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Abstract: In this paper, the control problem of prescribed-time adaptive neural stabilization for a
class of non-strict feedback stochastic high-order nonlinear systems with dynamic uncertainty and
unknown time-varying powers is discussed. The parameter separation technique, dynamic surface
control technique, and dynamic signals were used to eradicate the influences of unknown time-
varying powers together with state and input unmodeled dynamics, and to mitigate the computational
intricacy of the backstepping. In a non-strict feedback framework, the radial basis function neural
networks (RBFNNs) and Young’s inequality were deployed to reconstruct the continuous unknown
nonlinear functions. Finally, by establishing a new criterion of stochastic prescribed-time stability
and introducing a proper bounded control gain function, an adaptive neural prescribed-time state-
feedback controller was designed, ensuring that all signals of the closed-loop system were semi-
global practical prescribed-time stable in probability. A numerical example and a practical example
successfully validated the productivity and superiority of the control scheme.
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1. Introduction

This study presents a stochastic nonlinear plant in the form of non-strict feedback, as described
below:

dz = q(z, x)dt,
dxi =

(
hi(x̄i)[xi+1]pi(t) + fi(x) + Γi(z, x)

)
dt + g⊤i (x)dω,
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dxn =
(
hn(x)ν + fn(x) + Γn(z, x)

)
dt + g⊤n (x)dω,

x(0) = x0, i = 1, . . . , n − 1, (1.1)

where x = [x1, . . . , xn]⊤ ∈ Rn, ν ∈ R, and x0 ∈ R are the system state, input, and initial value,
respectively. z ∈ Rn0 is the stochastic state unmodeled dynamics portion. System power pi(t): R+ → R+

is defined as an unknown time-varying function. It is worth mentioning that when pi(t) ≥ 1, we call
system (1.1) a high-order system. We denote [·]p = sign(·)| · |p for any real number p > 0. ω(t)
represents an m-dimensional standard Wiener process. Γi(·) represents nonlinear dynamic disturbances.
q(·), hi(·), Γi(·), fi(·), and gi(·) indicate unknown locally Lipschitz continuous functions. The input
unmodeled dynamics subsystem is listed as{

dz̄ = aΓ(z̄) + bΓ[u]pn(t),

ν = cΓ(z̄) + dΓ[u]pn(t),
(1.2)

where z̄ ∈ Rn1 denotes the input unmodeled dynamics, aΓ indicates a globally Lipschitz smooth function
vector, bΓ indicates a constant vector, cΓ(z̄) indicates a smooth function, dΓ indicates a constant, and
u ∈ R indicates the system input.

Many practical applications require severe time response constraints due to security reasons, or
simply to improve productivity. Hence, finite-time and further fixed-time stability problems have been
intensively studied, see [1–6] and the references therein. In recent decades, due to the widespread
application of stochastic nonlinear control in the fields of economics and engineering, the design of
stability time for their systems has become a hot topic. Some results have been achieved on the
asymptotic stability [7–9], finite-time stability [10, 11], and fixed-time stability [12–14] of stochastic
nonlinear systems with pi(t) = 1. It must be clarified that the aforementioned control strategies can
only determine the upper limit of the stable time through a complex mathematical function composed
of multiple control parameters. In many engineering applications, it is necessary not only to achieve
the desired control performance within a specified time frame but also without being constrained by
initial conditions. In this regard, [15] introduced the concept of prescribed time for normal-form
nonlinear systems, which utilizes state scaling methods, allowing users to pre-determine a
convergence time independent of other control parameters. Taking into account the frequent
occurrence of stochastic disturbances in practical systems, [16] further applied the concept of
prescribed-time stability to the inverse optimal control problem of stochastic nonlinear systems. In
continuation of previous research in [16], subsequent research in [17] founded a way to ease the
burden of control efforts. Additionally, a new non-scaling output-feedback control scheme was
developed in [18] for stochastic nonlinear systems with or without sensor uncertainty. Taking a step
further, when pi(t) = pi > 1, that is, system (1.1) is a stochastic high-order nonlinear system, there
poses a challenge to the control design since the presence of high powers impedes the achievement of
feedback linearization or controllability through Jacobian linearization, as discussed in [19]. For such
systems, the prescribed-time mean-square stability was discussed in [20], addressing both
state-feedback control and parameter uncertainty issues.

However, the aforementioned research outcomes are primarily based on an assumption that the
powers of system (1.1) are constants and precisely known. In real engineering applications, the
powers of many systems may undergo variations influenced by factors such as engineering data and
operating conditions. For instance, the power of a boiler turbine unit might be adjusted according to
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actual demand in [21] and nonlinear springs in unstable mechanical systems could lead to changes in
dynamic characteristics in [22]. These situations need to be considered during system modeling.
Furthermore, factors such as external disturbances, modeling errors, and model simplifications may
negatively impact the stability of controlled systems, thereby degrading control performance.
Although some scholars investigated finite-time or fixed-time control of stochastic nonlinear systems
with unmodeled dynamics and dynamic disturbances, and proposed some meaningful conclusions
in [23–26], these studies have not yet addressed the issue of prescribed-time control. It is worth
emphasizing that the adaptive neural network/fuzzy control method excels in addressing unknown
nonlinearities. For example, [27] proposed an event-triggered adaptive fuzzy control scheme that
effectively addresses stochastic nonlinear time-delay systems by handling delays using the
Lyapunov-Krasovskii function and simplifying uncertainty modeling with fuzzy logic, significantly
reducing data transmission and communication burdens. Additionally, [28] introduced an adaptive
neural network event-triggered asymptotic tracking control strategy that effectively tackles state
constraints and unknown dynamics in multi-input/multi-output (MIMO) nonlinear systems, utilizing
barrier Lyapunov functions and neural networks to achieve safe control and dynamic modeling,
thereby enhancing control efficiency and reducing data transmission. However, as far as we are aware,
there are still some challenges in directly applying this method to achieve prescribed-time stability for
stochastic nonlinear systems. Thus, these facts prompt us to raise an interesting question: can we
develop an adaptive neural prescribed-time controller to stabilize stochastic nonlinear systems with
unmodeled dynamics and unknown time-varying powers pi(t)?

To address this critical issue, this article provides a new constructive control strategy for prescribed-
time stabilization in probability. Prior to the controller design, the concept of semi-global practical
prescribed-time stability in probability is first introduced. Then, dynamic signal function, normalized
signals, dynamic surface control, and the parameter separation technique are used in every phase of
the iterative design to solve the issue of differential explosion of the virtual control and to eliminate
the effects of multiple unknown uncertainties. Radial basis function neural networks (RBFNNs) are
deployed to estimate the uncertainty functions and the backstepping technique is manipulated to design
the controller. Based on the bounded control gain function, the virtual controller does not tend to
infinity during operation and the suggested control scheme enables the system to persist operation after
a specified time, thus ensuring the performance of the closed-loop system. Compared with existing
findings, this article incorporates its primary contributions as follows:

(1) The framework of system (1.1) is more prevailing. In comparison with recent literature on
prescribed-time control [16–18, 20], this is the first study of the adaptive neural prescribed-time control
problem for stochastic high-order nonlinear systems with unknown time-varying powers.

(2) This paper expands upon previous research on stochastic nonlinear systems with unknown time-
varying powers, as discussed in [29–33], by additionally considering unmodeled dynamics in both
input and state. These dynamics have the potential to negatively impact control performance and
potentially lead to instability in the closed-loop system. On this basis, the control algorithm avoids
the repeated differentiation of the virtual controller by dynamic surface control, ensures the system
signal will achieve more effective prescribed finite-time stability, and adopts the minimum learning
parameter method where only one adaptive parameter needs to be adjusted dynamically to reduce the
computation.

