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Abstract: Cyclotomic numbers and Jacobi sums, introduced over two centuries ago by Gauss and
Jacobi, respectively, are pivotal in number theory and find wide applications in combinatorial designs,
coding theory, cryptography, and information theory. The cyclotomic problem, focused on determining
all cyclotomic numbers, or equivalently evaluating all Jacobi sums of a given order, has been a subject
of extensive research. This paper explores their trivariate counterparts, termed “ternary cyclotomic
numbers” and “ternary Jacobi sums”, highlighting the fundamental properties that mirror those of the
classical cases. We show the ternary versions of Fourier series expansions, two symmetry properties,
and a summation equation. We further demonstrate that ternary Jacobi sums, with at least one trivial
variable, can be evaluated in terms of classical Jacobi sums of the same order. These properties
are established through elementary methods that parallel those utilized in classical cases. Based on
these properties, then we offer explicit calculations for all ternary Jacobi sums and ternary cyclotomic
numbers of order e = 2, and near-complete results for order e = 3, with the exception of the elusive
integer J3(1, 1, 2) for us.
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1. Introduction

Let Fq be the finite field of q elements, where q = pα with a prime p and a positive integer α.
Suppose that

q − 1 = e f

with positive integers e and f . Choose a generator γ of the multiplicative cyclic group

F∗q = Fq − {0}.

For v ∈ F∗q, let indγ(v) denote the unique non-negative integer m ⩽ q − 2 such that v = γm.
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For 0 ⩽ i, j ⩽ e − 1 (or rather for i, j modulo e), the e2 cyclotomic numbers of order e, denoted by
Ai j (or A(e)

i j to indicate the order e), are defined as the cardinality of the set Xi j, where

Xi j := {v ∈ Fq − {0,−1} | indγ(v) ≡ i (mod e), indγ(v + 1) ≡ j (mod e)}.

Introduced by Gauss [1,2] over two hundred years ago, cyclotomic numbers are a significant concept
in number theory with deep connections to various mathematical areas. They have been extensively
applied in combinatorial designs, coding theory, cryptography, and information theory (see [3–6]). For
both theoretical and practical purposes, it is intriguing to determine all cyclotomic numbers of a given
order e for all finite fields, a task usually called the cyclotomic problem.

In the case q = p, Gauss [1, §358] evaluated A(3)
i j in terms of (L,M) satisfying the Diophantine

system
4p = L2 + 27M2, with L ≡ 1 (mod 3).

This system determines L uniquely and M up to signs. Similarly, Gauss [2] evaluated A(4)
i j in terms of

(a, b) satisfying
p = a2 + b2, with a ≡ 1 (mod 4),

which fixes a uniquely and b up to signs. His results indicated that solving the cyclotomic problem
over Fq generally requires more than just the value of q and order e; it also needs a quadratic partition
of q.

Therefore, classical solutions to the cyclotomic problem are typically expressed using an
appropriately chosen solution of a relevant Diophantine system (consisting of equations and
congruences), often with the sign ambiguity. In this sense, many mathematicians have investigated the
cyclotomic problem for various small orders ⩽ 22 (see Dickson’s early foundational work [7–9] and a
good recent survey [10]), as well as for special orders such as [11–13] for l, [13, 14] for 2l, [15] for l2,
and [16, 17] for 2l2 (with an odd prime l).

While Gauss initially approached cyclotomy via Gauss sums, Dickson’s use of Jacobi sums [7] laid
the groundwork for modern cyclotomy. The cyclotomic problem is, in fact, equivalent to the explicit
evaluation of Jacobi sums of the same order. Let us recall the definiton of Jacobi sums. Let ζ be a
primitive complex e-th root of unity fixed once for all. We define a multiplicative character χe of order
e on F∗q by

χe(γm) = ζm (for any m ∈ Z),

and extend χe to a character on Fq by taking χe(0) = 0. For convenience, we assume

χm
e (0) = 0

for any integer m. The Jacobi sums J(i, j) (or Je(i, j) to indicate the order e) of order e, for 0 ⩽ i, j ⩽
e − 1 (or rather for i, j modulo e), are defined by

J(i, j) =
∑
v∈Fq

χi
e(v)χ j

e(v + 1).

Jacobi sums and cyclotomic numbers are related by the following finite Fourier series expansions:

J(a, b) =
∑

0⩽i, j⩽e−1

Ai jζ
ai+b j, e2Aab =

∑
0⩽i, j⩽e−1

J(i, j)ζ−(ai+b j).
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To calculate all cyclotomic numbers of order e, it suffices to calculate all Jacobi sums of order e, and
vice versa.

Jacobi made significant contributions to mathematics, including the Jacobi symbol, the Jacobi triple
product, the Jacobi elliptic functions, and the Jacobian in variable transformations. Among his notable
discoveries are Jacobi sums, which he proposed in 1827 in a letter to Gauss and published ten years
later. These sums were later extended by Cauchy, Gauss, and Eisenstein. While Gauss sums are
pivotal in proving quadratic reciprocity, Jacobi sums are essential for proving cubic reciprocity and
were generalized by Eisenstein for biquadratic reciprocity. Jacobi sums are also used to estimate the
number of integer solutions to congruences like

x3 + y3 ≡ 1 (mod p),

which are crucial for developing the Weil conjectures [18]. In modern mathematics, Jacobi sums have
found applications in primality testing [19].

