
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 26671–26687.
DOI: 10.3934/math.20241297
Received: 05 July 2024
Revised: 02 September 2024
Accepted: 11 September 2024
Published: 13 September 2024

Research article

Numerical investigation of the dynamics for a normalized time-fractional
diffusion equation

Chaeyoung Lee1, Yunjae Nam2, Minjoon Bang2, Seokjun Ham3 and Junseok Kim3,*

1 Department of Mathematics, Kyonggi University, Suwon, 16227, Republic of Korea
2 Program in Actuarial Science and Financial Engineering, Korea University, Seoul 02841, Republic

of Korea
3 Department of Mathematics, Korea University, Seoul, 02841, Republic of Korea

* Correspondence: Email: cfdkim@korea.ac.kr.

Abstract: In this study, we proposed a normalized time-fractional diffusion equation and conducted
a numerical investigation of the dynamics of the proposed equation. We discretized the governing
equation by using a finite difference method. The proposed normalized time-fractional diffusion
equation features a different time scale compared to the conventional time-fractional diffusion equation.
This distinct time scale provides an intuitive understanding of the fractional time derivative, which
represents a weighted average of the temporal history of the time derivative. Furthermore, the sum of
the weight function is one for all values of the fractional parameter and time. The primary advantage of
the proposed model over conventional time-fractional equations is the unity property of the sum of the
weight function, which allows us to investigate the effects of the fractional order on the evolutionary
dynamics of time-fractional equations. To highlight the differences in performance between the
conventional and normalized time-fractional diffusion equations, we have conducted several numerical
experiments.

Keywords: normalized time-fractional diffusion equation; finite difference method; Gamma function
Mathematics Subject Classification: 35R11, 80M20, 39A14

1. Introduction

In recent decades, time-fractional diffusion equations have received significant attention across
various fields. Time-fractional derivatives extend classical models by incorporating memory effects,
which better capture real-world processes where the rate of change is not constant [1]. They are
particularly useful for modeling phenomena with irregular or non-standard diffusion behaviors, such
as in heterogeneous media [2], complex fluids [3], or biological systems [4]. These time-fractional
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derivatives allow for a more accurate representation of systems with long-range dependencies, thus
providing deeper insights and improved predictions in various scientific and engineering fields. Some
specific applications of time-fractional derivatives are as follows. The time-fractional Burgers equation,
applying a fractional differential method to the classical Burgers equation [5, 6], was used to model a
range of physical processes such as turbulence, shock waves, and traffic flow, incorporating memory
effects over time. In biology, the time-fractional method was applied to the reaction-diffusion equation,
specifically Fisher’s equation, which models species propagation [7, 8]. In the field of finance,
European and double-barrier options were evaluated using the time-fractional Black–Scholes equation
[9–11]. In particular, for double barrier options, the closer the underlying asset price is to the lower
barrier, the more the Black–Scholes model tends to overestimate the option’s value. Furthermore, a
smaller α exacerbates this price bias. The reaction-diffusion equation, known as the Allen–Cahn (AC)
equation, finds applications in many fields such as physics, materials science, and biology. By applying
the time-fractional method to the AC equation, these approaches accurately model complex dynamical
systems by incorporating memory effects and history dependence associated with time [12, 13].

There have been many numerical methods for the time-fractional diffusion equations [14–16]. For
simplicity of exposition, let us consider the following one-dimensional conventional time-fractional
diffusion equation:

∂αu(x, t)
∂tα

=
∂2u(x, t)
∂x2 for (x, t) ∈ Ω × (0, ∞), (1)

u(x, 0) = u0(x), x ∈ Ω, (2)
u(0, t) = u(1, t) = 0, t ≥ 0, (3)

where u(x, t) is the concentration at x and t, and u0(x) is the initial condition,

∂αu(x, t)
∂tα

=
1

Γ(1 − α)