(3) Even though stochastic nonlinear systems in [16–18, 20] can operate stably within the
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prescribed-time range, the control algorithm relies heavily on the unbounded gain signal T
t−T at t = T ,

where T is the prescribed stabilization time. This situation presents difficulties for the control
system’s execution. Considering that any dynamic interference can lead to the controller approaching
infinity, which can harm the system response, inspired by [34], this article overcomes the
shortcomings of existing prescribed-time control methods when there is multiple interference in the
system, and ensures the continuous operation of the closed-loop system.

2. Problem statement and preliminaries

2.1. Problem statement

The aim of this thesis is formulated as to develop an adaptive neural prescribed-time control scheme
for system (1.1), which ensures the convergence of all closed-loop system signals to a specified small
region after the predetermined moment.

To ensure continuous operation of the control system, we introduce the function ℵ(t) as

ℵ(t) =
{
µ(t), 0 ≤ t ≤ tp,

µ(tp), t > tp,
(2.1)

where tp indicates a specific moment in time that meets the criteria of tp < T , µ(t) =
(

T
T−t

)s
, s ≥ 1

indicates a constant, and T > 0 indicates the liberally predetermined time parameter.
Assumption 1. There exist positive constants p̄ and p such that 1 ≤ p ≤ pi(t) ≤ p̄, i = 1, . . . , n.
Assumption 2. There exist known smooth positive functions hi(x̄i), h̄i(x̄i) such that hi(x̄i) ≤ |hi(x̄i)| ≤
h̄i(x̄i), i = 1, . . . , n.

In order to address the nonlinear dynamic disturbance Γi induced by the state unmodeled dynamical
system dz = q(z, x)dt and the influence of the input unmodeled dynamical subsystem (1.2), some
assumptions need to be outlined.
Assumption 3. The dynamic disturbance Γi of system (1.1) satisfies

|Γi(z, x)| ≤ ψi1(∥x∥) + ψi2(∥z∥), i = 1, . . . , n,

where ψi1(·) denotes an uncertain non-negative smooth function, and ψi2(·) denotes an unknown
monotone increasing non-negative smooth function.
Assumption 4. The unmodeled dynamic z is exponentially input-state-practically stable, meaning that
for dz = q(z, x), there exists a Lyapunov function V0(z) such that

α1(||z||) ≤ V0(z) ≤ α2(||z||), V̇0(z) ≤ −l0Vχ
0 (z) + λ(∥x∥) + l1,

where α1(·), α2(·), and λ(·) are all K∞ functions, l0 > 0 and l1 > 0 represent two known constants, and
χ ∈ (0, 1).
Assumption 5. If dΓ > 0 in (1.2), the following relation holds

|cΓ(z̄)| ≤ b0∥z̄∥,

where b0 is an unknown non-negative constant.
Assumption 6. There exists a Lyapunov function Vw(z̄) such that

H1∥z̄∥2 ≤ Vw(z̄) ≤ H2∥z̄∥2,
∂Vw

∂z̄
aΓ(z̄) ≤ −2e0Vw(z̄), ∥

∂Vw

∂z̄
∥ ≤ H3∥z̄∥,

where H1, H2, and H3 are positive constants and e0 represents a known positive constant.
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2.2. Preliminaries

Consider the stochastic nonlinear system described below:

dx = f (x)dt + g⊤(x)dω, x(0) = x0 ∈ Rn. (2.2)

We list some definitions and lemmas below for the following design and analysis process.
Definition 1. For system (2.2), the stochastic differential operator L is listed as

LV(x) =
∂V(x)
∂x

f (x) +
1
2

Tr{g(x)⊤
∂2V(x)
∂2x

g(x)},

where Tr{gT ∂2V
∂2 x g} represents the Hessian item.

Definition 2. [35] If the solution of the nonlinear stochastic system (2.2) satisfies the following
conditions, the system is considered to be semi-global practical prescribed-time stable in probability.

(1) For any stochastic initial value x0, a unique solution is guaranteed.
(2) For initial values x0, there exist a positive scalar ζ and a setting time tp(ζ, x0) < T to make

E{∥x(t)∥2} ≤ ζ, ∀t ≥ t0 + tp < T , where T indicates a predetermined prescribed time independent of the
initial value.
Lemma 1. If the continuous function R(t) satisfies∫ t

h
R(ς)dς ≤ 0,∀0 ≤ h ≤ t,

then R(t) ≤ 0 for ∀t ≥ 0.
Lemma 2. For system (2.2), if a continuously differentiable (i.e., C2), positive definite, and radially
unbounded quadratic function V(x) exists along withK∞ functions ᾱ1(·) and ᾱ2(·), constants C > 0, 0 <
χ < 1, P1 > 0, and P2 > 0, such that

ᾱ1(∥x∥) ≤ V(x) ≤ ᾱ2(∥x∥), LV(x) ≤ −Cℵ(t)Vχ(x) + ℵ(t)P1 + P2,

then system (2.2) is semi-global practical prescribed-time stable in probability, where ℵ(t) is the
bounded function defined in (2.1).
Proof. First, since V(x) ≥ 0 and LV(x) ≤ ℵ(t)P1 + P2 hold for all x0, according to the proof of
Theorem 4.1 in [36], it can be inferred that a unique strong solution of system (2.2) exists.

According to (2.3), there exists a constant 0 < π ≤ 1, and the following inequality holds:

LV(x) ≤ −CπℵVχ − (1 − π)CℵVχ + ℵP, (2.3)

where P = P1 + P2. Applying the Itô formula, one has

EV(x(t)) = EV(x(0)) + E
{ ∫ t

0
LV(x(ς))dς

}
= EV(x(0)) +

∫ t

0
E{LV(x(ς))}dς,

where E indicates the mathematical expectation.
Let Ω = {x|EV(x) ≤ ( P

(1−π)C )
1
χ }, and in the sequel, the following two situations are contemplated.

Situation 1. if the signals do not satisfy Ω, according to (2.3) and applying Jensen’s inequality, one has

E{LV(x(t))} ≤ −CπE{ℵ(t)Vχ(x(t))} ≤ −Cπℵ(t){EV(x(t))}χ.
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Therefore, it is obvious that

EV(x(t)) ≤
∫ t

0
−Cπℵ(ς){EV(x(ς))}χdς + EV(x(0)).

Moreover, the following inequality exists:

EV(x(t)) − EV(x(0)) ≤ −Cπ
∫ t

0
ℵ(ς){EV(x(ς))}χdς.

Denote EV(x(t)) = G(x(t)) and construct the auxiliary function R(x(t)) as

R(x(t)) =
∫ t

0
{
dG(x(ς))

dς
+Cπℵ(ς)Gχ(x(ς))}dς. (2.4)

According to (2.4) and Lemma 1, one has

dG(x(t))
dt

≤ −Cπℵ(t)Gχ(x(t)).

Furthermore, the following inequality is listed:

1
1 − χ

G1−χ(x(t)) −
1

1 − χ
G1−χ(x(0)) ≤

∫ t

0
−Cπℵ(ς)dς,

G(x(t)) ≤
(
G1−χ(x(0)) −C(1 − χ)π

∫ t

0
ℵ(ς)d(ς)

) 1
1−χ
.

According to [34], we define function β(t) = πC(1 − χ)
∫ t

0
ℵ(ς)d(ς) that is a prescribed-time function.

Thus, there exists a time tp = β
−1( 1

Cπ(1−χ) (G
1−χ(x(0)) − ( P

(1−π)C )
1−χ
χ )) < T such that β(tp) = G1−χ(x(0)) −

( P
(1−π)C )

1−χ
χ . Next, for t ≤ tp, we get G(x(t)) ≤ ( P

(1−π)C )
1
χ . In addition, when t > tp, ℵ(t) = µ(tp) becomes

a positive constant such that ℵ(t) is bounded. Then there is a finite time t f =
1

Cℵ(t)π(1−χ) (G
1−χ(x(tp)) −

( P
(1−π)C )

1−χ
χ ) such that G(x(t)) ≤ ( P

(1−π)C )
1
χ for ∀ t ≥ tp.