Wamelen [20] has provided an inductive arithmetic approach to characterize all Jacobi sums of
any order, thereby solving the cyclotomic problem in theory. However, the Diophantine system he
employed is notably large and intricate in general. In recent years, there has been growing interest in
efficiently computing Jacobi sums [21], driven by their importance in applications such as primality
testing, cryptosystems, combinatorial designs, and advanced number theory problems [19, 22].

For given Fq, γ, and ζ, classical cyclotomic numbers and Jacobi sums are binary functions
depending on two variables i, j ∈ Z/eZ. The purpose of this paper is to investigate their trivariate
analogs, so-called “ternary cyclotomic numbers” and “ternary Jacobi sums”, defined in Section 2. As
classical cyclotomic numbers and Jacobi sums are important both theoretically and practically, we
want to study their ternary counterparts in order to explore theoretically interesting problems or
potential applications. In Section 2, we obtain some ternary properties, which are analogous to those
of classical cyclotomic numbers and Jacobi sums, with proofs similar to those of classical ones. Then
we use these properties to solve the cyclotomic problem for ternary cyclotomic numbers. Section 3
provides explicit evaluations of all ternary cyclotomic numbers and ternary Jacobi sums for order
e = 2, and Section 4 nearly completes the evaluation for order e = 3, except for an integer J3(1, 1, 2),
which remains unknown. Our calculations show that ternary Jacobi sums, which are some kind of
character sums, cannot generally be transformed into classical Jacobi sums. So the cyclotomic
problem for ternary cyclotomic numbers has its own interests in theory.

2. Ternary cyclotomic numbers and Jacobi sums with properties

Let Fq, γ, ζ, χe and
q = pα = e f + 1

be as described in Section 1. We further assume

q = e f + 1

is odd for convenience. (The upcoming definitions will be meaningless for F2α , where v − 1 = v + 1.)
Specifically, either e or f is even.
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For 0 ⩽ i, j, k ⩽ e − 1 (or rather for i, j, k ∈ Z/eZ), we define the ternary cyclotomic numbers of
order e, denoted by Ai jk (or A(e)

i jk to indicate the order e), as the cardinality of the set

Xi jk := {v ∈ Fq − {0,±1} | indγ(v − 1) ≡ i (mod e), indγv ≡ j (mod e), indγ(v + 1) ≡ k (mod e)}.

This definition relies on the choice of a multiplicative generator γ of F∗q. We also define the ternary
Jacobi sums of order e, denoted by J(i, j, k) (or Je(i, j, k) to indicate the order e), as

J(i, j, k) :=
∑
v∈Fq

χi
e(v − 1)χ j

e(v)χk
e(v + 1).

This definition depends on the character χe on Fq, which is determined by the selections of γ and ζ (as
χe(γm) = ζm and χe(0) = 0). Clearly, we have

Xi jk = {v ∈ Fq | χe(v − 1) = ζ i, χe(v) = ζ j, χe(v + 1) = ζk}.

Our definition of the ternary Jacobi sum can be viewed as a special case of the character sums studied
in [23].

To calculate all ternary cyclotomic numbers of order e, it suffices to calculate all ternary Jacobi
sums of order e, and vice versa, by the following finite Fourier series expansions.

Proposition 1. (Finite Fourier series expansions) The ternary cyclotomic numbers and ternary Jacobi
sums of the same order e are related by: for any a, b, c ∈ Z/eZ,

J(a, b, c) =
∑

i, j,k∈Z/eZ

Ai jkζ
ai+b j+ck, (2.1)

e3Aabc =
∑

i, j,k∈Z/eZ

J(i, j, k)ζ−(ai+b j+ck). (2.2)

Proof. Note that
Fq = {0,±1} ∪

⋃
i, j,k∈Z/eZ

Xi jk.

For v ∈ {0,±1},
χa

e(v − 1)χb
e(v)χc

e(v + 1) = 0.

For the Ai jk elements v ∈ Xi jk,

χa
e(v − 1)χb

e(v)χc
e(v + 1) = ζai+b j+ck.

Summing them all together, we obtain Eq (2.1). For the Eq (2.2), noting that ζ = χe(γ), we have∑
i, j,k∈Z/eZ

J(i, j, k)ζ−(ai+b j+ck) =
∑

i, j,k∈Z/eZ

∑
v∈Fq

χi
e(v − 1)χ j

e(v)χk
e(v + 1)χe(γ)−(ai+b j+ck)

=
∑
v∈Fq

( e−1∑
i=0

χi
e

(v − 1
γa

))( e−1∑
j=0

χ j
e

( v
γb

))( e−1∑
k=0

χk
e

(v + 1
γc

))
.
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Note that

e−1∑
j=0

χ j
e

( v
γb

)
=

e, if v , 0 and indγ(v) ≡ b (mod e),
0, if v = 0 or indγ(v) . b (mod e),

and similar for
e−1∑
i=0

χi
e

(v − 1
γa

)
and

e−1∑
j=0

χk
e

(v + 1
γc

)
. So the terms of the above sum are non-zero only when

v ∈ Xabc, and thus ∑
i, j,k∈Z/eZ

J(i, j, k)ζ−(ai+b j+ck) =
∑

v∈Xabc

e3 = e3Aabc. □

Following arguments often involve the value of χe(−1). Since

γ
q−1

2 = −1 ∈ Fq,

and when e is even,
ζ

e
2 = −1 ∈ C,

we have

χe(−1)−1 = χe(−1) = χe(γ
q−1

2 ) = ζ
e f
2 =

1, if f is even,
ζ

e
2 = −1, if f is odd,

= (−1) f .

