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1. Introduction 

In 1973, the classic Black-Scholes (BS) model [1] provided an effective method for pricing 

financial derivatives and greatly simplifying the pricing process. Since then, many scholars have 

conducted research and promoted the model [2,3]. Asian options, a special type of financial 

derivative, are appealing due to their unique valuation method, which relies on the mean value of the 

underlying asset over a set contract period. 
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However, the BS model may not align with actual financial markets and could fail to provide 

accurate pricing for complex financial derivatives. In 1968, Mandelbrot and Van Ness [4] proposed a 

stochastic process: fractional Brownian motion (fBm). If the Hurst parameter 
1

2
H  , the 

fractional Brownian motion is not a semi-martingale, which implies that there must be arbitrage 

opportunities [5,6]. Bojdecki et al. [7] advanced that sub-fractional Brownian motion (sfBm), which 

not only possesses similar properties to fractional Brownian motion but also features non-stationary 

increments with weaker correlations on non-overlapping intervals and a faster decay of covariance, 

aligns better with financial market dynamics. Based on this, Tubor [8] investigated new properties of 

sfBm. Xu and Li [9] tackled the valuation conundrum linked to compound options. For further 

applications of sfBm in financial models, please refer to [10–12]. Despite these advancements, the 

use of sfBm as a stochastic driver may still result in arbitrage opportunities akin to those associated 

with fBm. Zhang and Xiao [13] showed that the Black-Scholes model driven by fractional Gaussian 

processes allows for arbitrage opportunities. Since sub-fractional Brownian motion is a more general 

Gaussian process and is also not a semi-martingale, the application of this model to financial markets 

necessitates the study of arbitrage possibilities. EI-Nouty and Zili [14] proposed the concept of 

mixed sub-fractional Brownian motion (msfBm), which lies between Brownian motion and sfBm. 

The mixed sub-fractional Brownian motion incorporates the semi-martingale condition when

3
,1

4
H

 
 
 

, making this stochastic process more suitable for inclusion in option pricing models [15]. 

Furthermore, constructing an appropriate portfolio can enable models with the Hurst parameter 

( )0,1H   to avoid arbitrage in financial markets [16]. For example, Guo et al. [17] combined the 

fractal option pricing model with a new intelligent algorithm to predict the implied volatility in 

financial assets. Cai et al. [18] found the LSE of the drift parameter of mixed sub-fractional O-U 

process. 

The aforementioned studies collectively presupposed fixed short-term interest rates, which do not 

reflect the dynamic nature of real interest rates that exhibit mean reversion. The Vasicek model [19], a 

fundamental interest rate model in finance, describes the evolution of interest rates and has become a 

cornerstone in the analysis and management of interest rate risks. It provides a theoretical framework 

that aids in making informed financial decisions and developing sophisticated risk management 

strategies. Ewald et al. [20] priced options for Asian commodity futures contracts by incorporating 

stochastic convenience yields, stochastic interest rates, and commodity spot prices, and considered 

the scenario with jumps. More related studies can be found in [21–25] to further understand the 

importance of stochastic interest rate models in option pricing. Building on these studies, in this 

paper, a model for pricing geometric average Asian options is formulated under the msfBm regime, 

while the short rate follows the Vasicek process. 

Then, in Section 2, we state the necessary foundational knowledge. In Section 3, we provide the 

formula for a zero-coupon bond under the msfBm, based on certain assumptions. In Section 4, we 

give the solution for valuing geometric average Asian options with fixed strike price. In Section 5, 

we present relevant numerical calculations and an empirical study to further explore the effects of 

varying parameters on the model. 
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2. Preliminaries 

The Vasicek model is recognized as a significant model for the short rate that can be combined 

with other pricing models. The incorporation of mixed sub-fractional Brownian motion can offer 

more comprehensive risk management solutions. Now, we introduce the relevant knowledge of 

msfBm, which is covered in [7,14,26]. 

Definition 2.1. The Gaussian process ( ){ , 0}H H t t=  
 
defined on a probability space 

( )Ω, , PF
 
that satisfies the following conditions 

(1) ( )0 0,H =
 

(2) ( ) ( )( ) ( )
222 2 1

,
2

HHH H

H HE t s s t s t t s  = + − + + −
 

   

is called a sub-fractional Brownian motion, where H  is the Hurst parameter with a value range of 

( )0,1 , and ( )HB t  is a standard Brownian motion when 
1

2
H = . 

Definition 2.2. Let ( )Ω, , PF  be a probability space. The mixed sub-fractional Brownian motion 

 , , , , , 0H H

tM M t=     is a stochastic process with ( )0,1H  , defined by 

( ) ( ), , , 0, 0H

HM B t t= +        , 

where ( )B t  is a Brownian motion and ( )H t  is a sub-fractional Brownian motion. We have 