Situation 2. if the signals satisfy Ω, according to the Lasalle invariance principle, the track of x(t)
remains within the set Ω. In sum, the time to arrive at the set Ω is bounded as tp which is less than T .
Therefore, one has EV(x(t)) ≤ ( P

(1−π)C )
1
χ .

Remark 1. In comparison with the prescribed-time stable in probability control strategies proposed
in [16–20], the selection of a power index χ ∈ (0, 1) in (2.3) ensures the existence of a time 0 ≤ tp < T
such that E(x2) ≤ 2( P

(1−π)C )
1

2χ for t ≥ tp, resolving the issue that controllers containing the prescribed
time function µ(t) do not involve infinite gain. For system (1.1), a globally stable state within the
prescribed settling time T is realized. Moreover, since RBFNNs can infinitely approximate unknown
nonlinear functions through online learning, the combination of prescribed-time control with adaptive
neural networks allows for its application to stochastic nonlinear systems.
Lemma 3. [37] If (2.2) holds for system dz = q(z, x), then for any constant ā ∈ (0, a0), any initial
condition z0 = z0(0), and any function λ̄ satisfying λ̄(∥x∥) ≥ λ(∥x∥), there exists a finite time T0 =

max{0, ln(Vw(z0)
r0

)/(a0 − ā)}, a non-negative function B(t0, t) given for t ≥ t0, and the signal depicted by

dr = −ār + λ̄(∥x∥) + c0, r(0) = r0 ≥ 0,
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such that B(t0, t) = 0 for t ≥ t0 + T0 and V(z(t)) ≤ r(t) + B(t0, t). Without compromising generality, we
select λ̄(∥x∥) = λ(∥x∥).
Lemma 4. [38] If Assumption 6 holds and u belongs to L∞, the first-order system is defined by dℏ =
−ℵe0ℏ + |u| for the subsystem (1.2) such that

∥z̄∥ ≤ q1(∥z̄(0)∥ + |ℏ(0)|)e−e0t + q2|ℏ(t)|,

where q1 > 0, and q2 > 0 are constants.
Lemma 5. [39] Let p ≥ 1, and the relation can be obtained as

n∑
i=1

|xi|
p ≤
( n∑

i=1

|xi|
)p
≤ np−1

n∑
i=1

|xi|
p,∀xi ∈ R.

Lemma 6. [40] Let p ≥ 1, and then

|[x]p − [y]p| ≤ p(2p−2 + 1)|x − y|(|x − y|p−1 + |y|p−1),∀x, y ∈ R.

Lemma 7. [41] Let ℘ > 0, ρ1 > 0, and ρ2 > 0. Then

|x|ρ1 |y|ρ2 ≤ ℘
ρ1

ρ1 + ρ2
|x|ρ1+ρ2 + ℘

−
ρ1
ρ2

ρ2

ρ1 + ρ2
|y|ρ1+ρ2 ,∀x, y ∈ R.

Lemma 8. [42] p(t) is a real-valued function satisfying 0 < p ≤ p(t) ≤ p̄ with known constant p and p̄.
Then

|x|p(t) ≤ |x|p + |x| p̄,∀x ∈ R.

To approximate the successive unknown nonlinear function F(Ψ) : Rq → R over a compact setΩΨ ⊂ Rq

in the design process, we further introduce the RBFNNs defined by

Fnn(Ψ) = W⊤Φ(Ψ)

in the context of the adaptive control problem, where the input vector Ψ ∈ ΩΨ ⊂ Rq is described, ΩΨ is
compact, W = [w1, . . . ,wd]⊤ ∈ Rd is the weight vector, d > 1 indicates the node number of the hidden
layer, the vector of basis function Φ(Ψ) = [ϕ1(Ψ), . . . , ϕd(Ψ)]⊤ ∈ Rd is denoted, the Gaussian function
ϕi(Ψ) is described as

ϕi(Ψ) = e
−

(Ψ−zi)
⊤(Ψ−zi)

e2
1 , i = 1, . . . , d,

where the center vector zi = [zi1, . . . , ziq]T is represented, and the width of the Gaussian function e1 is
represented. If F(Ψ) is a continuous function on a compact set ΩΨ ⊂ Rq with sufficiently large node
number d, then it can be approximated by the RBFNN as

F(Ψ) = W∗⊤Φ(Ψ) + ε(Ψ),∀Ψ ∈ ΩΨ,

where ε(Ψ) with |ε(Ψ)| < ε∗ indicates the approximation deviation, and ε∗ > 0 indicates an unknown
constant. The optimal weight vector, denoted as W∗, is expressed as

W∗ = arg min
W∈Rd

sup
Ψ∈ΩΨ

|F(Ψ) −W⊤Φ(Ψ)|.
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Lemma 9. [43] If the basis function vector of the RBFNNs is expressed by
Φ(Ψn) = [ϕ1(Ψn), · · · , ϕd(Ψn)]T with Ψn ∈ Rn, then ∥Φ(Ψn)∥2 ≤ ∥Φ(Ψm)∥2,m ≤ n.
Remark 2. It is worth noting that the nonlinear functions fi(x) and gi(x) in system (1.1) include all
state variables, which is a non-strict-feedback structure. This is also true for some devices in practical
applications, such as uncertain robot systems and hyperchaotic inductive capacitor oscillation circuit
systems. If the control algorithm adopts the traditional backstepping method, its virtual controller will
inevitably contain the state variables of system (1.1), which will lead to algebraic loop problems in
simulation. Therefore, based on the definition of ϕi(Ψ) and Φ(Ψ) in RBFNNs, we utilize the properties
of Gaussian functions in Lemma 9 and the approach of segregating variables to reduce the number of
variables in the controller. Moreover, the restrictive conditions on fi and gi in [29–33] where stochastic
disturbances and time-varying powers also exist in the studied system are no longer needed in this
paper.

3. Main results

This section introduces a cohesive neural adaptive prescribed-time control strategy. The recursive
design process comprises n steps involving dynamic surface control and the backstepping technique.
The design of the n-step backstepping is rooted in the following coordinate transformation:

ξ1 = x1, ξi = xi − xid, si = xid − αi−1, i = 2, ..., n, (3.1)

where si denotes error surfaces, αi−1 denotes virtual controllers, xid denotes the first-order filter output
signal which can be obtained through the input αi−1, and αi−1 will be specified later.

