
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(10): 26538–26556.
DOI:10.3934/math.20241291
Received: 25 July 2024
Revised: 27 August 2024
Accepted: 09 September 2024
Published: 13 September 2024

Research article

Synchronization issue of uncertain time-delay systems based on flexible
impulsive control

Biwen Li and Qiaoping Huang∗

Huangshi Key Laboratory of Metaverse and Virtual Simulation, School of Mathematics and Statistics,
Hubei Normal University, Huangshi 435002, Hubei, China

* Correspondence: Email: hqp15572910919@163.com; Tel: +8615572910919.

Abstract: This paper discusses a synchronization issue of uncertain time-delay systems via flexible
delayed impulsive control. A new Razumikhin-type inequality is presented, considering adjustable
parameters the $(t), which relies on flexible impulsive gain. For the uncertain time-delay systems
where delay magnitude is not constrained to impulsive intervals, sufficient conditions for global
exponential synchronization (GES) are established. Furthermore, based on Lyapunov theory, a new
differential inequality and linear matrix inequality design, and a flexible impulsive control method is
introduced through using the variable impulsive gain and time-varying delays. It is interesting to find
that uncertain time-delay systems can maintain GES by adjusting the impulsive gain and impulsive
delay. Finally, two simulations are given to illustrate the effectiveness of the derived results.
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1. Introduction

Compared to continuous control, impulsive control has received widespread attention in the control
field and has been effectively used in real applications such as physics [1–4], cryptography (see [5]),
and biological medicine (see [6–8]) because it reduces control cost due to the fact that receiving
sampling information only occurs at certain discrete instants. For instance, [1] first combined impulsive
control methods with moving vehicles to enable vehicles on the road to travel at the desired safe margin
and speed, thereby relieving traffic congestion. [8] set up rational impulsive controllers to explore the
issue of optimizing drug to treat influenza, so impulsive control can show some worth for medicine.

Nevertheless, time delays inevitably occur in the sampling, transmission, and processing of
impulsive information. Therefore, the time delay problem in impulsive control cannot be ignored.
Many researchers have investigated impulsive delay. For example, [2] addresses the problem of the
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synchronization of time-delay impulsive control in linear dynamic networks with respect to time
scales. [9] studied synchronization using distributed delay impulsive control, where the developed
Lyapunov function is limited by the size of the impulsive interval. Synchronization of discrete delayed
impulsive control with two types of neural networks was analyzed by synchronous impulses, but
findings restrict the upper and lower bounds of the impulsive interval [10]. Based on the theory of
delayed impulses, the leader-follower synchronization problem for delayed systems was solved in [11].
In particular, the optimal control problem for impulsive time-delay systems has yielded a number of
interesting results [12–14].

Synchronization is one of the important dynamics behaviors of impulsive dynamical systems and
is very widely used in many different fields [15–17]. The stability and synchronization problems of
impulsive dynamical systems with time delay have been a popular topic in the control and analysis
of discontinuous dynamical systems, and has attracted the interest of many scholars [18–25]. For
example, [18] studied impulsive control of nonlinear delayed systems and applied it to synchronization
control of delayed neural networks. An effective impulsive controller for the stabilization of singular
delayed systems was proposed in [19]. The class comparison principle (see [21]) and average impulsive
interval (AII) method for impulsive delay systems (see [20, 22, 25]) has also been applied to study the
stability (or synchronization) of delayed impulsive systems. Furthermore, based on the beneficial
impact of impulsive delay on stability, [26] presented an impulsive control scheme with time delay
and related criteria for stabilizing the considered system. It is not difficult to find that systems can
reach consistent synchronization, asymptotic synchronization, or exponential synchronization by using
different impulsive control schemes [27–29]. [30] investigated the GES of the systems using the AII
concept and impulsive control with a fixed number of impulses. [31] further derives some innovative
and less conservative GES criteria for a class of general delay dynamic networks by employing the idea
of AII and comparison principle. It is clear that both [30] and [31], as well as some of the previous
literature on delayed impulsive control, focus mainly on the case of fixed impulsive gain. Nevertheless,
due to the complexity of practical situations, it is unreasonable to apply the same impulsive gain at each
impulse point. In addition, external impulses can desynchronize systems that lack adaptive strategies
for restoring synchronization [32, 33].

On the other hand, the parameters of time-delay impulsive dynamical systems can be disturbed
by some factors, such as electronic component tolerances, model inaccuracies, and environmental
changes. Therefore, the parameter uncertainties, should be taken into account when investigating the
stability or synchronization problems of time-delay impulsive dynamical systems, and there have been
a number of recent studies in this regard [34–37]. For example, in [36], the synchronization for a kind
of switched neural networks involving hybrid delays, parametric uncertainty, and sampling control is
discussed.

In summary, this paper focuses on exploring the influence of flexible impulsive gain on
synchronization and the potential positive impact of impulses with delays on synchronization by using
adjustable impulsive control. The list of contributions of this article is as follows:

1) A new flexible impulsive control scheme for uncertain time-delay systems, relying on the variable
gain instead of the common gain commonly of previous studies, is presented to enhance the anti-
attack ability of impulsive systems. If systems suffer from external desynchronizing impulses,
the novel control method guarantees synchronization of the systems by regulating the impulsive
gain so that it satisfies the synchronization criteria. Time-varying impulsive delays are taken into
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account equally. When the size of impulsive delay is large enough in the impulsive interval,
the unstable impulsive gain can maintain the system synchronization, and the time-delay system
can achieve self-synchronization by integrating the acquired impulsive delay and impulsive gain
information.