Classical cyclotomic numbers exhibit a symmetry property in their two variables:

Ai j = A j+ e f
2 ,i+

e f
2
=

A ji, if f is even,
A j+ e

2 ,i+
e
2
, if f is odd,

which implies that
J(a, b) = (−1) f (a+b)J(b, a).

It is similar for ternary cyclotomic numbers and ternary Jacobi sums.

Proposition 2. For any i, j, k ∈ Z/eZ,

Ai jk = Ak+ e f
2 , j+

e f
2 ,i+

e f
2
=

Ak ji, if f is even,

Ak+ e
2 , j+

e
2 ,i+

e
2
, if f is odd.

Proof. For any v ∈ Fq, let w = −v. Since

χe(−1) = ζ
e f
2 ,

we have

v ∈ Xi jk ⇐⇒ (χe(−w − 1), χe(−w), χe(−w + 1)) = (ζ i, ζ j, ζk)
⇐⇒ (χe(w − 1), χe(w), χe(w + 1)) = (χe(−1)ζk, χe(−1)ζ j, χe(−1)ζ i)
⇐⇒ w ∈ Xk+ e f

2 , j+
e f
2 ,i+

e f
2
.

So v 7→ −v induces a bijection from Xi jk to Xk+ e f
2 , j+

e f
2 ,i+

e f
2

. □
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Corollary 3. For any a, b, c ∈ Z/eZ,

J(a, b, c) = (−1) f (a+b+c)J(c, b, a).

As a consequence, when both f and b are odd, we have J(a, b, a) = 0.

Proof. By Propositions 1 and 2, as
ζ−

e f
2 = (−1) f ,

we have

J(a, b, c) =
∑

i, j,k∈Z/eZ

Ak+ e f
2 , j+

e f
2 ,i+

e f
2
ζai+b j+ck

=
∑

l,m,n∈Z/eZ

Almnζ
a(n− e f

2 )+b(m− e f
2 )+c(l− e f

2 )

= ζ−
e f
2 (a+b+c)

∑
l,m,n∈Z/eZ

Almnζ
cl+bm+an

= (−1) f (a+b+c)J(c, b, a). □

Classical cyclotomic numbers exhibit another property

Ai j = A−i, j−i,

which implies that
J(a, b) = J(−a − b, b).

It is similar for ternary cases as follows:

Proposition 4. For any i, j, k ∈ Z/eZ,

Ai jk = Ai− j+ e f
2 ,− j,k− j =

Ai− j,− j,k− j, if f is even,

Ai− j+ e
2 ,− j,k− j, if f is odd.

Proof. For any v ∈ Fq, let w = v−1. Since

χe(−1) = ζ
e f
2 ,

we have

v ∈ Xi jk ⇐⇒ (χe(w−1 − 1), χe(w−1), χe(w−1 + 1)) = (ζ i, ζ j, ζk)

⇐⇒

(
χe(w − 1)
χe(−1)χe(w)

, χe(w),
χe(1 + w)
χe(w)

)
= (ζ i, ζ− j, ζk)

⇐⇒ (χe(w − 1), χe(w), χe(w + 1)) = (χe(−1)ζ i− j, ζ− j, ζk− j)
⇐⇒ w ∈ Xi− j+ e f

2 ,− j,k− j.

So v 7→ v−1 induces a bijection from Xi jk to Xi− j+ e f
2 ,− j,k− j. □
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Corollary 5. For any a, b, c ∈ Z/eZ,

J(a, b, c) = (−1) f aJ(a,−a − b − c, c).

Proof. By Propositions 1 and 4, as
ζ−

e f
2 = (−1) f ,

we have

J(a, b, c) =
∑

i, j,k∈Z/eZ

Ai− j+ e f
2 ,− j,k− jζ

ai+b j+ck

=
∑

l,m,n∈Z/eZ

Al,m,nζ
a(l−m− e f

2 )−bm+c(n−m)

= (ζ−
e f
2 )a

∑
l,m,n∈Z/eZ

Al,m,nζ
al+(−a−b−c)m+cn

= (−1) f aJ(a,−a − b − c, c). □

For classical cyclotomic numbers, we have

∑
i∈Z/eZ

Ai j =

 f − 1, if j ≡ 0 (mod e),
f , otherwise,

and
∑

j∈Z/eZ

Ai j =

 f − 1, if i ≡ e f
2 (mod e),

f , otherwise.
(2.3)

We show similar equations for ternary cyclotomic numbers.

Proposition 6. Let g = indγ(2). For any i, j, k ∈ Z/eZ,

∑
t∈Z/eZ

At jk =

A jk − 1, if j ≡ 0 (mod e) and k ≡ g (mod e),
A jk, otherwise,∑

t∈Z/eZ

Ai jt =

Ai j − 1, if i ≡ g + e f
2 (mod e) and j ≡ e f

2 (mod e),
Ai j, otherwise,∑

t∈Z/eZ

Aitk =

Ai−g,k−g − 1, if i ≡ e f
2 (mod e) and k ≡ 0 (mod e),

Ai−g,k−g, otherwise.