∫ t

0

∂u(x, s)
∂s

ds
(t − s)α

, 0 < α < 1, (4)

where Γ(z) =
∫ ∞

0
τz−1e−τdτ is the gamma function. It is noted that when α = 1, Eq (1) reduces to the

conventional diffusion equation [17]. Let us define a weight function wt
α(s) as follows:

wt
α(s) =

1
Γ(1 − α)(t − s)α

. (5)

Then, Eq (4) can be rewritten as

∂αu(x, t)
∂tα

=

∫ t

0
wt
α(s)
∂u(x, s)
∂s

ds, 0 < α < 1. (6)

For different values of α = 0.1, 0.5, and 0.9, the weight functions wt
α(s) at t = 1 are illustrated in

Figure 1(a). It can be seen that the weight functions wt
α(s) remain flat for small α and show a sharp

transition near time t for large α. Figure 1(b) shows the weight functions for different time values of
t = 0.5, 1, and 2 with α = 0.5. As t increases, the functions simply translate to the right direction.

AIMS Mathematics Volume 9, Issue 10, 26671–26687.



26673

(a) (b)
Figure 1. (a) Weight functions for different values of α = 0.1, 0.5, and 0.9 at t = 1. (b)
Weight functions for different time values of t = 0.5, 1, and 2 with α = 0.5. Here, the circles
are points of (t − 0.001,wt

α(t − 0.001)).

We note that
∫ t

0
wt
α(s)ds approaches infinity as t increases, for any values of 0 < α < 1. That is,

Wα(t) =
∫ t

0
wt
α(s)ds =

∫ t

0

1
Γ(1 − α)(t − s)α

ds =
t1−α

Γ(2 − α)
, (7)

which approaches infinity as t increases, for any values of 0 < α < 1. From Eq (7), we can see there
are scaling differences associated with values of α when comparing the effects of α on the dynamics of
the time-fractional diffusion equations because Wα(t) depends on both α and time t. This is physically
sound and can be inferred intuitively from previous studies [18, 19] related to wave propagation and
diffusion problems.

To resolve these scaling differences associated with α values, we propose a normalized time-
fractional diffusion equation and conduct numerical investigations of the dynamics of the proposed
equation. In this study, we propose the following normalized time-fractional diffusion equation:

∂βu(x, t)
∂tβ

=
∂2u(x, t)
∂x2 for (x, t) ∈ Ω × (0, ∞), (8)

u(x, 0) = u0(x), x ∈ Ω, (9)
u(0, t) = u(1, t) = 0, t ≥ 0, (10)

where

∂βu(x, t)
∂tβ

=
1 − β
t1−β

∫ t

0

∂u(x, s)
∂s

ds
(t − s)β

, 0 < β < 1, (11)

where (1 − β)/t1−β is the normalizing factor, which makes the right-hand side term in Eq (11) ∂u/∂x
when ∂u/∂x is constant. That is

1 − β
t1−β

∫ t

0

ds
(t − s)β

= 1, 0 < β < 1. (12)
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Let us define a weight function wt
β(s) as follows:

wt
β(s) =

1 − β
t1−β(t − s)β

. (13)

Then, from Eq (12), we have

Wβ(t) =
∫ t

0
wt
β(s)ds = 1, (14)

which is independent of the fractional order β and time t, unlike that of the conventional time-fractional
derivative, Wα(t) = t1−α/Γ(2 − α). To the authors’ knowledge, this is the first time that the normalized
time-fractional diffusion equation is proposed, where the total integration of the weight function is
always one for all time-fractional orders and times. For β values of 0.1, 0.5, and 0.9, the weight
functions wt

β(s) at t = 1 are as shown in Figure 2(a). We can observe that the weight functions wt
β(s)

are flat when β is small and exhibit a sharp transition near time t when β is large. Figure 2(b) shows
the weight functions for different times t = 0.5, 1, and 2 with β = 0.5.

(a) (b)
Figure 2. (a) Weight functions for different β values with t = 1. Here, β = 0.1, 0.5, and 0.9
are used. (b) Weight functions for different time t values with β = 0.5. Here, t = 0.5, 1, and
2 are used. Here, the circles are points of (t − 0.001,wt

β(t − 0.001)).