2) The new impulsive delay inequality, which takes into account both AII and average impulsive
gain, has been developed. By utilizing such inequality, we derive several sufficient criteria for
GES. Time delay limitations of continuous differential equations are relaxed.

The organization of this paper is as follows: Section 2 presents the preliminary knowledge. The
major findings are given in Section 3. In Section 4, the results of the simulation are presented, and
finally Section 5 draws a conclusion.

2. Preliminaries

The following notations will be used in this article. Let R (R+, R0
+) denote the set of (positive,

non-negative) real numbers, andZ (Z0) represents the set of positive (non-negative) integer numbers.
Denote Rn as an n-dimensional real space equipped with Euclidean norm ‖·‖. S(t+) and S(t−) stand for
the right limit and the left limit of S at instant t, respectively. For intervalJ ⊆ R, S ⊆ Rm (1 ≤ m ≤ n).
PC(J ,S) ={φ ∈ PC(J ,S): φ is continuous everywhere except at a finite number of points t where
φ(t+) and φ(t−) exist, and φ(t+) = φ(t)}. For given ρ > 0, PC

([
t0 − ρ, t0

]
,Rn

)
represents a class of

piecewise right continuous functions x :
[
t0 − ρ, t0

]
→ Rn, in which ‖x‖ρ , supt0−ρ≤t≤t0 ‖x(t)‖. Besides,

F > 0 (F < 0, F ≤ 0) indicates F is a positive (negative, semi) definite symmetric matrix. Let λmax(F)
and λmin(F) denote the maximum and minimum eigenvalue of matrix F, respectively. Let FT and F−1

be the transpose and inverse of the matrix F. Let In denote an n-dimensional identity matrix. Define
the notation • as the symmetric term of a symmetric matrix.

Consider the following class of uncertain time-delay systems:ṡ(t) = (A + ∆A)s(t) + (B + ∆B) f (s(t)) + (C + ∆C) f (s(t − ρ)) + H, t ≥ t0,

s(t̂) = %(t̂), t̂ ∈
[
t0 − ρ, t0

]
,

(2.1)

where s(t) is the state vector and right continuous, i.e., s(t) = s(t+), s(t) ∈ Rn; H is an external input;
A, B, and C ∈ Rn×n stand for the connection weight matrix and the delay connection weight matrix;
∆A, ∆B, and ∆C are the norm-bounded uncertainty terms, which satisfy ‖∆A‖ ≤ d1, ‖∆B‖ ≤ d2, and
‖∆C‖ ≤ d3, and furthermore d1, d2, d3 > 0; f (s(·)) denotes the activation function; ρ represents the
system delay; and % ∈ PC

([
t0 − ρ, t0

]
,Rn

)
indicates the initial state.

Refer to system (2.1) as the drive system. The response system is as follows:ψ̇(t) = (A + ∆A)ψ(t) + (B + ∆B) f (ψ(t)) + (C + ∆C) f (ψ(t − ρ)) + H, t , tk, t ≥ t0,

ψ(t̂) = ι(t̂), t̂ ∈
[
t0 − ρ, t0

]
,

(2.2)

where the impulses are driven by

ψ(t) = Mke(t − η(t)) + s(t), t = tk,
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where η(t) is the impulsive delay, and {tk} is the impulse sequence. ι ∈ PC
([

t0 − ρ, t0
]
,Rn

)
denotes the

initial state. Let the synchronization error be e(t) = ψ(t) − s(t). Thus, the uncertain time-delay error
system is as follows:ė(t) = (A + ∆A)e(t) + (B + ∆B)g(e(t)) + (C + ∆C)g(e(t − ρ)), t , tk, t ≥ t0,

e(t̂) = χ(t̂), t̂ ∈
[
t0 − ρ, t0

]
,

(2.3)

where the impulses are driven by

e(t) = Mke(t − η(t)), t = tk, (2.4)

where g(e(·)) = f (ψ(·)) − f (s(·)), χ(t̂) = ι(t̂) − %(t̂).

Remark 1. The impulsive system discussed here differs from that described using Schwartz-Sobolev
theory [38, 39]. While the impulsive control is the solution of several integral equations, the latter
is simplified as a the particular type of nonlinear Volterra integral equation. The paper expresses the
uncertain time-delay error system formally as a differential equation, whether system delay of the
continuous part or impulsive delay of the discrete part is included. Besides, the delay in the discrete
portion is a significant factor in synchronization of the overall uncertain time-delay systems in the
following analysis.

In the following, we present some assumptions and definitions.

Assumption 1. Suppose there exists a Lipschitz constant θi such that gi(·) ∈ R satisfies

|gi(ū) − gi(v̄)| ≤ θi |ū − v̄| , ∀ū, v̄ ∈ R,

with i = 1, 2, · · · , n and Θ = diag {θ1, θ2, · · · , θn}.