3.1. Controller design

Step 1. Consider the two equations of (1.1) and (3.1), and we have

dξ1(t) = (h1[x2]p1(t) + f1(x) + Γ1)dt + g⊤1 (x)dw. (3.2)

Take the following Lyapunov function candidate into account:

V1 =
1
4
ξ4

1. (3.3)

Applying Assumption 3 and Definition 1, it is not difficult to obtain that

LV1 = ξ3
1(h1[x2]p1(t) + f1(x) + Γ1(x, z)) +

3
2
ξ2

1g⊤1 (x)g1(x)

≤ ξ3
1(h1[x2]p1(t) + f1(x)) +

3
2
ξ2

1g⊤1 (x)g1(x) + ξ3
1(ψ11(∥x∥) + ψ12(∥z∥)). (3.4)

Building upon Young’s inequality, Assumption 3, and Lemma 3, it holds that

|ξ3
1 |(ψ11(∥x∥) + ψ12(∥z∥)) ≤

1
2
+

3
4
ξ4

1(ψ
4
3
11(∥x∥) + ψ

4
3
12(α−1

1 (r + B(t0, t)))),
3
2
ξ2

1g⊤1 (x)g1(x) ≤
3
4

d−2
1 ξ4

1∥g1(x)∥4 +
3
4

d2
1, (3.5)
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where d1 > 0 represents a constant.
Then, one has

LV1 ≤ ξ
3
1h1(x1)[x2]p1(t) + ξ3

1 f̄1(X1) +
1
2
+

3
4

d2
1, (3.6)

where the unknown nonlinear function f̄1(X1) = f1+
3
4d−2

1 ξ1∥g1(x)∥4+ 3
4ξ1(ψ

4
3
11(∥x∥)+ψ

4
3
12(α−1

1 (r+B(t0, t))))
with X1 = (x, r)⊤. Building upon the RBFNNs, a neural network represented as W∗⊤

1 Φ1(X1) is utilized
to approximate f̄1(X1) with X1 ∈ ΩX1 in a manner that

f̄1(X1) = W∗T
1 Φ1(X1) + ε1(X1), |ε1(X1)| ≤ ε∗1, (3.7)

with any given constant ε∗1 > 0.
Using Lemma 9 and Young’s inequality, one has

ξ3
1 f̄1(X1) ≤ |ξ1|

3(∥W∗
1∥ · ∥Φ1(Z1)∥ + ε∗1)

≤
3

3 + p̄
ϱ

3+p̄
3

1 |ξ1|
3+ p̄∥W∗

1∥
3+p̄

3 ∥Φ1(Z1)∥
3+p̄

3 +
p̄

3 + p̄
ϱ
−

p̄+3
p̄

1 +
3

3 + p̄
|ξ1|

p̄+3 +
p̄

3 + p̄
ε
∗

p̄+3
p̄

1

≤ |ξ1|
p̄+3((ϱ1∥Φ1(Z1)∥)

3+p̄
3 Θ∗ + 1) + ε

∗
p̄+3

p̄

1 + ϱ
−

p̄+3
p̄

1 , (3.8)

where Z1 = [x1]⊤, Θ∗ = max{∥W∗
i ∥

3+p̄
3 i = 1, . . . , n}, and ϱ1 indicates a design positive parameter.

Then, the formula (3.6) can be rewritten as

LV1 ≤ ξ3
1h1([x2]p1(t) − [α1]p1(t)) + ξ3

1h1[α]p1(t)
1 + |ξ1|

3+ p̄((ϱ1||Φ1(Z1)||)
3+p̄

3 Θ∗ + 1)

+
3
4

d2
1 +

1
2
+ ε

∗
p̄+3

p̄

1 + ϱ
−

p̄+3
p̄

1 . (3.9)

The first intermediate control signal is constructed as follows:

α1 = −ℵ(ξ1 + [ξ1] p̄)(h−1
1 + h

− 1
p̄

1 )(k1 + 1 + (ϱ1||Φ1(Z1)||)
3+p̄

3 Θ̂), (3.10)

where k1 > 0 is a design parameter. Furthermore, from Lemmas 5 and 8, we get

h1(h−1
1 + h

− 1
p̄

1 )p1(t) ≥ h1(h−p1(t)
1 + h

−
p1(t)

p̄

1 ) = h1−p1(t)
1 + h

1− p1(t)
p̄

1 ≥ 1,
ξ3

1h1[α1]p1(t) ≤ −ℵ(|ξ1|
p1(t)+3 + |ξ1|

3+ p̄p1(t))(k1 + 1 + (ϱ1||Φ1(Z1)||)
3+p̄

3 Θ̂),
|ξ1|

3+ p̄ ≤ |ξ1|
p1(t)+3 + |ξ1|

3+ p̄p1(t). (3.11)

Thus, LV1 can be obtained as

LV1 ≤ −ℵk1(|ξ1|
p1(t)+3 + |ξ1|

3+p̄p1(t)) + D1 + ξ
3
1h1([x2]p1(t) − [α1]p1(t)) + Θ̃⊤|ξ1|

3+ p̄(ϱ1||Φ1(Z1)||)
3+p̄

3 , (3.12)

where D1 =
1
2 +

3
4d2

1 + ε
∗

3+p̄
p̄

1 + ϱ
−

3+p̄
p̄

1 .
According to Assumptions 1 and 2, and Lemmas 6–8, we have

ξ3
1h1([x2]p1(t) − [α1]p1(t)) ≤ p1(t)(2p1(t)−2 + 1)h̄1|ξ1|

3|ξ2 + s2|(|ξ2 + s2|
p1(t)−1 + |α1|

p1(t)−1)
≤ |ξ2|

3+p̄φ21 + |s2|
4φ22 + M0, (3.13)
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where φ21 = 2p̄+2( p̄(2 p̄−2 + 1))p̄+3|h̄1ξ
3
1 |

3+ p̄(2 + |ξ2 + s2|
( p̄+3)( p̄−1) + |α1|

(p̄+3)(p̄−1)) and φ22 are known C1

functions independent of p1(t), and M0 =
2+ p̄
3+ p̄ (3 + p̄)−

1
2+p̄ + 3

44−
1
3 .

From Lemma 8 and Assumption 1, it holds that

|ξi|
p̄+3 ≤ |ξi|

pi(t)+3 + |ξi|
3+ p̄pi(t), |ξi|

pi(t)+3 ≤ |ξi|
pi(t)+3 + |ξi|

3+ p̄pi(t), i = 1, ..., n. (3.14)

Substituting (3.13) and (3.14) into (3.12) results in

LV1 ≤ |ξ2|
3+ p̄φ21 + |s2|

4φ22 + M0 + D1 − k1ℵ(|ξ1|
p1(t)+3 + |ξ1|

3+p̄p1(t)) + Θ̃T |ξ1|
p̄+3(ϱ1||Φ1(Z1)||)

3+p̄
3 . (3.15)

Step i (i = 2, . . . , n − 1). Based on Itô’s differentiation rule and (3.1), we have

dξi(t) = (hi[xi+1]pi(t) + fi + Γi − ẋid)dt + g⊤i (x)dw. (3.16)

Select the Lyapunov function candidate as

Vi = Vi−1 +
1
4
ξ4

i +
1
4

s4
i . (3.17)

Then, the infinitesimal generator of Vi indicates

LVi = LVi−1 + ξ
3
i (hi[xi+1]pi(t) + fi(x) + Γi(z, x) − ẋid) +

3
2
ξ2

i gi(x)⊤gi(x) + s3
i dsi. (3.18)

In order to circumvent the need for repetitive differentiation of αi−1, the first-order filter can be
described as

τi ẋid = ℵ(αi−1 − xid), xid(0) = αi−1(0), (3.19)

where τi is a positive constant.
By using the definition of si = xid − αi−1, we have ẋid = −ℵ

si
τi

, and the differential of si is

dsi =
(
− ℵ

si

τi
−

i−1∑
j=1

∂αi−1

∂x j
(h j−1[x j]p j−1(t) + f j−1 − Γ j−1) +

∂αi−1

∂Θ̂

˙̂Θ +
∂αi−1

∂t

+
1
2

i−1∑
k,l=1

∂2αi−1

∂xk∂xl
gT

k gl +
∂αi−1

∂xi−1d
ẋi−1d

)
dt −

i−1∑
j=1

∂αi−1

∂x j
g⊤j (x)dw. (3.20)

From (3.20) and Young’s inequality, one concludes

s3
i dsi =

3
2

s2
i

( i−1∑
j=1

∂αi−1

∂x j
g j(x)
)⊤( i−1∑

j=1

∂αi−1

∂x j
g j(x)
)
+ s3

i

(
− ℵ

si

τi
− dαi−1

)
≤

3
2

s2
i

( i−1∑
j=1

∂αi−1

∂x j
g j(x)
)⊤( i−1∑

j=1

∂αi−1

∂x j
g j(x)
)
− ℵ

s4
i

τi
+ |si|

3| − dαi−1|

≤
3
4

(
(

i−1∑
j=1

∂αi−1

∂x j
g j(x)
)⊤( i−1∑

j=1

∂αi−1

∂x j
g j(x))