( ) ( ) ( )
22, , , , 2 2 2 2 1

min , ,
2

HHH H H H

t sE M M s t s t s t t s     
   = + + − + + −   

 

where
 

, ,H

tM  
is a sfBm when 0 =  and 1 = ,

 
, ,H

tM  
 is a standard Brownian motion when 

1 =  and 0 =  or when 0= , 1 =  and 
1

2
H = . 

Definition 2.3. Asian options are divided into geometric average Asian options and arithmetic 

average Asian options. Taking fixed strike Asian call options as an example, the payoff is ( )TJ K
+

− , 

where K  is the strike price, T  is the expiration date, and 
tJ  is the average price of the 

underlying asset over the predetermined interval. In continuous time, the arithmetic average is 

represented by 

0

1
d ,

t

t τJ S τ
t

=   

the geometric average is represented by 

0

1
exp ln d .

t

tJ S
t

 
=  

 
    

Then, we present some basic assumptions of this paper. 

(i) Short selling is allowed without penalty; there are no taxes and friction; stocks do not pay 
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dividends; investors borrow and lend at the risk-free rate. 

(ii) The stock price ( )S t  satisfies the mixed sub-fractional Brownian motion of risk neutrality, 

given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

d d d d ,S S

S S HS t r t S t t S t B t S t t= + +        (2.1) 

where ( )r t is a short rate and satisfies the following msfBm-Vasicek model 

( ) ( )( ) ( ) ( )
1 2

d d d d ,r r

r r Hr t a b r t t B t t= − + +         (2.2) 

where 
1S , 

2S , 
1r

 , and 
2r


 
are constants, ( )SB t , ( )S

H t , ( )rB t ,
 

and ( )r

H t  are independent 

of each other. 

3. Pricing formula for zero-coupon bond 

A zero-coupon bond is issued at a price below its face value and does not pay any interest 

during the period. Upon maturity at time T , investors are entitled to receive a cash return 

equivalent to $1. The price of such a bond is influenced by the passage of time and the variability in 

interest rates. We denote the price of a zero-coupon bond at time t , maturing at time T , as 

( ), ;P r t T . 

Theorem 3.1. In the mixed sub-fractional Vasicek process, the price of a zero-coupon bond with 

maturity T  at time  0,t T  is given by 

( ) ( ) ( ), ,
, ; ,

A t T rB t T
P r t T e

− −
=         (3.1) 

where 

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2

2 2 2 1 2 2 1 2

( )

1
, , , d 2 2 , d ,

2

1
, ,

T T
H H

r r
t t

a T t

A t T b T t bB t T B s T s H s B s T s

e
B t T

a

− −

− −


= − − − − −


− =



  

 

Proof. By using the risk hedging formula and Itô formula [19], select two zero-coupon bonds with 

different maturities, denoted as ( )1 1 1, ;P P r t T=  and ( )2 2 2, ;P P r t T= , to hedge the risks. Now 

consider a portfolio   consisting of one unit of 
1P
 
and   units of 

2P , we can obtain 

1 2.P P = −  

The change in the portfolio over the time interval ( ), dt t t+  is given by 

( ) ( )
2 2

2 21 1 1 2 2 2

2 2

1 1
d d d d d d d ,

2 2

P P P P P P
t r r t r r

t r r t r r

      
 = + + − + + 

      
   (3.2) 
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where ( ) ( )( ) ( )
1 2

2 2 2 1 2 1 2d 2 2 2 d d .H H

r rr σ Ht σ t o t− −= + − +  

Let 
1

2

/

/

P r

P r

 
 =

 
, Eq (3.2) becomes 

( )( )

( )( )

1 2

1 2

2
2 2 1 2 1 21 1

2

2
2 2 1 2 1 21 2 2

2

2

1
d d 2 2 2 d

2

/ 1
d 2 2 2 d .

/ 2

H H

r r

H H

r r

P P
t σ Ht σ t

t r

P r P P
t σ Ht σ t

P r t r

− −

− −

 
 = + + −

 

    
− + + − 
    

   (3.3) 

Furthermore, since the investment portfolio is risk-free, that is, ( ) ( )d dE r t t =  , we have 

( )( )

( )( )

1 2

1 2

2
2 2 1 2 1 21 1 1

12

2
2 2 1 2 1 22 2 2

22

1
2 2 2 /

2

1
2 2 2 / .

2

H H

r r

H H

r r

P P P
σ Ht σ rP

t r r

P P P
σ Ht σ rP

t r r

− −

− −

   
+ + − − 

   

   
= + + − − 

   

    (3.4) 

Then, we can obtain 

( )( ) ( )( )
1 2

2
2 2 1 2 1 2

2

1
2 2 2 / .