Assumption 2. The impulse sequence {tk, k ∈ Z+} satisfies t0 < t1 < · · · < tk, with tk → ∞ when
k → ∞, and such impulse time sequences are defined as ℘0. ℘ denotes the set of entire impulse time
sequences in ℘0 that satisfy the inequality η(tk) < tk − tk−1. Moreover, when ηk > 0, for k ∈ Z0 and ζ0 =

0, ℘η indicates the set of all impulse time sequences in ℘ that satisfy the inequality tk − η(tk) ≤ tk−1 + ζk.
Every impulse sequence presented in this paper belongs to ℘.

Definition 1. ( [40]) The response system (2.2) is globally exponentially synchronized with the drive
system (2.1) if there exist scalars D > 0 and γ > 0 satisfying

‖e(t)‖ ≤ D ‖ψ − %‖ρ exp(−γ(t − t0)), ∀t ≥ t0,

where ψ, % ∈ PC
([

t0 − ρ, t0
]
,Rn

)
.

Remark 2. This paper derives sufficient criteria of uncertain time-delay systems synchronization
through impulsive controllers {tk,Mk, η(t)}k∈Z+

, making the uncertain time-delay systems (2.1) and (2.2)
be GES under the flexible impulsive control (2.4). In comparison with impulsive control in [40–42], the
design of impulsive gain Mk and η(t) are more flexible in this article. By adjusting the two parameters
to satisfy synchronization criteria, this paper builds one flexible delayed impulsive control approach.

Definition 2. ( [43]) Suppose that there are scalars N0 > 0 and T∗ > 0 satisfying

t. − t.

T∗
− N0 ≤ N(t., t.) ≤

t. − t.

T∗
+N0,
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where N(t., t.) represent the number of impulses in the interval (t., t.). Then, N0 denotes the elasticity
number and T∗ is named AII.

Taking into account the impulsive delay η(t), there is a piecewise function of the following form:

σ(t) =


0, t ∈ [t0, t1) ,∑
ti∈Q(t0,t)

η(ti), t ∈ [tk, tk+1) ,

where Q(t0, t) stands for the impulse times {tk, k ∈ Z+} which occur at (t0, t).
Consider a new Razumikhin-type inequality under above definitions as follows:

D+V(t) ≤ γV(t), i f V(t − ρ) ≤ ΣV(t), t ∈ [tk−1, tk), (a)

V(tk) ≤ exp(−$(tk))V(tk − η(tk)), (b)

where k ∈ Z+, V ∈ PC(
[
t0 − ρ,+∞) ,R+), Σ = exp

{
hT∗(N0 + 1) +$∗(

ρ

T∗
+N0) + $̂0

}
≥ 1, and γ and

h are positive constants with γ < h.

Definition 3. ( [44]) There exist two positive scalars $∗ and $̂0 such that

$∗N(t., t.) − $̂0 ≤

N(t0,t.)∑
j=N(t0,t.)+1

$(t j) ≤ $∗N(t., t.) + $̂0, (2.5)

In the same way, we present a piecewise function related to $(t j):

ξ(t) =


0, t ∈ [t0, t1) ,∑
ti∈Q(t0,t)

$(ti), t ∈ [tk, tk+1) .

Remark 3. In order to better handle the influence of flexible impulsive gain, we develop a novel
Razumikhin-type inequality in terms of variable parameter $(t) relevant to impulsive gain Mk, see
synchronization condition MT

k PMk ≤ exp(−$k)P. Motivated by average delay impulsive control
in [45, 46], we propose a positive scalar $∗ in (2.5). Differing from the Razumikhin-type inequality
in the previous article, parameter $(t) in the presented inequality does not always need to be positive.
It is worth noting that we obtain the lower conservative upper bound of impulsive gain Mk when the
flexibility parameter $(t) < 0, which was considered to desynchronize systems in existing work, that
is have a negative impact on the systems. When the uncertain time-delay systems are driven by a
desynchronizing impulsive gain, the synchronization conditions presented are expected to maintain
GES.

Lemma 1. ( [47]) Given appropriately dimensional real matrices Z, ∆K and appropriately dimensional
real vectors r1, r2, ‖∆K‖ ≤ z, there exists a constant ε > 0 that satisfies

±2rT
1 Z(∆K)r2 ≤ εrT

1 ZT Zr1 +
z2

ε
rT

2 r2.

Lemma 2. ( [48]) Let Λ1 and Λ2 be two real matrices. There exists a positive number U and a matrix
E > 0 such that

ΛT
1 Λ2 + ΛT

2 Λ1 ≤ UΛT
1 EΛ1 +

1
U

ΛT
2 E−1Λ2.
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Lemma 3. ( [48]) (Schur Complement) Given

Q =

(
Q11 Q12

Q21 Q22

)
,

where QT
11 = Q11, QT

12 = Q21, and QT
22 = Q22, then if Q < 0, we can convert to one of the following

conditions:
(1) Q22 < 0 and Q11 − Q12Q−1

22 QT
12 < 0.

(2) Q11 < 0 and Q22 − QT
12Q−1

11 Q12 < 0.

3. Results

Lemma 4. Assume the function g(t) that satisfies inequalities (a) and (b), if there exists a scalar w ≥ 0
that satisfies

h0t − hσ(t) − ξ(t) ≤ w, ∀t ≥ t0, (3.1)

then the solution of inequalities (a) and (b) satisfy

g(t) ≤ exp(h(t − t0))ĝ(t0)Γk, ∀t ∈ [tk−1, tk), k ∈ Z+, (3.2)

over the class ℘, where h0 > h > γ > 0, ĝ(t0) = sup
{
g(t), t ∈

[
t0 − ρ, t0

]}
and Γk = exp(−ξ(t) − hσ(t)).