)2
+

1
4

(dαi−1)4 − ℵ
s4

i

τi
+

3
2

s4
i
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≤ −ℵ
s4

i

τi
+

3
2

s4
i + ηi(x, s̄n, Θ̂, r), (3.21)

where dαi−1 =
∑i−1

j=1
∂αi−1
∂x j

(h j−1[x j]p j−1(t) + f j−1 − Γ j−1) + ∂αi−1

∂Θ̂

˙̂Θ+ ∂αi−1
∂t +

1
2

∑i−1
k,l=1

∂2αi−1
∂xk∂xl

g⊤k gl +
∂αi−1
∂xi−1d

ẋi−1d and

ηi ≥
3
4 ((
∑i−1

j=1
∂αi−1
∂x j

g j(x))⊤(
∑i−1

j=1
∂αi−1
∂x j

g j(x)))2 + 1
4 (dαi−1)4 is a non-negative continuous function.

With the help of the same estimation method in step 1, we have

ξ3
i Γi ≤

3
4
ξ4

i

(
ψ

4
3
i1(∥x∥) + ψ

4
3
i2(α−1

1 (r + B(t0, t)))
)
+

1
2
,

3
2
ξ2

i g⊤i gi ≤
3
4

d−2
i ξ4

i ∥gi∥
4 +

3
4

d2
i . (3.22)

Similar to (3.13), one has

|ξ3
i−1hi−1([xi]pi−1(t) − [αi−1]pi−1(t))| ≤ |ξi|

p̄+3φi1 + s4
i φi2 + M0. (3.23)

Then, the dynamic equation of Vi is

LVi ≤ −

i−1∑
j=1

k jℵ(|ξ j|
3+p j(t) + |ξ j|

3+p j(t)p̄) + M0 + ξ
3
i

(
hi[xi+1]pi(t) + f̄i(Xi)

)
+

i∑
j=2

η j

+

i−1∑
j=1

Θ̃T |ξ j|
p̄+3(ϱ j||Φ j(Z j)||)

3+p̄
3 − ℵ

i∑
j=2

s4
j

( 1
τ j
−

3
2
− φ j2

)
+

3
4

d2
i +

1
2
, (3.24)

where f̄i(Xi) = fi(x) + 3
4d−2

i ξi∥gi∥
4 + 3

4ξi(ψ
4
3
i1(∥x∥) + ψ

4
3
i2(α−1

1 (r + B(t0, t)))) − ẋid + [ξi] p̄φi1 with Xi =

(x, xid, ẋid, Θ̂, r)⊤ being an unknown nonlinear function. Then, for a given positive constant ε∗i , the
neural network W∗⊤

i Φi(Xi) with Xi ∈ ΩXi can be utilized for approximating f̄i(Xi) in the following
manner:

f̄i(Xi) = W∗⊤
i Φi(Xi) + εi(Xi), |εi(Xi)| ≤ ε∗i . (3.25)

Using Young’s inequality and Lemma 9 yields

ξ3
i f̄i(Xi) ≤ |ξi|

3+ p̄
(
(ϱi∥Φi(Zi)∥)

3+p̄
3 Θ∗ + 1

)
+ ε

∗
3+p̄

p̄

i + ϱ
−

3+p̄
p̄

i , (3.26)

where Zi = [x1, . . . , xi, Θ̂]⊤, and ϱi > 0 is a given design parameter.
Then, it can be obtained that

LVi ≤ −

i−1∑
j=1

k jℵ(|ξ j|
3+p j(t) + |ξ j|

3+p j(t)p̄) +
i∑

j=1

D j + ξ
3
i hi([xi+1]pi(t) − [αi]pi(t)) + ξ3

i hi[αi]pi(t)

+Θ̃|ξi|
3+ p̄(ϱi∥Φi(Zi)∥)

3+p̄
3 − ℵ

i∑
j=2

s4
j

( 1
τ j
−

3
2
− φ j2

)
+ |ξi|

3+p̄
(
(ϱi∥Φi(Zi)∥)

3+p̄
3 Θ̂ + 1

)
+

i−1∑
j=1

Θ̃|ξ j|
p̄+3(ϱ j||Φ j(Z j)||)

3+p̄
3 +

i∑
j=2

η j, (3.27)
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where Di =
3
4d2

i +
1
2 + ϱ

−
3+p̄

p̄

i + ε
∗

3+p̄
p̄

i + M0.
Next, the virtual controller can be specified as

αi = −ℵ(ξi + [ξi] p̄)(h−1
i + h

− 1
p̄

i )(ki + 1 + ϱ
3+p̄

3
i ∥Φi(Zi)∥

3+p̄
3 Θ̂). (3.28)

Substituting (3.28) into (3.27), it can be derived that

LVi ≤ −

i∑
j=1

k jℵ
(
|ξ j|

3+p j(t) + |ξ j|
3+p j(t)p̄

)
− ℵ

i∑
j=2

s4
j(

1
τ j
−

3
2
− φ j2) +

i∑
j=1

D j

+

i∑
j=2

η j +

i∑
j=1

Θ̃T |ξ j|
p̄+3(ϱ j||Φ j(Z j)||)

3+p̄
3 + ξ3

i hi([xi+1]pi(t) − [αi]pi(t)). (3.29)

Step n. In this step, a real control law u will be constructed. Choose the Lyapunov function and
compact set Ωn as

Vn(ξ, s, Θ̃, Λ̃, ℏ) = Vn−1 +
1

4dΓ
ξ4

n +
1
4

s4
n +

1
2γ
Θ̃T Θ̃ +

1
2γ1
Λ̃2 +

1
γ2
ℏ, (3.30)

where ξ = [ξ1, . . . , ξn], s = [s2, . . . , sn], γ > 0, γ1 > 0, and γ2 > 0 are the design parameters, and
(·̃)(t) = (·)∗ − (·̂)(t) with (·̂) being the estimation of (·)∗.

From Assumption 5 and Lemma 4, we obtain

|cΓ(z̄)| ≤ b0q1(∥z̄(0)∥ + |ℏ(0)|)e−e0t + b0q2|ℏ(t)| ≤ Λm(1 + ℏ(t)), (3.31)

where Λm = max{b0q1(∥z̄(0)∥ + |ℏ(0)|), b0q2}.
Thus, we have

1
dΓ
ξ3

nhncΓ(z̄) ≤
p̄

3 + p̄

( h̄n(x̄n)
dΓ
Λm(1 + |ℏ(t)|)

) p̄+3
p̄
+

3
p̄ + 3

|ξn|
p̄+3

≤
3

p̄ + 3
|ξn|

p̄+3 + ξ3+ p̄
n (1 + |ℏ(t)|)

3+p̄
p̄ Λ +

(
1 −

ξ
p̄+3
n

ς

)
(1 + |ℏ(t)|)

p̄+3
p̄ Λa,

1
dΓ
|ξ3

n |Γn(z, x) ≤
1
2
+

3
4
ξ4

nd−
4
3
Γ

(ψ
4
3
n1(∥x∥) + ψ

4
3
n2(α−1

1 (r + B(t0, t)))),

3
2dΓ

ξ2
ng⊤n gn ≤

3
4d2
Γ

ξ4
n∥gn∥

4 +
3
4

d2
n, (3.32)

where Λ = Λa
ς

, Λa =
p̄

3+p̄ ( h̄n(x̄n)
dΓ
Λm)

3+p̄
p̄ , and dn > 0 and ς > 0 are constants.