Figure 3 shows the temporal evolutions of Wα(t) =
∫ t

0
wt
α(s)ds = t1−α/Γ(2 − α) for α = 0.1, 0.5,

and 0.9. Wα(t) is an increasing function with respect to time t for a fixed fractional order α. At early
times, Wα(t) increases with respect to the fractional order α, whereas at later times, Wα(t) decreases
with respect to the fractional order α for a fixed time t. However, Wβ(t) is independent of the fractional
order β and time t.
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Figure 3. Temporal evolutions of Wα(t) =
∫ t

0
wt
α(s)ds for α = 0.1, 0.5, and 0.9. Here,

Wβ(t) = 1.

The contents of this paper are as follows. In Section 2, numerical solution algorithms for the
conventional and normalized time-fractional diffusion equations are presented. In Section 3, numerical
experiments are provided. Finally, Section 4 presents conclusion and potential progress for future
study.

2. Numerical solutions

2.1. Conventional time-fractional diffusion equation

Let Ω = (Lx, Rx) be the computational domain, which is discretized as follows: Ωh = {xi|xi =

Lx + (i − 1)h, i = 1, . . . ,Nx}, where h = (Rx − Lx)/(Nx − 1) for some positive integer Nx, see Figure 4.

Figure 4. Discrete domain.

Let un
i = u (xi, tn) and tn = (n − 1)∆t, where ∆t is the time step. Equation (4) can be approximated

by the following numerical quadrature formula:

∂αu(xi, tn+1)
∂tα

=
1

Γ(1 − α)

n∑
p=1

∫ tp+1

tp

∂u(xi, s)
∂s

ds
(tn+1 − s)α

≈

n∑
p=1

1
Γ(1 − α)

∫ tp+1

tp

ds
(tn+1 − s)α

up+1
i − up

i

∆t
(15)

=

n∑
p=1

(n + 1 − p)1−α − (n − p)1−α

(∆t)α−1Γ(2 − α)
up+1

i − up
i

∆t
, (16)

where we have used the identity (1 − α)Γ(1 − α) = Γ(2 − α) and approximated ∂u(xi, s)/∂s over the
interval [tp, tp+1] using the finite difference (up+1

i −up
i )/∆t in Eq (15). Therefore, we have the following
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finite difference discretization of Eq (1) using Eq (16):
n∑

p=1

wn
p

up+1
i − up

i

∆t
=

un+1
i−1 − 2un+1

i + un+1
i+1

h2 , (17)

where

wn
p =

(n + 1 − p)1−α − (n − p)1−α

(∆t)α−1Γ(2 − α)
. (18)

Here, we use the zero Dirichlet boundary condition: un+1
0 = 0 and un+1

Nx
= 0. Then, Eq (17) can be

rewritten as follows:

wn
n

un+1
i − un

i

∆t
+

n−1∑
p=1

wn
p

up+1
i − up

i

∆t
=

un+1
i−1 − 2un+1

i + un+1
i+1

h2 , (19)

which can be rearranged as follows:

−
1
h2 un+1

i−1 +

(
wn

n

∆t
+

2
h2

)
un+1

i −
1
h2 un+1

i+1 =
wn

n

∆t
un

i −

n−1∑
p=1

wn
p

up+1
i − up

i

∆t
. (20)

Note that an implicit temporal discretization is used for stability. Although fully explicit schemes
are generally sufficient in terms of stability and efficiency for second-order partial differential
equations, as indicated in [20, 21], an implicit scheme is necessary due to the presence of the source
term, −

∑n−1
p=1 wn

p(up+1
i − up

i )/∆t, in Eq (20).
Equation (20) is a tridiagonal system with a zero Dirichlet boundary condition and we can use the

Thomas algorithm [22] to efficiently solve this system. Thus, the solution vector un+1 can be found by
solving the tridiagonal system using the Thomas algorithm:

Aun+1 = f,

where A is a tridiagonal matrix with zero Dirichlet at i = 1 and i = Nx. The detailed procedure is
provided below.