Proof. Note that ⋃
t∈Z/eZ

Xt jk = X jk − {1}.

Also note that 1 ∈ X jk if and only if

j ≡ 0 (mod e) and k ≡ g (mod e).

These Xt jk are pairwise disjoint, which gives the first equation.
For the second equation,⋃

t∈Z/eZ

Xi jt = {v ∈ Fq − {0,±1} | χe(v − 1) = ζ i, χe(v) = ζ j}.
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So
v ∈
⋃

t∈Z/eZ

Xi jt

if and only if
v − 1 ∈ Xi j − {−2}.

Also note that −2 ∈ Xi j if and only if

i ≡ g +
e f
2

(mod e) and j ≡
e f
2

(mod e).

For the third equation,⋃
t∈Z/eZ

Xitk = {v ∈ Fq − {0,±1} | χe(v − 1) = ζ i, χe(v + 1) = ζk}.

Then
v ∈
⋃

t∈Z/eZ

Xitk

if and only if
v − 1

2
∈ Xi−g,k−g − {−2−1}.

Here

v 7→
v − 1

2
induces a bijection on Fq. Also note that

−2−1 ∈ Xi−g,k−g

if and only if

i ≡
e f
2

(mod e) and k ≡ 0 (mod e). □

Note that ∑
v∈Fq

χi
e(v) =

q−2∑
m=0

χi
e(γ

m) =
q−2∑
m=0

(ζ i)m =

q − 1, if i ≡ 0 (mod e),
0, otherwise.

So classical Jacobi sums J(i, 0) and J(0, i) can be easily evaluated by

(−1) f iJ(i, 0) = J(0, i) =
∑
v∈Fq

χ0
e(v)χi

e(v + 1) =
∑
v∈Fq

χi
e(v + 1) − χi

e(1)

=

q − 2, if i ≡ 0 (mod e),
−1, otherwise.

(2.4)

Similarly, ternary Jacobi sums J(i, j, k), with either i, j or k divided by e, can be evaluated in terms of
classical Jacobi sums of the same order e.
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Proposition 7. Let g = indγ(2). For i, j, k ∈ Z/eZ, we have

J(0, j, k) = J( j, k) − ζgk,

J(i, j, 0) = J(i, j) − (−1) f (i+ j)ζgi,

J(i, 0, k) = ζg(i+k)J(i, k) − (−1) f i.

Proof. Recall that
χm

e (0) = 0

for any m ∈ Z, we have
χe(2) = ζg and χe(−1) = (−1) f .

So

J(0, j, k) =
∑
v∈Fq

χ0
e(v − 1)χ j

e(v)χk
e(v + 1)

=
∑

v∈Fq−{1}

χ j
e(v)χk

e(v + 1)

=
∑
v∈Fq

χ j
e(v)χk

e(v + 1) − χ j
e(1)χk

e(2)

= J( j, k) − ζgk,

J(i, j, 0) =
∑

v∈Fq−{−1}

χi
e(v − 1)χ j

e(v)

=
∑
v∈Fq

χi
e(v − 1)χ j

e(v) − χi
e(−2)χ j

e(−1)

= J(i, j) − (−1) f (i+ j)ζgi.

In the following we let

w =
v − 1

2
.

Note that

v 7→
v − 1

2
induces a bijection on Fq. Then

J(i, 0, k) =
∑
v∈Fq

χi
e(v − 1)χk

e(v + 1) − χi
e(−1)χk

e(1)

=
∑
w∈Fq

χi
e(2w)χk

e(2w + 2) − (−1) f i

= ζg(i+k)J(i, k) − (−1) f i. □

Corollary 8.
J(0, 0, 0) = q − 3.
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For i . 0 (mod e), we have

J(i, 0, 0) = (−1) f i+1(1 + ζgi),
J(0, i, 0) = −1 − (−1) f i,

J(0, 0, i) = −1 − ζgi.

To conclude this section, it is important to highlight a key result that will facilitate our subsequent
calculations, as it is self-evident from the definition.

Lemma 9. Let k be an integer coprime to e, and σk denote the Q-automorphism of the field Q(ζ) with

σk(ζ) = ζk.

Then for any a, b, c ∈ Z/eZ, we have

J(ka, kb) = σk(J(a, b)),
J(ka, kb, kc) = σk(J(a, b, c)).

3. Evaluation for order e = 2

In this section, assuming
e = 2 and q = pα = 2 f + 1,

we calculate all ternary cyclotomic numbers and ternary Jacobi sums of order 2 for a generator γ of F∗q.
We fix ζ = −1, and let

g = indγ(2).

By Eq (2.4) and
J2(a, b) = J2(−a − b, b),

all classical Jacobi sums of order 2 are:

J2(0, 0) = q − 2, J2(1, 0) = (−1) f+1, J2(1, 1) = J2(0, 1) = −1. (3.1)

First, let us calculate J2(1, 1, 1) when f is even (which is this section’s most challenging part). We
will see that it is related to classical Jacobi sums of order 4. Let us take the imaginary unit

i =
√
−1

as the primitive 4-th root ζ4 of unity. We write J4(i, j) (with i, j ∈ Z/4Z) for the classical Jacobi sums
of order 4 with respect to γ and ζ4. Let χ4 be the character of Fq defined by

χ4(0) = 0, χ4(γm) = ζm
4 = i

m (for any m ∈ Z).