2

H H

r r

P P P
σ Ht σ rP a b r t

t r r

− −   
+ + − − = − − 

   
 

Thus, the zero-coupon bond ( ), ;P r t T
 
satisfies the following partial differential equation given by 

( )( ) ( )

( )

1 2

2 2
2 2 1 2 1 2

2 2

1
2 2 0,

2

, ; 1.

H H

r r

P P P P
a b r t Ht rP

t r r r

P r T T

− −   
+ − + + − − =

   
 =

 
  (3.5) 

Given that ( ), 0A T T =  and ( ), 0B T T = , it is not difficult to find a solution for the price of a 

zero-coupon bond at time t  of the following form 

( ) ( )

( )

( )
2

2

2

, , ,

, ,

, .

P
P A t T rB t T

t

P
PB t T

r

P
PB t T

r


 = − −   




= −



=



      (3.6) 

Substituting Eq (3.6) into Eq (3.5), we can derive 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 2

2 2 2 1 2 1 2 21
, , 1 , , , 2 2 , 0.

2

H H

r rr B t T aB t T A t T abB t T B t T Ht B t T− − − − + − − + + − =   
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After simplification, we have 

( ) ( )

( ) ( ) ( ) ( ) ( )
1 2

2 2 2 1 2 1 2 2

, , 1 0,

1
, , , 2 2 , 0.

2

H H

r r

B t T aB t T

A t T abB t T B t T Ht B t T− −

 − + =



 + − − − =


 
 

Then, we can obtain 

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2

2 2 2 1 2 2 1 2

( )

1
, , , d 2 2 , d ,

2

1
, .

T T
H H

r r
t t

a T t

A t T b T t bB t T B s T s H s B s T s

e
B t T

a

− −

− −


= − − − − −


− =



  

 

Proof is completed. 

4. Valuation equation for geometric average Asian options 

In this section, examine a mixed sub-fractional version of the BS model, i.e., a simple financial 

market consisting of zero-coupon bonds, underlying assets, and options on underlying assets. 

Theorem 4.1. The value of geometric average Asian call options with fixed strike price is denoted as 

( ), , ,V V S J r t= . Based on assumptions (2.1) and (2.2), the partial differential equation and 

boundary conditions are given by 

( )

( ) ( )( )

( ) ( )

1 2

1 2

2 2
2 2 2 1 2 1 2 2

2 2

2 2
2 2 1 2 1 2

2 2

1
ln 2 2 ,

2

1
2 2 0,

2

, , , .

H H

S S

H H

r r

V J S V V V
S Ht S

t t J J S S

V V V V
Ht a b r t rS rV

r r r S

V S J r T J K

− −

− −

+

    
+ + + − 

    
    
+ + − + − + − =

   
 = −



 

   (4.1) 

Proof. Considering that the portfolio   consists of one unit option ( ), , ,V S J r t , 
1t  units of 

underlying assets and 
2t  units of zero-coupon bonds ( ), ;P r t T , the value of the portfolio at time 

t  is given by 

1 2 ,t t t t t tV S P = − −         (4.2) 

Choosing the appropriate 
1t  and 

2t  makes the portfolio risk-free in ( ), dt t t+ , we can obtain 
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( )

( )

1 2

1 2

1

1 2

2 2
2 2 2 1 2 1 2 2

2 2

2 2
2 2 1 2 1 2

1 22 2

2
2 2

2 2

d d d d

1
ln 2 2 d

2

1
2 2 d d d

2

1

2

t t t t t t

H H

S S

H H

r r t t

t r

V S P

V J S V V V
S Ht S t

t t J J S S

V V V V P
Ht t S r

r r S r r

P P
Ht

t r

− −

− −

 = − −

     
= + + + −  

     

        
+ + − + − + −     

        

 
− + +

 

 

 

 ( )
2

2
1 2 1 2

2
2 2 d .H H

r

P
t

r

− − 
− 

 


 

Let 
1t

V

S


 =


 and 

2

/

/
t

V r

P r

 
 =

 
, using the principle of no arbitrage, we have 

( ) ( ) ( )1 2d d d ,t t t t t tE r t t r V S P t =  = − −      (4.3) 

we can calculate that 

( )

( ) ( )( )

( ) ( )

1 2

1 2

2 2
2 2 2 1 2 1 2 2

2 2

2 2
2 2 1 2 1 2

2 2

1
ln 2 2

2

1
2 2 0,

2

, , , .

H H

S S

H H

r r

V J S V V V
S Ht S

t t J J S S

V V V V
Ht a b r t rS rV

r r r S

V S J r T J K

− −

− −

+

    
+ + + − 

    
    
+ + − + − + − =

   
 = −



 

   

Proof is completed. 