Furthermore, the expression of LVn is

LVn ≤ −ℵ

n−1∑
j=1

k j(|ξ j|
3+p j(t) + |ξ j|

3+p j(t)p̄) + ξ3
n(hn[u]pn(t) + f̄n(Xn)) +

n−1∑
j=1

Θ̃T |ξ j|
p̄+3(ϱ j||Φ j(Z j)||)

3+p̄
3

+

n∑
j=2

η j − ℵ

n−1∑
j=2

s4
j

( 1
τ j
−

3
2
− φ j2

)
+

3
4

d2
n +

1
2
+

n−1∑
j=1

D j −
1
γ1
Λ̃ ˙̂Λ −

ℵe0ℏ

γ2
+
|u|
γ2
−

1
γ
Θ̃ ˙̂Θ

+
3

p̄ + 3
|ξn|

p̄+3 + ξ3+p̄
n (1 + |ℏ(t)|)

3+p̄
p̄ Λ +

(
1 −

ξ
3+ p̄
n

ς

)
(1 + |ℏ(t)|)

3+p̄
p̄ Λa − ℵs4

n

( 1
τn
−

3
2

)
, (3.33)
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where f̄n(Xn) = 1
dΓ

( fn(x) − ẋnd) + 3
4d2
Γ

ξn∥gn∥
4 + 3

4ξnd−
4
3
Γ

(ψ
4
3
n1(∥x∥) + ψ

4
3
n2(α−1

1 (r + B(t0, t)))) with Xn =

(x, xnd, ẋnd, Θ̂, r)⊤ being an unknown nonlinear function. Then f̄n(Xn) = W∗⊤
n Φn(Xn)+εn(Xn), |εn(Xn)| ≤

ε∗n with the neural network W∗⊤
n Φn(Xn) and a positive constant ε∗n.

Utilizing Young’s inequality and Lemma 9, one has

ξ3
n f̄n(Xn) ≤ |ξn|

3+ p̄((ϱn∥Φn(Zn)∥)
3+p̄

3 Θ∗ + 1) + ε
∗

3+p̄
p̄

n + ϱ
−

3+p̄
p̄

n , (3.34)

where Zn = [x1, . . . , xn, Θ̂]T and ϱn indicates a given design positive parameter.
Then, by substituting (3.34) into (3.33), one has

LVn ≤ −ℵ

n−1∑
j=1

k j

(
|ξ j|

p j(t)+3 + |ξ j|
3+ p̄p j(t)

)
+ ξ3

nhn[u]pn(t) − ℵ

n−1∑
j=2

s4
j

( 1
τ j
−

3
2
− φ j2

)
+

n∑
j=2

ηi +

n∑
j=1

D j

+|ξn|
3+ p̄(ϱ

3+p̄
3

n ∥Φn(Zn)∥
3+p̄

3 Θ̂ + 1) −
1
γ1
Λ̃ ˙̂Λ + ξ3+ p̄

n (1 + |ℏ(t)|)
3+p̄

p̄ Λ −
ℵe0ℏ

γ2
+
|u|
γ2
+

3
3 + p̄

|ξn|
3+p̄

+

n∑
j=1

Θ̃T

γ
(γ|ξ j|

p̄+3(ϱ j||Φ j(Z j)||)
3+p̄

3 −
˙̂Θ) +
(
1 −

ξ
3+ p̄
n

ς

)
(1 + |ℏ(t)|)

3+p̄
p̄ Λa − ℵs4

n

( 1
τn
−

3
2

)
, (3.35)

where Dn =
3
4d2

n +
1
2 + ϱ

−
p̄+3

p̄
n + ε

∗
p̄+3

p̄
n .

Now, the control law and the parameter update laws are devised as

u = −ℵ(ξn + [ξn] p̄)(h−1
n + h

− 1
p̄

n )
(
kn + 1 + ϱ

3+p̄
3

n ∥Φn(Zn)∥
3+p̄

3 Θ̂ + (1 + |ℏ(t)|)
3+p̄

p̄ Λ̂
)
,

˙̂Θ =

n∑
j=1

ℵ(γ|ξ j|
3+ p̄(ϱ j||Φ j(Z j)||)

3+p̄
3 − δΘ̂),

˙̂Λ = ℵ(γ1ξ
3+ p̄
n (1 + |ℏ(t)|)

3+p̄
p̄ − δ1Λ̂), (3.36)

where kn, δ, and δ1 are positive design parameters.
Therefore, we can get

LVn ≤ −ℵ
(
kn −

3
3 + p̄

)(
|ξn|

pn(t)+3 + |ξn|
3+pn(t) p̄

)
− ℵ

n−1∑
j=1

k j

(
|ξ j|

p j(t)+3 + |ξ j|
3+p j(t) p̄

)
+ ℵ

δ

γ
Θ̃Θ̂ +

n∑
j=1

D j

+

n∑
j=2

η j − ℵ

n−1∑
j=2

s4
j

( 1
τ j
−

3
2
− φ j2

)
+
(
1 −

ξ
3+ p̄
n

ς

)
(1 + |ℏ(t)|)

3+p̄
p̄ Λa − ℵs4

n

( 1
τn
−

3
2

)
+ℵ

δ1

γ1
Λ̃Λ̂ −

ℵe0ℏ

γ2
+
|u|
γ2
. (3.37)

3.2. Stability analysis

Theorem 1. Under the controllers and parameter adaptive laws (3.10), (3.28), and (3.36), stochastic
system (1.1) satisfying Assumptions 1–6 exhibits the following characteristics: (1) All internal signals
within the closed-loop system (1.1) remain bounded. (2) The equilibrium point of the system is
prescribed-time stable in probability.
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Proof. Next, it is evident from the structure of Vn in (3.30) that Vn is a positive definite, radial
unbounded, and quadratic continuously differentiable function. Referring to Lemma 4.3 in [44], there
exist K∞ functions ᾱ1(·) and ᾱ2(·) such that

ᾱ1(∆) ≤ Vn(∆) ≤ ᾱ2(∆), ∆ = (ξ, s, Θ̃, Λ̃, ℏ). (3.38)

By defining Θ∗ and Λ∗, one obtains

ℵδ

γ
Θ̃⊤Θ̂ =

ℵδ

γ
Θ̃⊤(Θ∗ − Θ̃) ≤ −

ℵδ

2γ
Θ̃⊤Θ̃ +

ℵδ

2γ
Θ∗⊤Θ∗,

ℵδ1

γ1
Λ̃⊤Λ̂ =

ℵδ1

γ1
Λ̃⊤(Λ∗ − Λ̃) ≤ −

ℵδ1

2γ1
Λ̃⊤Λ̃ +

ℵδ1

2γ1
Λ∗⊤Λ∗. (3.39)

With the aid of Lemma 7 and (3.14), one has

(ξ4
i )

p̄−1
p̄+1 ≤ |ξi|

p̄+3 −
4(p̄ − 1)

( p̄ + 1)(3 + p̄)
+ 1. (3.40)

From (3.40), choose π = min{k1, . . . , kn, δ, δ1, e0}, let χ = p̄−1
p̄+1 and kn ≥

3
3+p̄ + π( 1

dΓ
)χ, and rewrite (3.37)

as

LVn(∆) ≤ −ℵ4χπ
( n−1∑

j=1

(1
4
ξ4

j

)χ
+
( 1
4dΓ

ξ4
n

)χ)
− ℵ
( π
2γ
Θ̃T Θ̃
)χ
+ ℵ(

π

2γ
Θ̃T Θ̃)χ + ℵ

( 4(p̄ − 1)
( p̄ + 1)(3 + p̄)

− 1
)