By definition,
J4(i, j) =

∑
v∈Fq

χi
4(v)χ j

4(v + 1).

AIMS Mathematics Volume 9, Issue 10, 26557–26578.
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A critical insight is that
χ2 = χ

2
4

on Fq. Also note that
F∗q = {γ

m | 0 ⩽ m ⩽ 2 f − 1}.

So

J2(1, 1, 1) =
∑
v∈Fq

χ2(v − 1)χ2(v)χ2(v + 1) =
∑
v∈F∗q

χ2(v)χ2(v2 − 1)

=
∑
v∈F∗q

χ4(v2)χ2
4(v2 − 1) =

2 f−1∑
m=0

χ4(γ2m)χ2
4(γ2m − 1)

= 2
f−1∑
m=0

χ4(γ2m)χ2
4(γ2m − 1).

The final expression is a part of the following formula:

J4(2, 1) =
∑
v∈Fq

χ2
4(v)χ4(v + 1) =

∑
w∈Fq

χ2
4(w − 1)χ4(w)

=
∑
w∈F∗q

χ4(w)χ2
4(w − 1) =

2 f−1∑
n=0

χ4(γn)χ2
4(γn − 1)

=

f−1∑
m=0

χ4(γ2m)χ2
4(γ2m − 1) +

f−1∑
m=0

χ4(γ2m+1)χ2
4(γ2m+1 − 1).

Since
χ4(γ2m) = (−1)m, χ4(γ2m+1) = i2m+1 ∈ {±i}

and
χ2

4(v) ∈ {0,±1}

for any v ∈ Fq,

Re(J4(2, 1)) =
f−1∑
m=0

χ4(γ2m)χ2
4(γ2m − 1) =

J2(1, 1, 1)
2

,

where Re(z) represents the real component of a complex number z.
From [24], we extract the evaluation required. Take special note that the Jacobi sums as defined

in [24, §2] are distinct from our own definitions. In fact, their Jacobi sums R(m, n) equal our

J(n,−m − n) = (−1) f mJ(m, n).

So their finding for R(1, 1) [24, Propositions 1,2] can be reinterpreted as a result for our J4(1, 2) as
follows.
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Lemma 10. [24, Propositions 1,2] Let q = pα ≡ 1 (mod 4) with p prime and α ⩾ 1, and let

s = −Re(J4(1, 2)).

If p ≡ 3 (mod 4), then α is even,
s = (−p)α/2 ≡ 1 (mod 4)

and
J4(1, 2) = −s = −(−p)α/2.

If p ≡ 1 (mod 4), then s is the unique integer coprime to q such that s ≡ 1 (mod 4) and q − s2 is a
perfect square.

Remark 11. The earlier literature [25, p.298] also presented the results of Lemma 10, but erred in the
sign when p ≡ 3 (mod 4).

When
f =

q − 1
2

is even, by Lemma 10,

J2(1, 1, 1) = 2Re(J4(2, 1)) = 2Re
(
(−1)

q−1
4 J4(1, 2)

)
= (−1)

q−1
4 (−2s).

When f is odd, by Corollary 3, J2(1, 1, 1) = 0.
Evaluating the ternary Jacobi sums of order 2, excluding J2(1, 1, 1), is now straightforward by

Proposition 7, Corollary 8, and Eq (3.1). Combining all these, we formulate the results into the
following theorem.

Theorem 12. All ternary Jacobi sums of order 2 over Fq with respect to a generator γ of F∗q are
explicitly given as follows, with g = indγ(2) and s defined as in Lemma 10.

J2(0, 0, 0) = q − 3, J2(1, 0, 0) = (−1) f+1(1 + (−1)g),
J2(0, 0, 1) = J2(0, 1, 1) = J2(1, 1, 0) = −1 − (−1)g,

J2(0, 1, 0) = J2(1, 0, 1) = −1 − (−1) f ,

J2(1, 1, 1) =


0, if q ≡ 3 (mod 4),
−2s, if q ≡ 1 (mod 8),
2s, if q ≡ 5 (mod 8).

Using finite Fourier series expansions from Proposition 1, along with Theorem 12, we derive a
complete and explicit evaluation of all ternary cyclotomic numbers of order 2 as follows.

Theorem 13. All ternary cyclotomic numbers of order 2 over Fq, corresponding to a generator γ of
F∗q, are explicitly evaluated as follows, with g = indγ(2) and s defined as in Lemma 10.

If q ≡ 3 (mod 4), then

A(2)
000 = A(2)

100 = A(2)
110 = A(2)

111 =
q − 5 − 2(−1)g

8
,

AIMS Mathematics Volume 9, Issue 10, 26557–26578.



26569

A(2)
001 = A(2)

010 = A(2)
011 = A(2)

101 =
q − 1 + 2(−1)g

8
.

If q ≡ 1 (mod 8), then

A(2)
000 =

q − 11 − 2s − 4(−1)g

8
, A(2)

011 = A(2)
110 =

q + 1 − 2s
8

,

A(2)
101 =

q − 3 − 2s + 4(−1)g

8
, A(2)

001 = A(2)
100 = A(2)

010 = A(2)
111 =

q − 3 + 2s
8

.