Theorem 4.2. Assuming that the stock price satisfies Eq (2.1), and the interest rate satisfies Eq (2.2), 

the price of the geometric average Asian call option at time  0,t T  with strike price K  and 

maturity date T  is given by 

( ) ( ) ( ) ( ) ( )1 2, , , , ; , ; ,
t T tt

LT TTV S J r t P r t T J S e N d P r t T KN d
−

= −  

where 
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( )
( )

( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )
1 2

4 3

1

3

2 1 3

2 2 2 2

1

2

2

2

3 1

2

4 2 1

4 3

2 2 2 1 2 1 2

2

ln ln
, ;

d 2 d ln

,

2 d

2 d ,

, ,

, , ,

,

1
,

d d ,

1
2 2 ,

2

T T

t t

T

t

T

t

S r

T T

t t

H H

S S S

r

S
t J T t

P r t T
s s s s K

Td

s s

d d s s

t B t T

t A t T rB t T

T t
t t

T

T t
t t t

T T

L s s s s

Ht − −

+ −

+ + −

=

= −

= +

= − −

− 
=  
 

−
= −

= +

= + −

=

 





 

 





  



 

  

 

  

 ( )
1 2

2

2 2 1 2 1 2

2

1
2 2 ,

2

1
( ) d .

2

H H

r r

t
x

Ht

N x e t

− −

−

−


























 + −


 =




 



 

Proof. To simplify the variable-coefficient equation with three variables down to one with two 

variables, we perform a variable substitution. Thus, let 

( )
,

, ;

S
y

P r t T
=  ( )

( )

( )
1

, , ,
, , .

, ;

V S J r t
V y J t

P r t T
=        (4.4) 

Sometimes, we denote ( ), ;P r t T  as P  to simplify notation. Then, through calculation, we have 
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1

1 1
1

1
1

1

222 2 2
21 1

12 2 2 2

22

1

2

22

1

2 2

,

,

,

,

1
,

1
,

1
.

VV
P

J J

V VV P P
V P y

t t t y t

VV P P
V y

r r y r

VV

S y

V VV P P P
V y y

r r y r y P r

VV P
y

r S y P r

VV

S P y


 =

  


    = + −
     


   = −
    



=

 
       = − +  
       


  = −

   


 =
 

    (4.5) 

Substituting Eq (4.5) into Eq (4.1) and organizing it, we can obtain 

( )

( )

( ) ( )( )

1 2 1

2

1 2

2 2
2 2 2 1 2 1 2 2 2 21 1

2 2 2 2

2 2
2 2 1 2 2 1 1 1

2 2

2 2
2 2 1 2 1 2

2 2

1 1 1 1 1
2 2

2 2

1
2 2 ln

1 1
2 2

2

H H

S S r

H H

r

H H

r r

V VP
S Ht S y

t P P P r y

V VP J S
y H t

P r y t J J

P P P P rS
y Ht a b r t

P t r r r y

− −

− −

− −

   
+ + − +       

    
+ − +   

     

    
− + + − + − −

   

  



 

( ) ( )( )
1 2

1

2 2
2 2 1 2 1 21

2 2

1
2 2 0.

2

H H

r r

V

y

V P P P P
Ht a b r t rP

P t r r r

− −





    
+ + + − + − − = 

    
   

By integrating Eqs (4.4) and (3.5), we can derive 

( )
2

2 21 1 1
1 2

ln 0,
V V VJ S

y t
t t J J y


   

+ + = 
   

      (4.6) 

where 

( ) ( )

( )

( )

1 2

1 2

2 2 2 2

1

2 2 2 1 2 1 2

2 2 2 1 2 1 2

, ,

1
2 2 ,

2

1
2 2 .

2

S r

H H

S S S

H H

r r r

t B t T

Ht

Ht

− −

− −


= +




= + −



= + −

  

  

  

 

By substituting the deformation of Eq (4.4) into Eq (4.6), the equation can be transformed into 
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( ) ( )
2

2 21 1 1
2 1 2

ln 0,
V V VJ y

t y t
t t J J y

 
   

+ + + = 
   

     (4.7) 

where ( ) ( ) ( )2 , , .t A t T rB t T= − −
 

To simplify Eq (4.7), we can make the following variable substitution 

( )ln ln
,

t J T t y
x

T

+ −
=  ( ) ( )2 1, , , .V x t V y J t=      (4.8) 

It can be determined that 

1 2

1 2 2

1 2

22 2

1 2 2

2 2 2

,

ln ln
,

,

.

