = ς(t), t ∈ [−θ, 0],
(4.2)

where

C =

(
0.1
0.1

)
, D =

(
1.2 0.1
0.1 1.2

)
, ∆C(t) =

(
0.1 sin(0.5t)

0

)
,
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∆D(t) =

(
0.1 sin(0.5t) 0

0 0.1 sin(0.5t)

)
and

u(t) =

H ι(t), tk ≤ t < tk + τk,

0, tk + τk ≤ t < tk+1.
(4.3)

Let $1 = $2 = 0.51,N = F = I2,M1 = M2 = M4 = 0.1I2,M3 = (0.1; 0),Ki(t) =

(sin(0.5t), 0; 0, sin(0.5t)) and KT
i (t)Ki(t) ≤ I2 (i = 1, 2), in which case Assumptions 2.1 and 2.2 hold.
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Figure 4. State trajectories of system (4.1).
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Assume that µ1 = 5.2, µ2 = 5.5, ϑ = 2, γ1 = 0.0425, γ2 = 0.043, γ3 = 0.0358, γ4 = 0.018, α1 =

1.8266, α2 = 2.3013, η1 = 0.3665, η2 = 1.1. Under conditions (A) − (D) of Theorem 3.1, it can be
obtained by using the MATLAB toolbox

P =

(
5.35 −0.0018
−0.0018 5.35

)
, H =

(
−1.864 −1.864

)
.

Additionally, by calculating, we can obtain h1 = 0.0888, h2 = 0.1119, and λ = 0.2651.

Design ω = 5, ζ = 0.1 as well as τk = 3.5, then the intermittent sequence {tk} is decided by the
following ETM

tk+1 =

 inf {t : t ∈ Γk(tk + 3.5, tk + 5]} , if Γk(tk + 3.5, tk + 5] , ∅,
tk + 5, if Γk(tk + 3.5, tk + 5] = ∅,

(4.4)

where

Γk(ε, t] =
{
t : t > ε + 3.5,U(ι(t)) ≥ e0.1U(ι(ε + 3.5))

}
,

and U(ι(t)) = ιT (t)Pι(t). Obviously, the condition (E) in Theorem 3.1 is satisfied. According to
Figure 5, we can obtain the intermittent times as t1 = 3.6359, t2 = 7.4563. Furthermore, when t ∈
[0, 9.5], we have that the intermittent sequences {tk} and control span τk meet

0.6931k − 0.9279k + 0.1(k + 1) ≤ 0.949, k = 0, 1, 2.

By Theorem 3.1, we can conclude that system (4.2) is FTS w.r.t (9.5,1.21,2) under APIC (4.3).
Moreover, take π = 2, ρ = 1.15. When t ∈ [7.5, 9.5], the intermittent sequences {tk} and control
span τk satisfy

0.6931k − 0.9279k + 0.1(k + 1) ≤ −0.1578, k = 2.

Based on Theorem 3.1, we can deduce that system (4.2) is FTCS w.r.t (9.5,1.21,2,1.15,2) under
APIC (4.3). The relevant simulation results for ι(0) = (1.05, 0.6)T are displayed in Figure 5, where
Figure 5(a) portrays the trajectories of ι1, ι2; Figure 5(b,c) shows the trajectories of ||ι(t)|| and u(t),
respectively.
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Figure 5. State trajectories and control input u(t) of system (4.2).
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Example 4.2. Let us consider the two degrees of freedom damped dual-mass spring system illustrated
in Figure 6, which has the following mathematical expression:m1ϊ1(t) = σ1 + u + k2(ι2 − ι1) + c2(ι̇2 − ι̇1) − k1ι1 − c1ι̇1,

m2ϊ2(t) = σ2 − k2(ι2 − ι1) − c2(ι̇2 − ι̇1),
(4.5)

where m1,m2 ∈ R+ denote two masses, ι1, ι2 ∈ R+ represent displacements of masses m1,m2, k1, k2 ∈ R+

indicate elasticity coefficients of two springs, c1, c2 ∈ R+ signify damping coefficients of two dampers,
as well as u stands for the control input as shown in (2.2). Setting ι̇1 = ι3, ι̇2 = ι4, and ι = (ι1, ι2, ι3, ι4)T ,
then we obtain

ι̇ =


0 0 1 0
0 0 0 1

−
k1+k2

m1

k2
m1

−
c1+c2

m1

c2
m1

k2
m2

−
k2
m2

c2
m2

−
c2
m2

 ι +


0 0 0 0
0 0 0 0
0 0 1

m1
0

0 0 0 1
m2




0
0
σ1

σ2

 +


0
0
1

m1

0

 u. (4.6)

m2 m1

�1 �2

k1

c1

k2

c2
u

ι1ι2

Figure 6. Schematic diagram of the damped dual-mass spring system (4.6).