If q ≡ 5 (mod 8), then

A(2)
000 = A(2)

101 =
q − 7 + 2s

8
, A(2)

011 = A(2)
110 =

q + 1 + 2s
8

,

A(2)
001 = A(2)

100 = A(2)
010 = A(2)

111 =
q − 3 − 2s

8
.

4. Calculation for order e = 3

This section aims to compute as many ternary Jacobi sums of order 3 as feasible. Let

e = 3 and q = pα = 3 f + 1

be an odd prime power. Clearly, f is even. Let

g = indγ(2).

We choose a cube root of unity ζ3 ∈ {e±
2π
3 i}. Then

ζ2
3 = −1 − ζ3.

Also note that
σ2(ζ3) = ζ2

3 = ζ
−1
3 = ζ3,

for the Q-automorphism σ2: Q(ζ)→ Q(ζ). So σ2 is just the complex conjugation.
First, recall the evaluation of classical Jacobi sums of order 3. Since f is even,

J3(a, b) = J3(b, a) = J3(−a − b, b) = J3(b,−a − b) = J3(−a − b, a) = J3(a,−a − b).

By Eq (2.4),
J3(0, 0) = q − 2,

and
J3(0, 1) = J3(1, 0) = J3(2, 1) = J3(1, 2) = J3(2, 0) = J3(0, 2) = −1.

The value of
J3(1, 1) = J3(2, 2)

is also known as the following lemma.
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Lemma 14. [12, 25] For
q = pα = 3 f + 1

with p odd prime and α ⩾ 1, we can write

J3(1, 1) =
L + 3M

2
+ 3Mζ3,

for some L,M ∈ Z with L ≡ 1 (mod 3).
(1) If p ≡ 2 (mod 3), then α is even,

M = 0, L = −2(−p)α/2, and J3(1, 1) = −(−p)α/2.

(2) If p ≡ 1 (mod 3), then (L,M) is the unique solution of the Diophantine system:
4q = L2 + 27M2,

L ≡ 1 (mod 3), p ∤ L,

γ
q−1

3 ≡ (L + 9M)/(L − 9M) (mod p).

(4.1)

Proof. For p ≡ 1 (mod 3), this result is a part of [12, Proposition 1]. For p ≡ 2 (mod 3), [25, p.297]
provided the value of J3(1, 1) but erred in the sign. To rectify this mistake, we present an elementary
proof below.

By definition,
J3(1, 1) = a + bζ3

with some a, b ∈ Z. Write Ai j (with 0 ⩽ i, j ⩽ 2) for the classical cyclotomic numbers of order 3. Note
that f is even. So

A01 = A10 = A22 and A02 = A20 = A11.

By definition,

b = A01 + A10 + A22 − (A02 + A11 + A20) = 3(A01 − A02) ≡ 0 (mod 3).

By Eq (2.3),

f − 1 = A00 + A01 + A02,

f = A22 + A02 + A12 = A01 + A02 + A12.

So
A12 = A00 + 1.

By definition,

a = A00 + A12 + A21 − (A02 + A11 + A20) = 2 + 3(A00 − A02) ≡ 2 (mod 3).

By [26, Theorem 2.1.3], if none of i, j, and i + j are multiples of e, then

|Je(i, j)| =
√

q.
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Therefore,
pα = q = (a + bζ3)(a + bζ3) = (a + bζ3)(a + bζ2

3 ).

The Eisenstein integer ring Z[ζ3] is a unique factorization domain (UFD), where the rational prime
p ≡ 2 (mod 3) is an Eisenstein prime, which is irreducible in Z[ζ3]. So

a + bζ3 = pnu

for an integer n ⩾ 0 and an Eisenstein unit

u ∈ {±1,±ζ3,±(1 + ζ3)}.

Since
pn = |a + bζ3| = pα/2,

we have
a + bζ3 = pα/2u ∈ {±pα/2,±pα/2ζ3,±pα/2(1 + ζ3)}.

The condition
b ≡ 0 . ±pα/2 (mod 3)

requires that u = ±1 and thus b = 0. Moreover,

J3(1, 1) = a = ±pα/2 ≡ 2 ≡ p (mod 3),

and hence
J3(1, 1) = −(−p)α/2. □

As f is even, by Corollaries 3 and 5, for any a, b, c ∈ Z/3Z we have

J3(a, b, c) = J3(c, b, a) = J3(a,−a − b − c, c).

Along with Proposition 7, Corollary 8, and Lemma 9, we obtain:

J3(0, 0, 0) = q − 3,
J3(2, 0, 1) = J3(1, 0, 2) = J3(0, 2, 0) = J3(0, 1, 0) = −2,
J3(1, 2, 0) = J3(0, 2, 1) = J3(1, 0, 0) = J3(0, 0, 1) = −1 − ζg

3 ,

J3(2, 1, 0) = J3(0, 1, 2) = J3(2, 0, 0) = J3(0, 0, 2) = −1 − ζ2g
3 ,

J3(1, 1, 0) = J3(0, 1, 1) =
L + 3M

2
+ 3Mζ3 − ζ

g
3 ,

J3(2, 2, 0) = J3(0, 2, 2) =
L + 3M

2
+ 3Mζ2

3 − ζ
2g
3 ,

J3(1, 1, 1) = J3(1, 0, 1) = ζ2g
3

(L + 3M
2

+ 3Mζ3
)
− 1,

J3(2, 2, 2) = J3(2, 0, 2) = ζg
3

(L + 3M
2

+ 3Mζ2
3

)
− 1.