Furthermore, we take the notation D+ to describe the upper right-hand Dini derivative.

Proof. Let

G(t) =

g(t)exp(−h(t − tk−1)), t ∈ [tk−1, tk) , k ∈ Z+

g(t), t ∈
[
t0 − ρ, t0) .

(3.3)

Subsequently, we shall show that

G(t) ≤ Γkĝ(t0)exp(h(tk−1 − t0)). (3.4)

First, when k = 1, we will show that (3.4) is true, namely, G(t) ≤ ĝ(t0), t ∈ [t0, t1). Apparently,
G(t0) = g(t0) ≤ ĝ(t0). Provided that (3.4) was false for t̄0 ∈ (t0, t1), there exists t̄0 ∈ (t0, t1) to make
G(t) > ĝ(t0) hold. Let t̄0 = in f {t ∈ (t0, t1) : G(t) > ĝ(t0)}, G−(t̄0) will be called the left neighborhood of
t̄0, t̄∗0 ∈ G−(t̄0), and G−(t̄∗0) = ĝ(t0), then we find that G(t̄0) > ĝ(t0), G(t) < G(t̄0), ∀t ∈ (t0 − ρ, t̄0), and
D+G(t)|t=t̄0 ≥ 0.

Case 1. If t0 ≤ t̄0 − ρ ≤ t̄0, then G(t̄0 − ρ) < G(t̄0). It follows from (3.3) that g(t̄0 − ρ)exp(−h(t̄0 − ρ−

t0)) < g(t̄0)exp(−h(t̄0 − t0)), we can get g(t̄0 − ρ) < g(t̄0)exp(−hρ) < g(t̄0).
Case 2. If t̄0 − ρ < t0, then G(t̄0 − ρ) = g(t̄0 − ρ) < G(t̄0) = g(t̄0)exp(−h(t̄0 − t0)) < g(t̄0). Thus, we

obtain g(t̄0 − ρ) < g(t̄0) ≤ Σg(t̄0). Considering (a) and γ < h, one can receive

D+G(t)|t=t̄0 =
[
D+g(t)|t=t̄0 − hg(t̄0)

]
exp(−h(t̄0 − t0))

≤ (γ − h)g(t̄0)exp(−h(t̄0 − t0))
< 0,

which is a contradiction. Because t̄0 is not an impulsive instant, it follows from the concept of t̄0 that
D+G(t)|t=t̄0 < 0.
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Afterwards, we suppose that (3.4) is true for k ≤ L, L ∈ Z+, that is, G(t) ≤ ĝ(t0)Γkexp(h(tk−1 − t0)),
t ∈ [tk−1, tk). Thus, we need to illustrate that G(t) ≤ ĝ(t0)ΓL+1exp(h(tL − t0)) holds for t ∈ [tL, tL+1).

When t = tL, one has

G(tL) = g(tL) ≤ exp(−$L)g(tL − η(tL))
= exp(−$L)G(tL − η(tL))exp(h(tL − η(tL) − tL−1))
≤ exp(−$L)ĝ(t0)ΓLexp(h(tL−1 − t0))exp(h(tL − η(tL) − tL−1))
= ĝ(t0)ΓL+1exp(h(tL − t0)).

Provided that for t̄k ∈ (tL, tL+1), G(t) ≤ ĝ(t0)ΓL+1exp(h(tL − t0)) is wrong, so that there
is a constant t̄k ∈ (tL, tL+1) that satisfies G(t) > ĝ(t0)ΓL+1exp(h(tL − t0)). Let t̄k =

in f {t ∈ (tL, tL+1) : G(t) > ĝ(t0)ΓL+1exp(h(tL − t0))}, and G−(t̄k) will be called the left neighborhood of
t̄k, t̄∗k ∈ G−(t̄k) and G−(t̄k) = ĝ(t0)ΓL+1exp(h(tL − t0)), then we find that G(t̄k) > ĝ(t0)ΓL+1exp(h(tL − t0)),
G(t) < G(t̄k), ∀t ∈ (tL, t̄k), and D+G(t)|t=t̄k ≥ 0.

Case 1. If tL ≤ t̄k − ρ ≤ t̄k, then G(t̄k − ρ) < G(t̄k), and due to (3.3) we get g(t̄k − ρ) < g(t̄k)exp(−hρ).
Case 2. If tL−1 ≤ t̄k−ρ ≤ tL, then G(t̄k−ρ) = g(t̄k−ρ)exp(−h(t̄k−ρ− tL−1)) ≤ g(t̄0)ΓLexp(h(tL−1− t0)),

it leads to
G(t̄k − ρ) = g(t̄k − ρ)exp(−h(t̄k − ρ − tL−1))

≤ ĝ(t0)ΓLexp(h(tL−1 − t0))
= ĝ(t0)ΓL+1exp(h(tL−1 − t0))exp($L + hη(tL))
< G(t̄k)exp(h(tL−1 − tL))exp($L + hη(tL))
= g(t̄k)exp(−h(t̄k − tL))exp(h(tL−1 − tL) +$L + hη(tL))
= g(t̄k)exp(−h(t̄k − tL−1))exp($L + hη(tL)),

and we have g(t̄k − ρ) < g(t̄k)exp(−hρ +$L + hη(tL)), which together with η(tL) ≤ tL − tL−1, yields that
g(t̄k − ρ) < g(t̄k)exp(h(tL − tL−1) +$L).