V Vt

J TJ x

V V VJ y

t t T x

V VT t

y Ty x

V V VT t T t

y Ty x Ty x

 
=  


  − = +

   
 −

=
 


   − − = − 

    

       (4.9) 

Substituting the above results into Eq (4.7), we find that 

( ) ( )

( ) ( )

2

2 2 2
3 42

2

0,

, ,x

V V V
t t

t x x

V x T e K

 

+

  
+ + =

  
 = −


      (4.10) 

where ( ) ( )
2

2

3 1

T t
t t

T
 

− 
=  
 

 and ( ) ( ) ( )2

4 2 1

1 T t
t t t

T T
  

−
= − . 

The last time using variable substitution to simplify Eq (4.10) into a heat conduction equation, 

let 

( ) ( )2 , , ,V x t   =  ( )4 d ,
T

t
x s s = +   ( )3 d .

T

t
s s =      (4.11) 

It can be deduced that 

( ) ( )2
4 3

2

2 2

2

2 2

,

,

.

V
t t

t

V

x

V

x

  
= − −

  
 

=
 

 
=

 

 
 

 









      (4.12) 

Then, Eq (4.10) can be converted to 
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( ) ( )

2

2
,

, .T e K

 

 

 
+

 
=

 


= −


       (4.13) 

According to the heat conduction theory, the solution of this equation can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )2 5 6 5 6, , ,x LV x t e N d KN d e N d KN d    + += = − = −   (4.14) 

where 

( ) ( )

( )

4 3

5

3

d 2 d lnln 2
,

2 2 d

T T

t t

T

t

x s s s s KK
d

s s

  

 

+ + −− +
= =

 


 

( )6 5 5 32 2 d ,
T

t
d d d s s = − = −   

( ) ( )4 3d d .
T T

t t
L s s s s = +   

Substituting Eq (4.8) into Eq (4.14), we can obtain 

( ) ( ) ( )1 3 4, , ,
T tt

LtTV y J t J y e N d KN d
−

= −       (4.15) 

where 

( )
( ) ( )

( )

4 3

3

3

ln ln
d 2 d ln

,

2 d

T T

t t

T

t

t J T t y
s s s s K

Td

s s

 



+ −
+ + −

=
 



 

( )4 3 32 d .
T

t
d d s s= −   

Combining Eqs (4.4) and (4.15), it follows that 

( )
( )

( ) ( ) ( ) ( ) ( )1 1 2, , , , , , ; , ; , ; ,
, ;

t T tt
LT TT

S
V S J r t V J t P r t T P r t T J S e N d P r t T KN d

P r t T

− 
= = −  

 
 

where 

( )
( )

( ) ( )

( )

4 3

1

3

ln ln
, ;

d 2 d ln

,

2 d

T T

t t

T

t

S
t J T t

P r t T
s s s s K

Td

s s

+ −

+ + −

=
 



 


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( )2 1 32 d .
T

t
d d s s= −   

Proof is completed. 

Theorem 4.3. The call-put parity relationship for geometric average Asian options with fixed strike 

price is given by 

( ) ( ) ( )
( )

( ), , , , , , , ; , ; ,
, ;

T t

t T
LT

S
V S J r t p S J r t P r t T J e P r t T K

P r t T

−

 
− = −  

 
 

where ( ), , ,p S J r t  is the price of geometric average Asian put options and 

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( )

( )

1 2

1 2

2 2 2 2

1

2

2

2

3 1

2

4 2 1

4 3

2 2 2 1 2 1 2

2 2 2 1 2 1 2

, ,

, , ,

,

1
,

d d ,

1
2 2 ,

2

1
2 2 .

2

S r

T T

t t

H H

S S S

H H

r r r

t B t T

t A t T rB t T

T t
t t

T

T t
t t t

T T

L s s s s

Ht

Ht

− −

− −


 = +


= − −


−  =    


−
= −


 = +



= + −



= + −


 

  



 

  

 

  

  

 

Proof. Let 

( ) ( ) ( ), , , , , , , , , .W S J r t V S J r t p S J r t= −  

According to Theorem 4.1, ( ), , ,W S J r t  satisfies the following definite solution problem 

( )

( ) ( )( )

( )

1 2

1 2

2 2
2 2 2 1 2 1 2 2

2 2

2 2
2 2 1 2 1 2

2 2

1
ln 2 2

2

1
2 2 0,

2

, , , .

H H

S S

H H

r r

W J S W W W
S Ht S

t t J J S S

W W W W
Ht a b r t rS rW

r r r S

W S J r T J K

− −

− −

    
+ + + − 

    
    
+ + − + − + − =

   
 = −



 

    (4.16)
 

Making the following variable substitutions 

( )
,

, ;

S
y

P r t T
=  ( )

( )

( )
1

, , ,
, , .