·
( n−1∑

j=1

k j(n − 1) + kn −
3

3 + p̄

)
+

n∑
j=1

D j + ℵ(
π

2γ1
Λ̃T Λ̃)χ +

n∑
j=2

η j − ℵ

n−1∑
j=2

s4
j

( 1
τ j
−

3
2
− φ j2

)
−π
ℵ

2γ
Θ̃T Θ̃ +

ℵδ

2γ
Θ∗TΘ∗ − π

ℵ

2γ1
Λ̃T Λ̃ +

ℵδ1

2γ1
Λ∗TΛ∗ −

ℵπℏ

γ2
+
|u|
γ2

+
(
1 −

ξ
3+ p̄
n

ς

)
(1 + |ℏ(t)|)

3+p̄
p̄ Λa − ℵs4

n

( 1
τn
−

3
2

)
− ℵ
( π
2γ1
Λ̃T Λ̃
)χ
. (3.41)

According to Lemma 7, one obtains

ℵ
(
π

1
2γ
Θ̃T Θ̃
)χ
+ ℵ
( π
2γ1
Λ̃T Λ̃
)χ
− ℵ
( 1
τ j
−

3
2
− φ j2

)
s4

j −
ℵπℏ

γ2
− ℵs4

n

( 1
τn
−

3
2

)
≤ 5ℵ(1 − χ)χ

χ
1−χ

−ℵ
(πℏ
γ2

)χ
+ π
ℵ

2γ
Θ̃T Θ̃ + π

ℵ

2γ1
Λ̃T Λ̃ − ℵ

(( 1
τ j
−

3
2
− φ j2

)
s4

j

)χ
− ℵ
(( 1
τn
−

3
2

)
s4

n

)χ
. (3.42)

Since φ j2, η j, |u|, and |(1 − ξ
3+p̄
n
ς

)(1 + |ℏ(t)|)
3+p̄

p̄ Λa| are non-negative continuous functions, and Vn(∆) is
bounded, there exist known positive constants φ̄ j2, η̄ j, H̄1, and N1 such that φi2 ≤ φ̄i2, |u| ≤ N1, ηi ≤ η̄i,

and |(1 − ξ
3+p̄
n
ς

)(1 + |ℏ(t)|)
3+p̄

p̄ Λa| ≤ H̄1. Hence, by choosing 1
τ j
≥ φ̄ j2 +

3
2 and 1

τn
≥ 3

2 , (3.41) becomes

LVn(∆) ≤ −ℵ4χπ
( n−1∑

j=1

(ξ4
j

4

)χ
+
( ξ4

n

4dΓ

)χ)
− ℵπχ

( ℏ
γ2

)χ
− ℵπχ

( 1
2γ
Θ̃T Θ̃
)χ
− ℵπχ

( 1
2γ1
Λ̃T Λ̃
)χ
+ ℵP1 + P2

−

n−1∑
j=2

ℵ4χ
( s4

j

4

)χ( 1
τ j
−

3
2
− φ̄ j2

)χ
− ℵ4χ

(1
4

s4
n

)χ( 1
τn
−

3
2

)χ
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≤ −CℵVχ
n + ℵP1 + P2, (3.43)

where C = min{4χπ, πχ, (4( 1
τ j
− 3

2 − φ̄ j2))χ, (4( 1
τn
− 3

2 ))χ}, P1 = δ
1

2γΘ
∗TΘ∗ + δ1

1
2γ1
Λ∗TΛ∗ + (n + 3)(1 −

χ)χ
χ

1−χ + (1 − 4( p̄−1)
( p̄+1)(3+ p̄) )(

∑n−1
j=1 k j(n − 1) + kn −

3
3+ p̄ ), and P2 =

∑n
j=1 D j +

∑n
j=2 η̄i + N1 + H̄1. Therefore,

we can obtain

LVn ≤ −CℵVχ
n + ℵP, (3.44)

where P = P1 + P2. Consequently, it is deduced from (3.30) and (3.44), in conjunction with Lemma 1,
that the ∆-system attains semi-global practical prescribed-time stability in probability. Taking the proof
procedure of Lemma 2 and (3.44) into consideration, it can be concluded that all signals are confined
within a compact set Ω = {∆|EVn ≤ ( P

(1−π)C )
1
χ } as

[E(ξ2
j )] ≤ [E(ξ4

j )]
1
2 ≤ (4E(Vn))

1
2 ≤ 2

( P
(1 − π)C

) 1
2χ
,

[E(Θ̃2)] = [E(Λ̃2)] ≤ 2γmaxEVn ≤ 2γmax

( P
(1 − π)C

) 1
χ
,

[E(s2
j)] ≤ [E(s4

j)]
1
2 ≤ (4E(Vn))

1
2 ≤ 2

( P
(1 − π)C

) 1
2χ
, (3.45)

where γmax = max{γ, γ1}.
Remark 3. We further elucidate the challenges presented in this thesis as follows:

(1) In this paper, due to the joint role of unknown time-varying powers, stochastic disturbances,
unknown control coefficients, and unmodeled dynamics, to handle the high nonlinearity in the design
procedure is not an easy task.

(2) Since the adaptive neural network control is incorporated into the design process to address cases
involving an unknown nonlinear function encompassing all state variables, which inherently results in
the diversity of variables and the complexity of coefficient functions, therefore, how to overcome this
problem to prevent the difficult execution of the controller becomes a challenging task.

(3) How to analyze the semi-global practical prescribed-time stability in probability of
system (1.1) with unknown time-varying powers, stochastic disturbances, unknown control
coefficients, and unmodeled dynamics is not easy work.

The design procedure of the proposed control scheme can be depicted by Figure 1.
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Figure 1. Block diagram of the control system.
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4. Simulation examples

To validate the effectiveness and feasibility of the proposed adaptive control project, this section
presents a numerical example and a practical application case.

4.1. Example 1

The following second-order stochastic high-order non-strict-feedback nonlinear system is
considered:

dz = −z + 0.5(x2
1 + x2

2) sin(x1) + 0.5,
dx1 = ([x2]

7
6+

1
6 sin t + x1 cos(x2) + 0.1z sin(x1x2))dt + 15x2

1x2dw,
dx2 = (ν + x1x2

2 + zx2
1x2)dt + 16x2e−x2

1dw,

dz̄1 = −4z̄1 − z̄3
1 + 2z̄2, dz̄2 = −2z̄2 + [u]

7
6+

1
6 sin t, ν = 4z̄1 +

−2z̄2 + 3z̄3
2

2 + z̄2
2

+ [u]
7
6+

1
6 sin t, (4.1)

where p1(t) = p2(t) = 7
6 +

1
6 sin t, p̄ = 4

3 , p = 1, hi = h̄i = 1, f1(x) = x1 cos(x2), f2(x) = x1x2
2,

Γ1 = 0.1z sin(x1x2), Γ2 = zx2
1x2, g1(x) = 15x2

1x2, and g2(x) = 16x2e−x2
1 .