Case 3. If t0 ≤ t̄k − ρ ≤ tL−1, suppose that t0 ≤ tK−1 ≤ t̄k − ρ < tK < · · · < tL < t̄k, where K < L,
K ∈ Z+. Therefore, G(t̄k − ρ) = g(t̄k − ρ)exp(−h(t̄k − ρ− tK−1)) ≤ ĝ(t0)ΓKexp(h(tK−1 − t0)), which leads
to

G(t̄k − ρ) = g(t̄k − ρ)exp(−h(t̄k − ρ − tK−1))
≤ ĝ(t0)ΓKexp(h(tK−1 − t0))

= ĝ(t0)ΓL+1exp(h(tL − t0))exp(h(tK−1 − tL))exp

 L∑
j=K

$ j + h
L∑

k=K

η(tk)


< G(t̄k)exp(h(tK−1 − tL))exp

 L∑
j=K

$ j + h
L∑

k=K

η(tk)


= g(t̄k)exp(−h(t̄k − tL))exp(h(tK−1 − tL))exp

 L∑
j=K

$ j + h
L∑

k=K

η(tk)


= g(t̄k)exp(−h(t̄k − tK−1))exp

 L∑
j=K

$ j + h
L∑

k=K

η(tk)

 ,
AIMS Mathematics Volume 9, Issue 10, 26538–26556.
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and we have g(t̄k − ρ) < g(t̄k)exp(−hρ)exp
(∑L

j=K $ j + h
∑L

k=K η(tk)
)
. On account of Assumption 2, one

can further obtain that

−hρ + h
L∑

k=K

η(tk) < −h(tL − tK) + h(η(tK) + η(tK+1) + · · · + η(tL−1) + η(tL))

≤ −h(tL − tK) − h(tK − tK−1 + tK+1 − tK + · · · + tL−1 − tL−2 + tL − tL−1)
≤ h(tL − tL−1).

Thus, g(t̄k − ρ) < g(t̄k)exp
(
h(tL − tL−1) +

∑L
j=K $ j

)
.

Case 4. If t̄k − ρ < t0, it yields that

G(t̄k − ρ) = g(t̄k − ρ) ≤ ĝ(t0)

= ĝ(t0)ΓL+1exp(h(tL − t0))exp(−h(tL − t0))exp

 L∑
j=1

$ j + h
L∑

k=1

η(tk)


< G(t̄k)exp(−h(tL − t0))exp

 L∑
j=1

$ j + h
L∑

k=1

η(tk)


< g(t̄k)exp(−h(t̄k − tL))exp(−h(tL − t0))exp

 L∑
j=1

$ j + h
L∑

k=1

η(tk)


= g(t̄k)exp(−h(t̄k − t0))exp

 L∑
j=1

$ j + h
L∑

k=1

η(tk)

 ,
hence, g(t̄k −ρ) < g(t̄k)exp(−h(t̄k − t0))exp

(∑L
j=1 $ j + h

∑L
k=1 η(tk)

)
. Due to tL < t̄k and η(tL) ≤ tL − tL−1,

we can further derive that

−h(t̄k − t0) + h
L∑

k=1

η(tk) < −h(tL − t0) + h(η(t1) + η(t2) + · · · + η(tL−1) + η(tL))

≤ −h(tL − t0) + h(t1 − t0 + t2 − t1 + · · · + tL−1 − tL−2 + tL − tL−1)
≤ h(tL − tL−1).

Then, we introduce that g(t̄k − ρ) < g(t̄k)exp
(
h(tL − tL−1) +

∑L
j=1 $ j

)
. Meanwhile, we have

g(t̄k − ρ) < g(t̄k)exp (h(tL − tL−1) + ξ(t) − ξ(t − ρ)) , t ∈ (tL, tL−1).

In the light of Definition 2 and (2.5), one has exp(h(tL − tL−1) + ξ(t) − ξ(t − ρ)) ≤

exp
(
hT∗(N0 + 1) +$∗( ρ

T∗
+N0) + $̂0

)
.

Consequently, all situations lead to

D+G(t)|t=t̄k =
[
D+g(t)|t=t̄k − hg(t̄k)

]
exp(−h(t̄k − t0))

≤ (γ − h)g(t̄k)exp(−h(t̄k − t0))
< 0,
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which is a contradiction. It implies that, G(t) ≤ ĝ(t0)Γkexp(h(tk−1 − t0)), ∀t ∈ [tk−1, tk), k ∈ Z+. This
completes the proof.

Remark 4. Note that the conversion from condition (3.1) to (3.5) is a sufficient criterion for GES
of uncertain time-delay systems (2.1) and (2.2). Furthermore, Corollary 2 is introduced to satisfy
criterion (3.1) (that is condition (3.5)) in practical implementations, which will be discussed later.
Subsequently, we derive Theorem 1 for the GES between uncertain time-delay systems (2.1) and (2.2)
as follows.