A =



wn
n

∆t
+

2
h2 −

1
h2 0 · · · 0 0 0

−
1
h2

wn
n

∆t
+

2
h2 −

1
h2 · · · 0 0 0

0 −
1
h2

wn
n

∆t
+

2
h2 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · −
1
h2

wn
n

∆t
+

2
h2 −

1
h2

0 0 0 · · · 0 −
1
h2

wn
n

∆t
+

2
h2



,

un+1 =


un+1

2
un+1

3
...

un+1
Nx−1

 and f =


wn

nun
2/∆t − F

wn
nun

3/∆t − F
...

wn
nun

Nx−1/∆t − F

 ,
where F =

∑n−1
p=1 wn

p(up+1
i − up

i )/∆t.
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2.2. Normalized time-fractional diffusion equation

Equation (11) can be approximated by the following numerical quadrature formula:

∂βu(xi, tn+1)
∂tβ

=
1 − β

t1−β
n+1

n∑
p=1

∫ tp+1

tp

∂u(xi, s)
∂s

ds
(tn+1 − s)β

≈

n∑
p=1

1 − β

t1−β
n+1

∫ tp+1

tp

ds
(tn+1 − s)β

up+1
i − up

i

∆t

=

n∑
p=1

(n + 1 − p)1−β − (n − p)1−β

n1−β

up+1
i − up

i

∆t
. (21)

Therefore, we have the following finite difference discretization of Eq (8) using Eq (21):

n∑
p=1

wn
p

up+1
i − up

i

∆t
=

un+1
i−1 − 2un+1

i + un+1
i+1

h2 , (22)

where

wn
p =

(n + 1 − p)1−β − (n − p)1−β

n1−β . (23)

We note that the weight parameter wn
p satisfies the following condition for any value of n:

n∑
p=1

wn
p = 1. (24)

Then, Eq (22) can be rewritten as follows:

−
1
h2 un+1

i−1 +

(
wn

n

∆t
+

2
h2

)
un+1

i −
1
h2 un+1

i+1 =
wn

n

∆t
un

i −

n−1∑
p=1

wn
p

up+1
i − up

i

∆t
. (25)

Equation (25) is a tridiagonal system with a zero Dirichlet boundary condition and we can use the
Thomas algorithm to efficiently solve this system. Thus, the solution vector un+1 can be found by
solving the tridiagonal system using the Thomas algorithm:

Aun+1 = f,

where A is a tridiagonal matrix with zero Dirichlet at i = 1 and i = Nx.

3. Numerical experiments

In this section, we present several numerical experiments in a finite domain Ω × (0,T ), where
Ω = (0, 1) and T is a final time, to investigate the effects of α and β on the evolution dynamics of
the conventional and normalized time-fractional diffusion equations. As the first numerical test, we
consider the following low-frequency initial condition:

u(x, 0) = sin(2πx), for x ∈ Ω. (26)
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Figure 5(a) and (b) show u(x,T ) for different values of α = 0.1, 0.5, and 0.9; and β = 0.1, 0.5,
and 0.9, respectively. Here, T = 0.001 is used. As shown in Figure 5(a), for the conventional time-
fractional diffusion equation, we observe that the temporal evolution is faster when the value of α is
smaller. This phenomenon is attributed to the different weight function associated with different α
values, as shown in Figure 1(a). When α is smaller, the total sum of the weight function at early
times is smaller as shown in Figure 3, which results in an effectively larger diffusion process and
faster temporal evolution. This can be understood as follows: if we divide both sides of Eq (1) by the
smaller weight value, we obtain an effectively larger diffusion coefficient, which leads to an increased
diffusion process. However, in the case of the normalized time-fractional diffusion equation, there
is little variation with respect to different values of β compared to the conventional time-fractional
diffusion equation, as seen in Figure 5(b).