By adhering to the design methodology elucidated in this thesis, the virtual controller α1, the
controller u, and adaptive laws ˙̂Θ and ˙̂Λ can be obtained in the following form:

α1 = −ℵ(ξ1 + [ξ1] p̄)(h−1
1 + h

− 1
p̄

1 )(k1 + 1 + ϱ
3+p̄

3
1 ∥Φ1(Z1)∥

3+p̄
3 Θ̂),

u = −ℵ(ξ2 + [ξ2] p̄)(h−1
2 + h

− 1
p̄

2 )
(
k2 + 1 + ϱ

3+p̄
3

2 ∥Φ2(Z2)∥
3+p̄

3 Θ̂ + (1 + |ℏ(t)|)
3+p̄

p̄ Λ̂
)
,

˙̂Θ =

2∑
j=1

ℵ(γ|ξ j|
3+p̄(ϱ j||Φ j(Z j)||)

3+p̄
3 − δΘ̂),

˙̂Λ = ℵ(γ1ξ
3+ p̄
2 (1 + |ℏ(t)|)

3+p̄
p̄ − δ1Λ̂). (4.2)

In simulation, we choose the prescribed settling time T = 4 and the initial values are designated
as [x1(0), x2(0)] = [4,−5], Θ̂(0) = 0.9, Λ̂(0) = −0.9, ℏ(0) = 0.9, z(0) = 1.5, and z̄(0) = [0.1, 0.1]T . The
design parameters are selected in intermediate control functions as τ2 = 0.4, k1 = k2 = 0.5, ϱ1 = ϱ2 =

0.2, δ = δ1 = 0.3, γ = γ1 = 0.1, e0 = 5, and s = 2. To establish the basis vector function Φ j(Z j), for the
backstepping steps, we designate the center of the receptive field as z = [−1.5,−1,−0.5, 0, 0.5, 1, 1.5]T

and determine the Gaussian functions width as e =
√

2.
Thus, the outcomes of the simulation are shown by Figures 2–4. Figure 2 shows the curve of the

system states x1 and x2. Figure 3 illustrates the curves of control signal u. Figure 4 depicts that the
trajectories of the adaptive parameters Θ̂ and Λ̂ are bounded. As shown in these figures, we know
that the suggested adaptive neural control scheme ensures that the closed-loop system is continuously
stable after a preset time T = 4 (s).

AIMS Mathematics Volume 9, Issue 10, 28447–28471.



28463

Figure 2. Responses of system states x1 and x2 under T = 4(s).

Figure 3. Response of control signal u under T = 4(s).

Figure 4. Responses of adaptive laws Θ̂ and Λ̂ under T = 4(s).

AIMS Mathematics Volume 9, Issue 10, 28447–28471.



28464

In order to verify Assumptions 4–6, we select input unmodeled dynamics z̄ = [z̄1, z̄2]T , Vw = z̄T z̄,
and V0(z) = z2. By employing Young’s inequality, one obtains

|cΓ(z̄)| ≤ |4z̄1| + |z̄2
3z̄2

2 − 2
z̄2

2 + 2
| ≤ 4|z̄1| + 3|z̄2| ≤ 4

√
2
√

z̄2
1 + z̄2

2 = 4
√

2∥z̄∥. (4.3)

By selecting H1 = 0.6, H2 = 1.7, and H3 = 2, one has

∂Vw(z̄)
∂z̄

aΓ(z̄) = −2z̄4
1 − 8z̄2

1 − 4z̄2
2 + 4z̄1z̄2 ≤ −(z̄2

1 + z̄2
2) = −Vw(z̄), ∥

∂Vw(z̄)
∂z̄ ∥ ≤ 2∥z̄∥. (4.4)

Let α1 = 0.3z2 and α2 = 1.5z2. Then

∂V0(z)
∂z

q(z, x) = 2z(−z + 0.5(x2
1 + x2

2) sin(x1) + 0.5) ≤ −(z2)χ + 0.5∥x∥4 + (1 − χ)χ
χ

1−χ + 0.5. (4.5)

According to (4.3)–(4.5), it can be observed that input and state unmodeled dynamics satisfy the
requirements of Assumptions 4–6.
Remark 4. In order to further study the impact of the control parameters on system response, we
choose two groups of different cases for Example 1 in Table 1. In addition, both groups of data is
operated with the same other design parameters of τ2 = 0.4, δ = δ1 = 0.3, γ = γ1 = 0.1, and e0 = 5.
The final simulation results are shown in Figures 5 and 6. By comparing the responses of the two
cases, we can see that the dynamic response of case 1 is better than that of case 2. On the other hand,
by Lemma 2 and (3.44), one can see that the small and convergence rate of system response are affected
by the design parameters ki, ϱi, T , and s. When we choose larger prescribed control parameters T and
s, then the ℵ(t) in α1 and controller u are very large. At this time, the values of parameters ki and ϱi

in the controller can be selected to be small. Hence, from the perspective of practical application, we
need to tradeoff the boundedness of the controller and the convergence time by selecting large ki, small
T , and appropriate ϱi and s.

Table 1. Control parameters in Example 1.

Parameters Values in case 1 Values in case 2
k1, k2 0.5, 0.5 4, 4
ϱ1, ϱ2 0.2, 0.2 0.5, 0.5
T 4 1.5
s 2 2
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Figure 5. Trajectories of control signal x2(t) in cases 1 and 2.

Figure 6. Trajectories of control signal u in cases 1 and 2.

4.2. Example 2

This example is a simplified model representing a boiler-turbine unit in [21] as follows:

dz = −z + 0.5(x2
1 + x2

2) + 0.5,
dx1 = ([x2]p1(t) + z sin(x1x2))dt + 0.5x2

1x2
2dw,

dx2 = ((1 + x2
1)ν +

x2
1

1 + x2
2

+ 0.5zx1x2)dt + 0.2x2x1dw,

dz̄1 = −2z̄1 − z̄3
1 + z̄2, dz̄2 = −2z̄2 + [u]p2(t), ν = z̄1 +

−z̄2 + 4z̄3
2

1 + z̄2
2

+ [u]p2(t), (4.6)

where x1 and x2 indicate the drum and reheater pressures, respectively. u represents the placement of
the control valve, the unknown systems orders are indicated as 1 ≤ pi(t) ≤ 7

5 , i = 1, 2, p1(t) = 8
7+

1
7 sin t,

p2(t) = 6
5 +

1
5 sin t, p̄ = 7

5 , p = 1, h1 = h̄1 = 1, h2 = 1, h̄2 = 1 + x2
1, Γ1 = z sin(x1x2), and Γ2 = 0.5zx1x2.

According to (3.36), the controller, the adaptive law, and the basis functions of NNs are consistent
with the structure of Example 1. The design parameters and the initial values are taken as τ2 = e−t +

AIMS Mathematics Volume 9, Issue 10, 28447–28471.



28466

0.01, k1 = k2 = 0.7, ϱ1 = ϱ2 = 0.1, γ = γ1 = 0.1, δ = δ1 = 0.3, e0 = 3, s = 2, T = 3, x1(0) = 0.5,
x2(0) = 0.2, Θ̂(0) = 0.8, Λ̂(0) = −1, ℏ(0) = 0.2, z(0) = 1.3, and z̄(0) = [0.1, 0.1]T . The control effects
are shown by Figures 7–9. Specifically, Figure 7 provides the trajectories of x1 and x2 within the
prescribed settling time. Figure 8 depicts the actual control input u that can compensate for the effects
of the stochastic disturbance and dynamic uncertainties. Figure 9 expresses the curve of adaptive laws
Θ̂ and Λ̂.

Figure 7. Responses of system states x1 and x2 under T = 3(s).

Figure 8. Response of control signal u under T = 3(s).
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Figure 9. Responses of adaptive laws Θ̂ and Λ̂ under T = 3(s).

5. Conclusions

The importance of this thesis lies in its pioneering exploration of the adaptive prescribed-time
stabilization issue in stochastic high-order nonlinear systems, where unknown time-varying powers
and dynamic uncertainty are prevalent. This study represents the first comprehensive discussion of
this challenging problem. A neural predetermined time-varying feedback controller is crafted to avoid
the differentiation of virtual controllers and reduce computational burden through the dynamic surface
control. The results indicate that all internal signals of the closed-loop system are continuous and
bounded, and the equilibrium point is semi-global practical prescribed-time stable in probability.
There are still some unresolved issues at present:

(1) We need to find a more comprehensive control scheme that enables the system to achieve global
stability without relying on initial values and design parameters, eliminating the impact of unbounded
gains.

(2) Note that the dynamic surface control method can generate significant filtering errors and
cannot achieve good stability effects. Another future work is to combine command filtering control
and eliminate the residual term generated by adaptive control to achieve zero tracking error.
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