Theorem 1. Under Assumptions 1 and 2, if there are scalars w > 0 and h0 > h > 0 > γ, matrix
P > 0, diagonal matrices E1 > 0 and E2 > 0, and Q > 0 satisfies LQL ≤ P for every k ∈ Z+ with
MT

k PMk ≤ exp(−$k)P such that
hσ(t) + ξ(t) ≥ h0t − w, (3.5)

Π PB PC
• −E1 0
• • −E2

 ≤ 0, (3.6)

where Π = AT P+PA+(ε1 +ε2 +ε3)P2 +
d2

1
ε1

In +
d2

2
ε2

In +ΘE1Θ+(λ1 +λ2)ΣP−γP with Θ = {θ1, θ2, · · · , θn},

Σ = exp
{
hT∗(N0 + 1) +$∗(

ρ

T∗
+N0) + $̂0

}
, λ1 = λmax

(
ΘE2Θ

P

)
, and λ2 = λmax

(
d3Θ2

ε3

)
. Then uncertain

time-delay systems (2.1) and (2.2) can realize GES over the class ℘.

Proof. Let the Lyapunov function V(t) , V(e(t)) = eT (t)Pe(t), taking the derivative along the trajectory
of error system (2.3), and we have

D+V(t) =2eT (t)Pe(t)

=
[
(A + ∆A)e(t) + (B + ∆B)g(e(t)) + (C + ∆C)g(e(t − ρ))

]T Pe(t)
+ eT (t)P

[
(A + ∆A)e(t) + (B + ∆B)g(e(t)) + (C + ∆C)g(e(t − ρ))

]
=e(t)T

[
AT P + PA

]
e(t) + e(t)T

[
(∆AT )P + P(∆A)

]
e(t) + gT (e(t))BT Pe(t) + e(t)T PBg(e(t))

+ gT (e(t))(∆B)T Pe(t) + e(t)T P(∆B)g(e(t))
+ gT (e(t − ρ))CT Pe(t) + e(t)T PCg(e(t − ρ))
+ gT (e(t − ρ))(∆C)T Pe(t) + e(t)T P(∆C)g(e(t − ρ)).

(3.7)
If V(t − ρ) ≤ ΣV(t), namely, eT (t − ρ)Pe(t − ρ) ≤ ΣeT (t)Pe(t), then by utilizing Assumption 1 and
Lemmas 1 and 2, we have

e(t)T
[
(∆AT )P + P(∆A)

]
e(t) ≤ ε1e(t)T P2e(t) +

d2
1

ε1
e(t)T e(t), (3.8)

gT (e(t))BT Pe(t) + e(t)T PBg(e(t)) ≤ gT (e(t))E1g(e(t)) + e(t)T PBE−1
1 BT Pe(t)

≤ e(t)T
[
ΘE1Θ + PBE−1

1 BT P
]

e(t),
(3.9)

gT (e(t))(∆B)T Pe(t) + e(t)T P(∆B)g(e(t)) ≤ ε2e(t)T P2e(t) +
1
ε1

gT (e(t))(∆B)T (∆B)g(e(t))

≤ e(t)T

[
ε2P2 +

d2
2

ε2
Θ2

]
e(t),

(3.10)
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gT (e(t − ρ))CT Pe(t) + e(t)T PCg(e(t − ρ)) ≤ gT (e(t − ρ))E2g(e(t − ρ)) + e(t)T PCE−1
2 CT Pe(t)

≤ eT (t − ρ)ΘE2Θe(t − ρ) + e(t)T PCE−1
2 CT Pe(t)

≤ λmax

(
ΘE2Θ

P

)
eT (t − ρ)Pe(t − ρ) + e(t)T PCE−1

2 CT Pe(t)

≤ e(t)T
[
λ1PΣ + PCE−1

2 CT P
]

e(t),
(3.11)

gT (e(t − ρ))(∆C)T Pe(t) + e(t)T P(∆C)g(e(t − ρ)) ≤ ε3e(t)T P2e(t) +
d2

3

ε1
eT (t − ρ)Θ2e(t − ρ)

≤ ε3e(t)T P2e(t) + λ2eT (t − ρ)Pe(t − ρ)

≤ e(t)T
[
ε3P2 + λ2ΣP

]
e(t).

(3.12)

It follows from Lemma 3, condition (3.6), and inequalities (3.7)–(3.12) that

D+V(t) ≤e(t)T

[
AT P + PA + (ε1 + ε2 + ε3)P2 +

d2
1

ε1
In +

d2
2

ε2
In + ΘE1Θ + (λ1 + λ2)ΣP

]
e(t)

+ e(t)T
[
PBE−1

1 BT P + PCE−1
2 CT P

]
e(t)

≤he(t)T Pe(t).

For the uncertain time-delay error system (2.3), when t = tk, k ∈ Z+, one can get

V(tk) ≤ eT (tk − η(tk))MT
k PMke(tk − η(tk))

≤ exp(−$k)V(tk − η(tk)).

Utilizing Lemma 4 and condition (3.5) leads to

V(t) ≤ exp(w − h0t0) sup
s∈[−ρ,0]

V(χ(s))exp(h − h0)(t − t0).

Furthermore, we have
‖e(t)‖ ≤ D ‖X‖ρ exp(−γ(t − t0)), ∀t ≥ 0,

where D =
√

exp(w − h0t0)λmax(P)/λmin(P), γ = 1
2 (h0 − h) > 0. Hence, the uncertain time-delay

systems (2.1) and (2.2) can reach the GES over the class ℘. The proof is completed.