Next, we calculate
J3(1, 2, 1) = J3(2, 1, 2),
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following a similar approach to that for J2(1, 1, 1) in Section 3. Note that f is even and

F∗q = {γ
m | 0 ⩽ m ⩽ 3 f − 1}.

So

J3(1, 2, 1) =
∑
v∈F∗q

χ2
3(v)χ3(v2 − 1) =

3 f−1∑
m=0

χ3(γ2m)χ3(γ2m − 1)

= 2

3
2 f−1∑
m=0

χ3(γ2m − 1)χ3(γ2m). (4.2)

Also note that

J3(1, 1) =
3 f−1∑
n=0

χ3(γn − 1)χ3(γn)

=

3
2 f−1∑
m=0

χ3(γ2m − 1)χ3(γ2m) +

3
2 f−1∑
m=0

χ3(γ2m+1 − 1)χ3(γ2m+1). (4.3)

Let us choose the primitive complex 6-th root of unity ζ6 such that ζ2
6 = ζ3. As ζ3

6 = −1,

ζ6 = −ζ
−2
6 = −ζ

−1
3 = −ζ

2
3 = 1 + ζ3.

Write J6(i, j) (i, j ∈ Z/6Z) for the classical Jacobi sums of order 6 with respect to γ and ζ6. Let χ6 be
the character of Fq defined by χ6(0) = 0 and

χ6(γm) = ζm
6 (for any m ∈ Z).

Note that χ2
6 = χ3 on Fq. By definition,

J6(2, 5) =
3 f−1∑
n=0

χ2
6(γn − 1)χ5

6(γn) =
3 f−1∑
n=0

χ3(γn − 1)χ5
6(γn)

=

3
2 f−1∑
m=0

χ3(γ2m − 1)χ5
6(γ2m) +

3
2 f−1∑
m=0

χ3(γ2m+1 − 1)χ5
6(γ2m+1).

Since

χ5
6(γ2m) = χ3(γ2m),

χ5
6(γ2m+1) = ζ5

6χ3(γ2m) = −ζ3χ3(γ2m) = −χ3(γ2m+1),

we obtain

J6(2, 5) =

3
2 f−1∑
m=0

χ3(γ2m − 1)χ3(γ2m) −

3
2 f−1∑
m=0

χ3(γ2m+1 − 1)χ3(γ2m+1). (4.4)
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Theorem 15. Let g = indγ(2), and (L,M) be defined as in Lemma 14 for

q = pα = 3 f + 1

with p odd prime and α ⩾ 1. Then

J3(1, 2, 1) = J3(1, 1) + J6(1, 1) =


L, if g ≡ 0 (mod 3),
−L+9M

2 ζ3, if g ≡ 1 (mod 3),
L+9M

2 (1 + ζ3), if g ≡ 2 (mod 3).

Moreover, if p ≡ 2 (mod 3), then g ≡ 0 (mod 3) and

J3(1, 2, 1) = L = −2(−p)α/2.

Proof. By Eqs (4.2)–(4.4), we have

J3(1, 2, 1) = J3(1, 1) + J6(2, 5).

We know
J3(1, 1) =

L + 3M
2

+ 3Mζ3.

Also note that
J6(2, 5) = J6(5, 5) = σ5(J6(1, 1)) = J6(1, 1).

To determine J6(1, 1), we note that

J6(1, 1) ∈ Z[ζ6] = Z[ζ3]

by definition. Let

J6(1, 1) =
E + F

2
+ Fζ3

for some E, F ∈ Z. By finite Fourier series expansions, E and F are indeed Z-linear combinations of
classical cyclotomic numbers A(6)

i j (with 0 ⩽ i, j ⩽ 5).
For p ≡ 1 (mod 3), [14, Theorem 2] provides

J6(1, 1) =
(−E + F)ζ3 − (E + F)ζ2

3

2
=

E + F
2
+ Fζ3,

where

(E, F) =


(L, 3M), if g ≡ 0 (mod 3),
(−L−9M

2 , L−3M
2 ), if g ≡ 1 (mod 3),

(−L+9M
2 , −L−3M

2 ), if g ≡ 2 (mod 3).

(4.5)

So we only need to show that Eq (4.5) also holds for p ≡ 2 (mod 3).
In an earlier work, Dickson [7, §17–19] established Eq (4.5) in the setting of q = p, utilizing certain

linear relations among cyclotomic numbers A(6)
i j (with 0 ⩽ i, j ⩽ 5). These relations, in fact, are valid

for A(6)
i j over any finite field Fq with q ≡ 1 (mod 6). Thus, Dickson’s proof of Eq (4.5) is universally

applicable to all fields Fq with q ≡ 1 (mod 6).
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Note that the Jacobi sum R(11) in [7, §17–19] corresponds to our (−1) f J6(1, 1). Consequently,
the pair (E, F) in [7, §18] (with f even) matches our pair, while the pair in §19 (with f odd) is our
(−E,−F).