, ;

W S J r t
W y J t

P r t T
=        (4.17) 
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Substituting Eq (4.17) into Eq (4.16), we have

 

( )
2

2 21 1 1
1 2

ln 0,
W W WJ S

y t
t t J J y


   

+ + = 
   

      (4.18) 

where 

( ) ( )

( )

( )

1 2

1 2

2 2 2 2

1

2 2 2 1 2 1 2

2 2 2 1 2 1 2

, ,

1
2 2 ,

2

1
2 2 .

2

S r

H H

S S S

H H

r r r

t B t T

Ht

Ht

− −

− −


= +




= + −



= + −

  

  

  

 

Let 

( )ln ln
,

t J T t y

T


+ −
=  ( ) ( )2 1, , , .W t W y J t =       (4.19) 

By inserting Eq (4.19) into Eq (4.18), this yields 

( ) ( )

( )

2

2 2 2
3 42

2

0,

, ,

W W W
t t

t

W T e K

 
 



  
+ + =

  
 = −

      (4.20)

 

where 

( ) ( ) ( )2 , , ,t A t T rB t T = − −  

( ) ( )
2

2

3 1 ,
T t

t t
T

 
− 

=  
 

 

( ) ( ) ( )2

4 2 1

1
.

T t
t t t

T T
  

−
= −  

By letting 

( ) ( ) ( )2 , ,W t a t e b t K = −        (4.21) 

then, we can obtain 

( ) ( )

( )

( )

2

2

2

2

2

,

,

,

W
a t e b t K

t

W
a t e

W
a t e












 = −




=



=


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and 

( ) ( ) ( ) ( ) ( )( ) ( )3 4 0.a t t a t t a t e b t K + + − =        (4.22) 

To solve Eq (4.22), we select appropriate ( )a t  and ( )b t  so that 

( ) ( ) ( ) ( ) ( )

( )

( )

( )

3 4 0,

0,

1,

1.

a t t a t t a t

b t

a T

b T

 + + =

 =


=

 =

 

 

Thus, we can derive 

( ) ,La t e=  ( ) 1,b t =          (4.23) 

where 

( ) ( )4 3d d .
T T

t t
L s s s s = +   

Substituting Eqs (4.21) and (4.23) into Eq (4.17), we have
 

( ) ( ) ( ) ( ) ( )
( )

( )1, , , , , , , ; , , , ; , ; .
, ;

T t

t T
LT

S
V S J r t p S J r t P r t T W y J t P r t T J e P r t T K

P r t T

−

 
− = = −  

   

Proof is completed. 

Corollary 4.1. Let the price of the arithmetic average Asian call options with fixed strike price be 

denoted as ( )ˆ , , ,V S J r t , and let the price of the put options be ( )ˆ , , ,p S J r t . The put-call parity 

formula for arithmetic average Asian options is 

( ) ( ) ( ) ( ) ( ), ,ˆ ˆ, , , , , , , ; d ,
T A s T rB s T

t

tJ S
V S J r t p S J r t P r t T K e s

T T

− − 
− = − + 

 
  

where 

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2

2 2 2 1 2 2 1 2

( )

1
, , , d 2 2 , d ,

2

1
, .

T T
H H

r r
t t

a T t

A t T b T t bB t T B s T s H s B s T s

e
B t T

a

− −

− −


= − − − − −


− =



  

 

Proof. Denoting 

( ) ( ) ( )ˆ ˆ, , , , , , , , , .W S J r t V S J r t p S J r t= −  

According to Theorem 4.1 and Theorem 4.3, we can similarly derive 
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( )

( ) ( )( )

( )

1 2

1 2

2 2
2 2 2 1 2 1 2 2

2 2

2 2
2 2 1 2 1 2

2 2

1
2 2

2

1
2 2 0,

2

, , , .

H H

S S

H H

r r

W S J W W W
S Ht S

t t J S S

W W W W
Ht a b r t rS rW

r r r S

W S J r T J K

− −

− −

 −   
+ + + −

   


   
+ + − + − + − =

   
 = −



 

    (4.24) 

By employing a change of variables, we define 

( )
,

, ;

S
y

P r t T
=  ( )

( )

( )
1

, , ,
, , .

, ;

W S J r t
W y J t

P r t T
=       (4.25) 

Substituting Eq (4.25) into Eq (4.24), we can obtain 

( )
2

2 21 1 1
1 2

0,
W W WyP J

y t
t t J y

  −
+ + =

  
        (4.26) 

where 

( ) ( )

( )

( )

1 2

1 2

2 2 2 2

1

2 2 2 1 2 1 2

2 2 2 1 2 1 2

, ,

1
2 2 ,

2

1
2 2 .

2

S r

H H

S S S

H H

r r r

t B t T

Ht

Ht

− −

− −


= +




= + −



= + −

  

  

  

 

Let 

,
TK tJ

y

−
=  ( ) ( )2 1, , , .