Corollary 1. If there are numbers h0 > h > 0, matrix P > 0, diagonal matrices E1 > 0 and E2 > 0,
and Q > 0 satisfies LQL ≤ P for every k ∈ Z+ with MT

k PMk ≤ exp(−($∗ + 2$̂0)), conditions (3.5)
and (3.6) hold. Then, uncertain time-delay systems (2.1) and (2.2) can achieve GES over the class ℘.

Proof. According to (2.5), when tk ∈ ℘, it follows that

(k − 1)$∗ − $̂0 ≤

k−1∑
j=1

$ j ≤ (k − 1)$∗ + $̂0,

and

k$∗ − $̂0 ≤

k∑
j=1

$ j ≤ k$∗ + $̂0.
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Further, we have

$k =

k∑
j=1

$ j −

k−1∑
j=1

$ j

≤ (k$∗ + $̂0) − ((k − 1)$∗ − $̂0)
≤ $∗ + 2$̂0.

When t = tk, it yields that
V(tk) ≤ eT (tk − η(tk))MT

k PMke(tk − η(tk))
≤ exp(−$∗ − 2$̂0)V(tk − η(tk))
≤ exp(−$k)V(tk − η(tk)).

Employing Theorem 1, we prove the statement.

Corollary 2. Over the class ℘η, the uncertain time-delay systems (2.1) and (2.2) can reach GES, if
there exist t0 = 0, h0 > h > 0, 0 < η(tk) ≤ η̄, ζk > 0, 0 < µ < 1,

0 ≤
ζk

tk − tk−1
≤ µ, k ∈ Z+, (3.13)

and $∗ satisfies
$∗ ≥ h0T∗ − (1 − µ)hT∗. (3.14)

Proof. Since tk − η(tk) ≤ tk−1 + ζk, k ∈ Z+, it yields that

σk =

N(0,t)∑
k=1

η(tk)

≥ tk −

N(0,t)∑
k=1

ζk

≥ (1 − µ)tk

≥ (1 − µ)t − η̄.

(3.15)

It follows from (2.4) and (2.5) that

ξk =

N(0,t)∑
k=1

$(tk)

≥ $∗N − $̂0

≥ h0NT∗ − h(1 − µ)NT∗ − $̂0.

(3.16)

Thereby, we get

hσ(t) + ξ(t) ≥ h(1 − µ)t − hη̄ + h0NT∗ − h(1 − µ)NT∗ − $̂0, (3.17)

which, combined with Definition 2 and (N −N0)T∗ ≤ t ≤ (N +N0)T∗, can yield

hσ(t) + ξ(t) ≥ h(1 − µ)(N −N0)T∗ − hη̄ + h0NT∗ − h(1 − µ)NT∗ − $̂0

≥ h0NT∗ − h(1 − µ)N0T∗ − hη̄ − $̂0

≥ h0(t − N0T∗) − h(1 − µ)N0T∗ − hη̄ − $̂0

≥ h0t − w,

(3.18)
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where w = (h0 + h − µh)N0T∗ + hη̄ + $0, ∀N0 > 0. Therefore, h0t − hσ(t) − ξ(t) ≤ w, ∀t ≥ 0, which
proves the statement.

Remark 5. It can be found that Theorem 1, criteria (3.6), and MT
k PMk ≤ exp(−$k)P are too

complex to be tested in practical applications. Hence, we propose Corollaries 1 and 2. We can
find that the Constraints of MT

k PMk ≤ exp(−$k)P will keep changing as $(tk) is updated. In
order to tackle this issue, a fixed upper bound is proposed to make all variable impulsive gains meet
MT

k PMk ≤ exp(−$k)P in Corollary 1. Corollary 2 gives an expressive relation between $∗ and T∗,
which guarantees condition (3.6) completely. We can have a reasonable estimate of $∗ and $(t) once
the impulsive interval has been identified. According to MT

k PMk ≤ exp(−$k)P, the uncertain time-
delay systems (2.1) and (2.2) can realize GES under the suitable impulsive gain Mk. Meanwhile,
there are no restrictions for $(t). If $(t) < 0, the discrete or continuous part is not synchronized.
Nevertheless, in order to fulfill condition (3.4) for $∗, we only allow limited desynchronizing jumps
in impulsive sequences.

Remark 6. Compared with (see [44]), the uncertain time-delay systems we are discussing not only
have uncertainties, but also includes both delayed and non-delayed terms at the same time. Therefore,
the situation studied in this paper covers the situation of (see [44]), and the results obtained are more
comprehensive. Compared with (see [30, 31]), the impulsive gain considered in this paper is more
flexible. Even if the uncertain time-delay systems suffers from unstable impulses, the synchronization
can be guaranteed by adjusting the impulsive gain, which has not been well reflected in the previous
results.

4. Illustrative examples

In this section, two examples are provided to confirm the validity of the theoretical results.