(a) (b)
Figure 5. (a) and (b) are the numerical solutions for different values of α and β, respectively.
Here, T = 0.001 is used.

In the second numerical experiment, let us consider the following high-frequency initial condition:

u(x, 0) = sin(10πx), for x ∈ Ω. (27)

Figures 6(a) and (b) show u(x,T ) for different values of α = 0.1, 0.5, and 0.9; and β = 0.1, 0.5, and
0.9, respectively. We observe that the temporal evolutions are faster than those of the low-frequency
initial condition for both the conventional and normalized time-fractional diffusion equations. As
illustrated in Figure 6(a), the temporal evolution for the conventional time-fractional diffusion equation
accelerates more than that of the low-frequency initial condition as the value of α decreases. A smaller
α results in a smaller total sum of the weight function, which leads to an effectively larger diffusion
process and consequently faster temporal evolution. However, for the normalized time-fractional
diffusion equation, there is a little variation concerning different β values, unlike the conventional
time-fractional diffusion equation, as shown in Figure 6(b).

AIMS Mathematics Volume 9, Issue 10, 26671–26687.
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(a) (b)
Figure 6. (a) and (b) are the numerical solutions for different values of α and β, respectively.
Here, T = 0.001 is used.

For the third numerical test, let us consider the following random initial condition:

u(x, 0) = rand(x), for x ∈ Ω, (28)
u(0, t) = u(1, t) = 0, (29)

where rand(x) is a random number between −1 and 1. Figures 7(a) and (b) show u(x,T ) for different
values of α = 0.1, 0.5, and 0.9; and β = 0.1, 0.5, and 0.9, respectively. The random initial condition
can be considered as a combination of multiple frequency modes. As expected from the previous
computational results, we observe large variation with respect to α values and small variation with
respect to β values.

(a) (b)
Figure 7. (a) and (b) are the numerical solutions for different values of α and β, respectively.
Here, T = 0.001 is used.
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In the fourth numerical test, we consider the following initial condition:

u(x, 0) = sin
(
7
√
πx

)
, for x ∈ (0, π). (30)

This initial condition contains multiple modes with gradually changing profiles. Figure 8(a) shows the
numerical solution u(x,T ) for a relatively short time, T = 0.0005, and Figure 8(b) and 8(c) display
u(x,T ) for a relatively long time, T = 0.05. Figures 8(a) and 8(b) present results for different values of
α = 0.1, 0.5, and 0.9, and Fig. 8(c) shows results for different values of β = 0.1, 0.5, and 0.9. Because
the initial condition is a combination of multiple frequency modes, we observe significant evolutions
at high frequencies and minor changes at low frequencies.

(a)

(b)

(c)

Figure 8. (a) and (b) are the numerical solutions for different times T = 0.0005 and T = 0.05,
respectively, with α = 0.1, 0.5, and 0.9. (c) is the numerical solution for T = 0.05 with
β = 0.1, 0.5, and 0.9.

In the final numerical test, we examine the evolution process of the conventional time-fractional
method and the normalized time-fractional method for different fractional orders α = 0.1, 0.9 and
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β = 0.1, 0.9. We consider the following initial condition:

u(x, 0) = sin (0.2πx) , for x ∈ (0, 5). (31)

In this test, we used a final time of T = 5. Figures 9(a) and (b) represent the evolution of the
conventional time-fractional diffusion equation for the different α = 0.1 and 0.9, respectively. When
α is small, the temporal evolution is fast at early times but suddenly slows down at later times. This
phenomenon, as shown in Figure 3, can be attributed to the small weight function values at early times
and the large weight function values at later times. When α is large, the opposite behavior can be
observed. Next, Figures 9(c) and (d) illustrate the evolution of the normalized time-fractional diffusion
equation for the different values of β = 0.1 and 0.9, respectively. In this case, the temporal evolution
depends on the β values but it is relatively independent of time.