T
W t W y J t

y
=        (4.27) 

By substituting Eq (4.27) into Eq (4.26), we can deduce 

( )

( )

2
2 22 2 2

1 2

2

0,

, .

W W W
t P

t

W T

  
+ − =

  
 = −

 
 

 

      (4.28) 

Let 

( ) ( ) ( )2 , ,W t a t b t= +          (4.29) 

then, we have 
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( ) ( )

( )

2

2

2

2

2

,

,

0,

W
a t b t

t

W
a t

W


 = +




=



=









 

and 

( ) ( ) ( ) 0.a t b t a t P + − =         (4.30) 

By combining Eqs (4.28) and (4.30), we can compare the coefficients to obtain 

( )

( ) ( )

( )

( )

0,

0,

1,

0.

a t

b t a t P

a T

b T

 =

 − =


= −

 =

 

Solving the aforementioned system of equations yields 

( ) 1,a t = −
( ) ( ), ,

( ) d .
T A s T rB s T

t
b t e s

− −
=   

Finally, we can derive 

( ) ( ) ( ) ( ) ( ) ( ), ,ˆ ˆ, , , , , , , , , , ; d .
T A s T rB s T

t

tJ S
W S J r t V S J r t p S J r t P r t T K e s

T T

− − 
= − = − + 

 
  

5. Numerical analysis 

In this section, we provide specific values for each parameter to conduct the following 

numerical calculations. 

1 2 1 2
0, 30, 0.5, 0.4, 0.3, 0.2, 2, 0.05, 0.06, 1.S S r rt S a b r T= = = = = = = = = =      

From Figure 1, it can be observed that when 0.5H = , the msfBm simplifies to a geometric 

Brownian motion. At this point, the price of geometric average Asian call options peaks, whereas it 

reaches its minimum at 0.9H = . An increment in the Hurst index is indicative of the manifestation 

of long-range correlations in the asset price, suggesting a persistent price trend. In specific situations, 

the expected small fluctuations in the asset price in the market will lead to a decrease in the option 

value. Figure 2 indicates that as the short rate rises, the price of the options gradually increases. This 

is because an increase in the interest rate could potentially raise the payoff of the options at maturity, 

thereby enhancing the holding value of the options. Figure 3 shows that the valuation of the options 

is positively influenced by a rise in the initial stock price. From Figure 4, the price of the options 

increases with the extension of the expiration date. As the remaining time for the option contract 

increases, it gives the holders more time to wait for a potential rise in the stock price. Therefore, the 

possibility of the investors making a profit is greater, and the price of the options will also increase 
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accordingly. Conversely, it diminishes with an upsurge in the strike price. As the strike price 

increases, buyers have to pay a higher price to exercise the options, which compresses the profit 

margin and thus reduces the value of the options. Figure 5 illustrates that the pricing of options under 

the current model closely mirrors that of the sub-fractional Vasicek model. Notably, the pricing 

discrepancy for options between our model and Vasicek model widens initially and then narrows, 

and the pricing gap between our model and BS model exhibits a consistent upward trend. 

 

Figure 1. The price of fixed strike geometric average Asian call options under the 

msfBm-Vasicek model, according to the parameter H . 

 

Figure 2. The price of geometric average Asian call options under different r . 
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Figure 3. Geometric average Asian call option price across S . 

 

Figure 4. The impact of parameters K  and T  on the pricing of geometric average 

Asian call options when 0.8H = . 
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Figure 5. Difference among the msfBm-Vasicek model, sfBm-Vasicek model, Vasicek 

model, and BS model. 

According to Tables 1 and 2, it can be observed that the lowest pricing for geometric average 

Asian call options is associated with the BS model. In the case of a brief expiration period, the price 

of the options under the sfBm-Vasicek model marginally surpasses that of our model, especially with 

an increasing stock price, and there is minimal variation between the two models. For longer 

expiration dates, the option price under our model exceeds that under the sfBm-Vasicek model, with 

the price difference becoming more pronounced. Moreover, the price of options under our model and 

the Vasicek model are getting closer. Overall, our model demonstrates a degree of rationality and is 

deemed suitable for developing option pricing models in financial markets. 

Table 1. The price of the four models under 0.5T =  and 40K = . 

S  Our price BSV  
VasicekV  

sfBm-VasicekV  

20 0.2435 0.0005 1.8389 0.2208 

23 0.5498 0.0066 2.8183 0.5202 

26 1.0480 0.0426 3.9897 1.0211 

29 1.7685 0.1748 5.3360 1.7589 

32 2.7255 0.5146 6.8397 2.7506 

35 3.9194 1.1863 8.4843 3.9968 

38 5.3398 2.2779 10.2543 5.4858 

41 6.9698 3.8119 12.1360 7.1977 

44 8.7884 5.7485 14.1169 9.1087 

47 10.7735 8.0118 16.1861 11.1933 

50 12.9033 10.5160 18.3337 13.4270 
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Table 2. A comparison of the pricing results among different models when 2T = . 