In real applications, the damped dual-mass spring system may experience transient disturbances
in the control mass m1 caused by input noise and uncertainty. We treat such transient disturbances as
impulsive disturbances that induce an instantaneous change in velocity, namely, ι(tk) = Dι(t−k ), where
D = diag {1, 1, d, 1}. Moreover, the sequence of impulsive moments is given by ETM (4.4). Assume
that σ1 = sin(0.1ι1(t)), σ2 = sin(0.1ι2(t − θ)), where θ = 0.2. Let µ1 = 1, µ2 = 3, η1 = 0.6513, η2 =

1.961, ϑ = 1.8, α1 = 1.6371, α2 = 1.5088, k1 = 2.5, k2 = 2,m1 = 3.5,m2 = 1.2, c1 = 0.5, c2 = 3, d =

1.3. According to (A), (C′) − (D′) in Corollary 3.2, using the MATLAB toolbox, one has

P =


1.992 −0.1415 0.7554 −0.2287
−0.1415 1.67 −0.01754 0.5689
0.7554 −0.01754 1.684 −0.1489
−0.2287 0.5689 −0.1489 1.59

 ,H =
(
−2.005 −4.391 −5.702 −9.21

)
.

By further calculations, it follows that h1 = 0.0159, h2 = 0.0147, as well as λ = 0.6333.
Therefore, (E′) in Corollary 3.2 holds. As can be seen from Figure 7, the impulsive instants are
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t1 = 4.6267, t2 = 9.6267. Let T = 6, δ1 = 2.17, δ2 = 4, ρ = 1.85, π = 1.2, and the initial value is
ι0 = (1.8, 0.8,−0.1,−0.9). When t ∈ [0, 6], we have that the impulsive sequences {tk} and control span
τk meet

0.5789k − 2.2165k + 0.1(k + 1) ≤ 0.1245, k = 0, 1.

From Corollary 3.2, we can deduce that under APIC (2.2), system (4.6) is FTS w.r.t (6,2.17,4).
Moreover, when t ∈ [4.8, 6], the impulsive sequences {tk} and control span τk satisfy

0.5789k − 2.2165k + 0.1(k + 1) ≤ −1.4176, k = 1.

According to Corollary 3.2, we can infer that system (4.6) is FTCS w.r.t (6,2.17,4,1.85,1.2) under
APIC (2.2). The associated simulation results are exhibited in Figure 7.
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Figure 7. State trajectories and control input u(t) of system (4.6).
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Remark 4.1. Without considering the control input u and impulsive disturbance, it can be seen from
Figure 8 that system (4.6) is not FTCS w.r.t (6,2.17,4,1.85,1.2).
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Figure 8. State trajectories of system (4.6) without control input u and impulsive disturbance.

5. Conclusions

Due to traditional PIC methods, which execute control actions at fixed time intervals regardless of
system state changes, inefficiencies may arise. To overcome these restrictions, this paper proposes the
EAPIC method by combining APIC with EC. Through this approach, the FTS and FTCS of parameter-
uncertain systems with impulsive disturbance are investigated. With the aid of Lyapunov methods and
LMI techniques, criteria for FTS and FTCS of parameter uncertain systems are derived. Additionally,
under EAPIC conditions, relationships among impulsive disturbance, intermittent control parameters,
and ETM threshold are established. The sequence of impulsive instants is determined by predefined
ETM, and the Zeno phenomenon is ruled out. In future work, we will focus on how to incorporate
external disturbances, such as random noise, into the EAPIC system. We plan to adapt the existing
event-triggered control strategy to enhance the robustness of the system to these disturbances and
ensure that the control strategy remains effective under various disturbance conditions.
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