(a) (b)

(c) (d)
Figure 9. (a) and (b) are the evolution process of the conventional time-fractional diffusion
equation when α = 0.1 and 0.9, respectively. (c) and (d) are the evolution process of the
normalized time-fractional diffusion equation when β = 0.1 and 0.9, respectively.
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4. Conclusions

In summary, the evolution dynamics of the conventional and normalized time-fractional diffusion
equations are different. The total integration of the weight function for the conventional time-fractional
diffusion equation is not normalized, continues to increase to infinity as time progresses; it depends on
the values of α and time t. Due to these dependencies, it is difficult to study the effects of α on the
evolutionary dynamics. As an alternative, we proposed a normalized time-fractional diffusion equation
that ensures that the total integration of the weight function remains one, regardless of the values
of β and time t. The proposed weight functions provide an intuitive understanding of the fractional
time derivative, which represents a weighted average of the temporal history of the time derivative.
Numerical experiments indicate that the normalized time-fractional diffusion equation shows slower
dynamics for simple initial conditions as the fractional order parameter β decreases. The diffusion
equation is a fundamental model for various phenomena such as heat conduction, fluid flow, chemical
dispersion, cellular diffusion processes, and the evolution of option prices and market risks in finance.
As future work, we will apply the proposed model to the Black–Scholes equation [23, 24], the AC
equation [25–27], and the nonlocal Cahn–Hilliard equation [28], and investigate the development of a
fast algorithm to reduce memory requirements [29].
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Appendix

The following listings 1 and 2 are Python codes for the conventional and normalized time-fractional
diffusion equations, respectively.
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Listing 1. Python code for a conventional time-fractional heat equation
# I mp or t
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
from math i m p o r t gamma

# Thomas a l g o r i t h m
d e f thomas ( a lpha , be t a , gamma , f ) :

n= l e n ( f )
b e t a=n p . c o p y ( b e t a )
f=n p . c o p y ( f )
f o r i i n r a n g e ( 1 , n ) :

mul t=a l p h a [ i ] / b e t a [ i - 1 ]
b e t a [ i ] -=mul t *gamma [ i - 1 ]
f [ i ] -=mul t * f [ i - 1 ]

x=n p . z e r o s ( n )
x [ -1 ]= f [ - 1 ] / b e t a [ - 1 ]
f o r i i n r a n g e ( n - 2 , - 1 , - 1 ) :

x [ i ]= ( f [ i ] - gamma [ i ]* x [ i +1] ) / b e t a [ i ]
r e t u r n x

# Alpha
a l p h a=0 . 1

# P a r a m e t e r s
L=n p . p i ; Nx=401; h=L /Nx ; x= n p . l i n s p a c e ( 0 , L , Nx ) ;
T=0 . 0 5 ; d t=1 .0000e - 0 4 ; Nt=round ( T / d t ) ; d t=T / Nt ;
u=n p . z e r o s ( ( Nx , Nt+1) ) ; u [ : , 0 ]= n p . s i n ( 7 * ( n p . p i *x ) **0 . 5 ) ;
deno=d t **( a lpha - 1 ) *gamma ( 2 - a l p h a )
a = ( - 1 / h **2) * n p . o n e s ( Nx ) ; c=a ;

# Main i t e r a t i o n
f o r n i n r a n g e ( Nt ) :

w=n p . z e r o s ( n+1)
f o r p i n r a n g e ( n+1) :

w[ p ]= ( ( n+1 -p ) **(1 - a l p h a ) - ( n - p ) **(1 - a l p h a ) ) / deno
F=n p . z e r o s ( Nx )
i f n>0:

f o r p i n r a n g e ( n ) :
F+=w[ p ] * ( u [ : , p+1] - u [ : , p ] ) / d t

d=n p . z e r o s ( Nx )
f o r i i n r a n g e ( Nx ) :

d [ i ]=w[ n ] / d t+2 . 0 / h **2
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f=w[ n ] / d t *u [ : , n ] - F
u [ 1 : Nx - 1 , n+1]= thomas ( a [ 1 : Nx - 1 ] , d [ 1 : Nx - 1 ] , c [ 1 : Nx - 1 ] , f [ 1 : Nx - 1 ] )