Example 1. Consider the uncertain time-delay error system as follows:

ė(t) = (A + ∆A)e(t) + (B + ∆B)g(e(t)) + (C + ∆C)g(e(t − ρ)), t , tk, t ≥ t0,

e(t) = Mke(t − η(t)), t = tk,
(4.1)

where ρ = 0.2, f (e(t)) = tanh(e(t)), the initial value e(t) = 3 and A = 0.4, B = 0.2, C = 0.2,
∆A = 0.01cos(t), ∆B = 0.01cos(t), and ∆C = 0.01cos(t), and {tk} ∈ ℘. Suppose tk = 0.5k and the
impulsive delay η(tk) < 0.5. We then have following situations: Situation 1: $(t) = 0.3, η(tk) = 0;
Situation 2: $(t) = 0.3, η(tk) = 0.48; Situation 3: $(t) = −0.1, η(tk) = 0.48. Then, Figure 1 shows
simulation results.
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Figure 1. State trajectories of system (4.1) with initial value e(t)=3.

Remark 7. It is shown that impulsive delay has a positive effect on synchronization of the uncertain
time-delay systems (2.1) and (2.2) from comparison of Situation 1 and Situation 2. At the same time,
we can also find that $(t) = −0.1 can produce desynchronizing gains when comparing Situation 2 with
Situation 3.

Furthermore, assume system (4.1) is regularly disturbed by desynchronizing gain every 0.25s. Thus,
when tk = 0.25k, we select

$(t) =

 − 0.1, t = t2k−1,

0.3, t = t2k.

Recalling the sufficient criteria of Theorem 1, one has Mk =
√

exp(−$(t)) and η(tk) = 0.21, and
simulation results can be found in Figure 2.

Remark 8. We choose a given value of impulsive interval at the same intervals to more accurately
describe the relation between impulsive gain and impulsive delay. The state trajectory of system (4.1)
is shown by the blue curve in Figure 2. It is clear that the synchronous result becomes out
of synchronization under desynchronizing impulsive gain (yellow curve). However, the uncertain
time-delay systems (2.1) and (2.2) return to GES by changing the flexible parameter of impulsive
gain and adjusting delay, see Figure 2 (red curve). From Figure 3, it follows that impulsive gain
adjustment (blue curve) for synchronization is superior to time delay adjustment (red curve). This
means the adjustment of impulsive gain plays an important role in synchronization. Higher robustness
of systems synchronization can be achieved by varying impulsive gain in the variable impulsive
controller.
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Figure 2. State trajectories under impulsive control with impulsive interference.
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Figure 3. State trajectories under flexible impulsive gain and flexible time-delay.

Example 2. Consider a special case of the same chaotic systems. When transmission delay ρ = 0, the
value of ∆A, ∆B, and ∆C are 0, respectively, the drive system is as follows:

s(t) = As(t) + U(s(t)), (4.2)
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where s = (s1, s2, s3)T ∈ R3 and
−α − αm1 −α 0

1 −1 1
0 −β 0

 , U(s(t)) =


u1(s1(t))

0
0

 ,
with U1(s1(t)) = 0.5α(m0 − m1)(|s1(t) + 1| − |s1(t) − 1|). The control input of corresponding response
system can be described as K(t) = Mke(t − η(t)) − e(t). Hence, the response system model isψ̇(t) = Aψ(t), t , tk,

∆ψ(t̄) = K(t), t = tk.
(4.3)

The state of synchronization is given by e(t) = ψ(t) − s(t). Then, we give the error system as:ė(t) = Aψ(t) + Ū(e(t)), t , tk,

∆e(t) = Mke(t − η(t)), t = tk,
(4.4)

where Ū(e(t)) = U(ψ(t)) − U(s(t)) = (u1(ψ1(t)) − u1(s1(t)), 0, 0)T and

|u1(ψ1(t)) − u1(s1(t))| = |0.5α(m0 − m1)| · |(|ψ1(t) + 1| − |ψ1(t) − 1|) − (|s1(t) + 1| − |s1(t) − 1|)|
≤ α |(m0 − m1)| · |ψ1(t) − s1(t)| ,

(4.5)

when parameters are setted as α = 9.2156, β = 15.9946, m0 = −1.24905, m1 = −0.75735, s =

(1.2,−0.8,−2.2)T , and ψ = (0.2, 0.2, 0.1)T , the error system is illustrated in Figure 4.
Under the situation, impulse sequences satisfy tk = 2k. Let us consider sampling delay as η(tk) =

1.98. Based on Corollary 2, $∗ ≥ h0T∗−(1−µ)hT∗. Assume the system experiences a desynchronizing
impulse D1 = −0.3I at time t1. Recalling Corollary 1 and (3.6), choose Dk = 0.4I, k , 1.

Figure 4 shows the error variable |e(t)| = |e1(t)| + |e2(t)| + |e3(t)|. It is evident that the adjustment of
impulsive gain is an effective way for ensuring synchronization.
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Figure 4. Synchronization error trajectories of Example 2.
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5. Conclusions

In this paper, the synchronization problem of uncertain time-delay systems is investigated by
delayed impulsive control. Especially, a novel Razumikhin-type inequality was developed. In
combination with this inequality, we derive some sufficient conditions for GES. This paper shows that
delays in impulsive control are helpful for synchronization. Then, for a desynchronizing impulsive
gain, we can also find if the size of the delay in the impulsive interval is adequately large, then
the desynchronizing impulsive gain does not break synchronization under the conditions we present.
Moreover, uncertain time-delay systems can achieve synchronization through combining impulsive
delay and impulsive gain. Especially, there has been a relaxation of $(t). Note that flexible impulsive
delays have the upper bound, that is, η(tk) ≤ tk − tk−1. Future work will aim at extending the presented
results to the impulsive delays over impulsive intervals.
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