Using Eq (4.5), we obtain

J3(1, 2, 1) = J3(1, 1) + J6(2, 5) = J3(1, 1) + J6(1, 1)

=
L + 3M

2
+ 3Mζ3 +

E + F
2
+ Fζ2

3

=
L + 3M + E − F

2
+ (3M − F)ζ3

=


L, if g ≡ 0 (mod 3),
−L+9M

2 ζ3, if g ≡ 1 (mod 3),
L+9M

2 (1 + ζ3), if g ≡ 2 (mod 3).

For the special case of p ≡ 2 (mod 3), we have

2 ≡ 21+2(p−1) (mod p)

by Fermat’s little theorem. As
1 + 2(p − 1) ≡ 0 (mod 3),

let
1 + 2(p − 1) = 3t

with some t ∈ Z. Then
g = indγ(2) = indγ(23t) ≡ 3tg (mod (q − 1)).

Since 3 | (q − 1), we have g ≡ 0 (mod 3), and hence

J3(1, 2, 1) = L = −2(−p)α/2.

This completes the proof. □

Remark 16. For p ≡ 1 (mod 3) and q = pα, Acharya and Katre [14, Theorem 2] proved that (E, F) is
the unique solution of the Diophantine system

4q = E2 + 3F2,

E ≡ 1 (mod 3), p ∤ E, F ≡ −g (mod 3),

γ
q−1

3 ≡ (−E + F)/(E + F) (mod p).

The remaining issue now is to evaluate

J3(1, 1, 2) = J3(2, 1, 1) = J3(2, 2, 1) = J3(1, 2, 2).

Here, the second equality stems from Corollary 5, while the other two follow from Corollary 3. First,
proving it to be an integer is straightforward.

Proposition 17. J3(1, 1, 2) is an integer.
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Proof. By Corollaries 3, 5 and Lemma 9,

J3(1, 1, 2) = J3(2, 1, 1) = J3(2, 2, 1) = σ2(J3(1, 1, 2)) = J3(1, 1, 2).

So J3(1, 1, 2) ∈ R. By definition,
J6(1, 1) ∈ Z[ζ6] = Z[ζ3].

Let
J3(1, 1, 2) = a + bζ3

for some a, b ∈ Z, whose imaginary part is 0 only if b = 0. So J3(1, 1, 2) = a ∈ Z. □

We have explored various approaches, but the exact value of J3(1, 1, 2) still eludes us. Finally, let
us elaborate on two unsuccessful ideas regarding its calculation:

(1) Drawing from the prior computation of J3(1, 2, 1), we might guess: Can J3(1, 1, 2) be expressed
as a linear combination of J6(i, j), with coefficients independent of Fq? More precisely, let us
consider 36 absolute constants ci j ∈ C (for 0 ⩽ i, j ⩽ 5) such that the equality

J3(1, 1, 2) =
∑

0⩽i, j⩽5

ci jJ6(i, j)

holds for any finite field Fq with q ≡ 1 (mod 6). For each q, this equality yields a linear relation among
the coefficients ci j. Unfortunately, computational solutions (by a computer program) to these linear
equations (for a sufficient number of q) reveal that such constants ci j do not exist.

(2) For v = γn ∈ F∗q, we note that

2∑
i=0

χi
3(v) =

2∑
i=0

χi
3(γn) =

2∑
i=0

(ζn
3 )i =

3, if 3 | n,
0, otherwise.

Also note that

J(1, 1, 2) = J(2, 1, 1) = J(2, 2, 1),
J(2, 0, 1) = −2.

So

2J(1, 1, 2) − 2 = J(2, 1, 1) + J(2, 2, 1) + J(2, 0, 1)

=
∑
v∈F∗q

χ2
3(v − 1)

( 2∑
i=0

χi
3(v)
)
χ3(v + 1) = 3

f−1∑
m=0

χ2
3(γ3m − 1)χ3(γ3m + 1)

= 3
f−1∑
m=1

χ3

(
γ3m + 1
γ3m − 1

)
= 3

f−1∑
m=1

χ3

( 2
γ3m − 1

+ 1
)
.

Similar computations for J(1, 1, 2) + J(0, 1, 2) + J(2, 1, 2) and J(1, 1, 2) + J(1, 1, 0) + J(1, 1, 1) yields
similar character sums involving cubic elements of F∗q. To evaluate J3(1, 1, 2), it suffices to evaluate
any one of them. Currently, we have not found a good way to compute them in general.
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5. Conclusions

In this paper, we introduce the trivariate counterparts of classical cyclotomic numbers and Jacobi
sums, named “ternary cyclotomic numbers” and “ternary Jacobi sums”. We present their basic
properties that mirror those of the classical cyclotomic numbers and Jacobi sums. In Section 3 we
provide explicit evaluations for all ternary Jacobi sums (Theorem 12) and ternary cyclotomic numbers
(Theorem 13) of order e = 2. Section 4 delivers near-complete results for order e = 3, with the
exception of the elusive integer J3(1, 1, 2) for us. To solve the cyclotomic problem for ternary
cyclotomic numbers of order 3, one only needs to calculate J3(1, 1, 2). Determining the precise value
of the integer J3(1, 1, 2) stands as our initial objective for upcoming endeavors. In the future, we will
investigate more general methods for the ternary cyclotomic problem, as well as its potential
applications in other fields.
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