# P l o t
p l t . f i g u r e ( f i g s i z e = ( 1 0 , 6 ) )
p l t . p l o t ( x , u [ : , 0 ] , ' - ' , c o l o r= ' 0 . 5 ' , l i n e w i d t h =2 , l a b e l= ' I n i t i a l ' )
p l t . p l o t ( x , u [ : , - 1 ] , ' r - - ' , l i n e w i d t h =2 , l a b e l= ' F i n a l ' )
p l t . a x i s ( [ 0 , n p . p i , -1 , 1 ] )
p l t . l e g e n d ( )
p l t . s h o w ( )

Listing 2. Python code for a normalized time-fractional heat equation
# I mp or t
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t

# Thomas a l g o r i t h m
d e f thomas ( a lpha , be t a , gamma , f ) :

n= l e n ( f )
b e t a=n p . c o p y ( b e t a )
f=n p . c o p y ( f )
f o r i i n r a n g e ( 1 , n ) :

mul t=a l p h a [ i ] / b e t a [ i - 1 ]
b e t a [ i ] -=mul t *gamma [ i - 1 ]
f [ i ] -=mul t * f [ i - 1 ]

x=n p . z e r o s ( n )
x [ -1 ]= f [ - 1 ] / b e t a [ - 1 ]
f o r i i n r a n g e ( n - 2 , - 1 , - 1 ) :

x [ i ]= ( f [ i ] - gamma [ i ]* x [ i +1] ) / b e t a [ i ]
r e t u r n x

# Beta
b e t a=0 . 1

# P a r a m e t e r s
L=n p . p i ; Nx=401; h=L /Nx ;
x= n p . l i n s p a c e ( 0 , L , Nx ) ; T=0 . 0 5 ; d t=1 .0000e - 0 4 ;
Nt=round ( T / d t ) ; d t=T / Nt ; u=n p . z e r o s ( ( Nx , Nt+1) ) ;
u [ : , 0 ]= n p . s i n ( 7 * ( n p . p i *x ) **0 . 5 ) ;
a = ( - 1 / h **2) * n p . o n e s ( Nx ) ; c=a ;

# Main i t e r a t i o n
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f o r n i n r a n g e ( 1 , Nt+1) :
deno=n **(1 - b e t a )
w=n p . z e r o s ( n )
f o r p i n r a n g e ( n ) :

w[ p ]= ( ( n+1 -p ) **(1 - b e t a ) - ( n - p ) **(1 - b e t a ) ) / deno
F=n p . z e r o s ( Nx )
i f n>1:

f o r p i n r a n g e ( n - 1 ) :
F+=w[ p ] * ( u [ : , p+1] - u [ : , p ] ) / d t

d=n p . z e r o s ( Nx )
f o r i i n r a n g e ( Nx ) :

d [ i ]=w[ n - 1 ] / d t+2 . 0 / h**2
f=w[ n - 1 ] / d t *u [ : , n - 1 ] - F
u [ 1 : Nx - 1 , n ]= thomas ( a [ 1 : Nx - 1 ] , d [ 1 : Nx - 1 ] , c [ 1 : Nx - 1 ] , f [ 1 : Nx - 1 ] )

# P l o t
p l t . f i g u r e ( f i g s i z e = ( 1 0 , 6 ) )
p l t . p l o t ( x , u [ : , 0 ] , ' - ' , c o l o r= ' 0 . 5 ' , l i n e w i d t h =2 , l a b e l= ' I n i t i a l ' )
p l t . p l o t ( x , u [ : , - 1 ] , ' r - - ' , l i n e w i d t h =2 , l a b e l= ' F i n a l ' )
p l t . a x i s ( [ 0 , n p . p i , -1 , 1 ] )
p l t . l e g e n d ( )
p l t . s h o w ( )
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