S  Our price BSV  
VasicekV  

sfBm-VasicekV  

20 5.1411 0.2085 2.3002 0.9705 

23 7.4411 0.4863 4.8981 2.7039 

26 9.8921 0.9501 7.6053 4.5926 

29 12.4656 1.6332 10.3988 6.6067 

32 15.1403 2.5519 13.2620 8.7238 

35 17.8998 3.7072 16.1825 10.9266 

38 20.7312 5.0881 19.1509 13.2019 

41 23.6243 6.6762 22.1600 15.5389 

44 26.5707 8.4490 25.2039 17.9291 

47 29.5636 10.3825 28.2781 20.3655 

50 32.5974 12.4535 31.3787 22.8423 

We select copper options for three-month futures as the sample, with a cutoff time of October 

2006, and the data are sourced from the London Metal Exchange. Since all trading products on the 

LME are priced in US dollars, we adopt the interest rate of one-year US Treasury bonds. 

We calculate the value of H  using the R/S method. Define a return sequence 

1ln
,

ln

t
t t

t

P
R R

P

+
 

= 
   

of length N  and divide it into A  consecutive sub-intervals of length n . Label 

each sub-interval as , 1, , .aI a A=  Thus, each point in 
aI  can be represented as 

, , 1, , ; 1, , .k aR k n a A= =  

For each sub-interval 
aI  

of length n , calculate its mean as 

,

1

1
.

n

a k a

k

e R
n =

=   

The cumulative mean deviation ,k aX  for a single sub-interval is calculated as 

( ), ,

1

, 1,2, , .
k

k a i a a

i

X R e k n
=

= − =  

The sum of the cumulative mean deviation sequence  1, 2, ,, ,a a n aX X X  for a single sub-interval is 

zero. The range of an individual sub-interval is defined as 

( ) ( ), ,max min , 1,2, , .
aI k a k a

kk
R X X k n= − =  

Subsequently, the standard deviation 
aIS  for each sub-interval is given by 
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,

1

1
.

a

n
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S E e
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= −
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Therefore, for the partition length n , we can compute the average rescaled range for A  

sub-intervals as 

( )
1

1
/ .a

a

A
I

n
a I

R
R S

A S=

 
=  

 
 


 

Repeat the above calculation process for different partition lengths (i.e., different time scales) n to 

obtain multiple average rescaled range values. There is a linear relationship between log
R

S

 
 
 

 and 

( )log n  [27] 

( )log log .
n

R
a H n

S

 
= + 

   

Finally, a double logarithmic regression is performed on n  and R/S, and the slope is the 

parameter of long-range correlations, that is, the Hurst index. Therefore, we can obtain 0.6H = . 

From Table 3, it is evident that the RMSE of our model is the smallest, indicating that the option 

price derived from our model is the closest to the market price. Furthermore, the price from our 

model is also quite close to that of the sfBm-Vasicek model. This suggests that it is essential to 

include factors such as the long-range correlations of the underlying asset and stochastic interest rate 

in the option pricing model, as they significantly influence the option price. 

Table 3. Our model compared with other models. 

K  Market price Our price BSV  
VasicekV  

sfBm-VasicekV  

7800 750 750.8065 747.9587 752.3958 749.0275 

7500 694 693.9719 691.9232 696.2100 692.5075 

7850 737 737.8847 734.8516 739.3860 736.1443 

7900 742 741.1881 739.7236 744.2764 739.8953 

7550 670 669.3538 667.6885 672.1255 668.1860 

7650 658 658.1121 655.5799 660.1722 656.8193 

7700 630 629.6739 627.5145 632.1150 628.5006 

7300 584 584.4501 581.6303 586.0389 583.1820 

7600 572 572.5130 569.3085 574.0554 571.3721 

7450 541 540.6392 538.3216 542.9253 539.7519 

7400 508 509.9819 505.4722 510.0512 508.4733 

 RMSE 0.8064 2.3756 2.1638 1.2832 

6. Conclusions 

Geometric average Asian options are important exotic options. The mixed sub-fractional 

Brownian motion, chosen as a stochastic process, is capable of more accurately depicting the 

characteristics of long-range correlations. Since the Vasicek model is a very classical model, it is 

combined with the msfBm to simultaneously address the pricing issue. By using partial differential 

equations and multiple variable substitution methods, the valuation equations for the model are 
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deduced. Finally, numerical computations are utilized to assess the effects of diverse parameters. The 

efficacy of our model is demonstrated through a comparative analysis of the pricing discrepancies for 

options between different models, which provides a reference for option pricing theory and practice. 
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