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Abstract: In the literature, finite mixture models were described as linear combinations of probability

distribution functions having the form f (x) = Λ
n∑

i=1

wi fi(x), x ∈ R, where wi were positive weights,

Λ was a suitable normalising constant, and fi(x) were given probability density functions. The fact
that f (x) is a probability density function followed naturally in this setting. Our question was: if we
removed the sign condition on the coefficients wi, how could we ensure that the resulting function was
a probability density function?
The solution that we proposed employed an algorithm which allowed us to determine all zero-crossings
of the function f (x). Consequently, we determined, for any specified set of weights, whether the
resulting function possesses no such zero-crossings, thus confirming its status as a probability density
function.
In this paper, we constructed such an algorithm which was based on the definition of a suitable
sequence of functions and that we called a generalized Budan-Fourier sequence; furthermore, we
offered theoretical insights into the functioning of the algorithm and illustrated its efficacy through
various examples and applications. Special emphasis was placed on generalized Gaussian mixture
densities.
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1. Introduction

The first instance of a finite mixture probabilistic model goes back to the work of Pearson [27],
where a two-component normal mixture was used to fit a dataset of the body lengths of crabs from
the Bay of Naples. Since then, such models have been applied to various problems in statistical
descriptions; for a survey of these applications, we refer, for instance, to [14, 24, 34]. The analysis of
neural networks with response functions of this form-without constraints on the sign of the coefficients-
goes back at least to [26] where finite Gaussian mixtures are studied. Recent applications to cluster
analysis [13] and unsupervised machine learning problems [3, 4] are also worth mentioning. A recent
survey of mixture-type filters and fusion approaches in the context of Bayesian filtering can be found
in [23]. Although this paper focuses solely on univariate distributions, the applications of finite mixture
models naturally extend to the multivariate case.

We consider a broader definition of finite mixture models beyond Gaussian mixtures, encompassing
functions of the form

f (x) = ℜ

 n∑
i=1

pi(x)eqi(x)

 , x ∈ I, (1)

where ℜ(z) denotes the real part of the complex number z, and {pi(x), i = 1, . . . , n} and {qi(x), i =
1, . . . , n} are given complex-valued polynomials on an interval I ⊂ R which may be finite, semi-
infinite (such as I = R+ : = {x ≥ 0}), or infinite (I = R). For example, consider a mixture of Erlang
distributions fi(x) = xmi−1e−λi x, x ∈ [0,∞), which leads to the distribution

f (x) = Λ
n∑

i=1

wixmi−1e−λi x, x ∈ [0,∞), λi > 0, i = 1, . . . , n (2)

for a suitable normalizing constant Λ, where either λi+1 > λi, or λi+1 = λi and mi+1 > mi. If the
coefficients wi are positive, then f is a probability density function (pdf).

Suppose that the Erlang mixture in (2) has the additional property that the scale parameters are the
same for all the terms: λi = λ. Then, the problem of proving that f is a pdf reduces to the study of

the positivity of the polynomial p(x) =
n∑

i=1

wixmi−1. This is a classical problem in the mathematical

literature and can be approached in several ways.
For polynomials, there are at least three possible approaches. The first one is to use the fact that a

nonnegative polynomial q on the real line can be written as a product q = ϕϕ∗, where ϕ is a complex-
valued polynomial. The technique used to get ϕ from q is called spectral factorization. It could be
used in the present example by taking q(z) = p(z2), accounting for the fact that p is defined on the non-
negative half-line only. More generally, spectral factorization and related techniques can be applied to
ascertain the nonnegativity of generalized mixtures of rational densities such as Cauchy densities and
Student-t densities with odd degrees of freedom; see, e.g., [18]. The second method is to use the well-
known Sturm chain method to determine the number of zeros of a polynomial on a given interval. This
method applies the Euclidean algorithm for polynomials in various ways. The third approach is the so-
called Budan-Fourier (BF) approach, which does not require the application of the Euclidean algorithm
(nor spectral factorization). For the first two methods, there do not seem to be useful generalizations
to the classes of functions that we are interested in here.
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Therefore, we focus here on the BF approach for polynomials introduced in [16]; see also [8, 15].
The idea underlying this approach is that there exists a stepwise constant, and nonincreasing function
Vp(x), taking integer values, with Vp(−∞) = κ : = deg(p) and Vp(∞) = 0, such that the jump points
of Vp(x) correspond to the virtual roots (which include the real roots of p) of p. The BF theorem
states that the number of real roots of p in the interval (a, b] (counted with multiplicity) is at most
Vp(b) − Vp(a), and the defect is an even integer.

The BF approach is based on a finite sequence of functions, the BF sequence.
In the original BF approach to polynomials, this sequence is the sequence of higher-order

derivatives; in [8], fff -derivatives are used, extending the range of application of the result. It is
important to note that the BF sequence can not only be used to determine an upper bound for the number
of real roots in an interval but, by repeatedly using a bisection method, can actually be used to find
all the sign-changing zeros (i.e., zero crossings) of a polynomial on a given interval (a, b]. However,
in general, if a function is not a polynomial, the sequence of nontrivial higher-order derivatives is not
finite, and the method cannot be applied. In our approach, the sequence of higher-order derivatives is
replaced by a finite sequence that we will call a generalized sequence (GBF sequence).

In Section 2.1 we present in detail the functioning of the GBF algorithm once a GBF sequence
is available. This method was initially proposed in [17], where a GBF sequence for exponential-
polynomial-trigonometric (EPT) functions was first constructed. The purpose of the GBF algorithm is
to systematically compute all the sign-changing roots of a given function within a finite interval.

In Section 2.3 we present in detail a methodology for constructing a GBF sequence for the linear
span of a finite collection of functions, and we explain the conditions under which the methodology is
successful. We provide an application to EPT functions in Section 3. Next, Section 4 and Section 5
are devoted to the analysis of Gaussian mixtures. There, we construct a GBF sequence for the general

framework of Gaussian mixtures with polynomial coefficients for the first time, f (x) =
n∑

j=1

p j(x) eq j(x),

where {q j(x)} are second-order polynomials with real coefficients and negative leading term and {p j(x)}
are a priori arbitrary polynomials. The GBF algorithm can check whether such a function f has no
zero-crossings and, hence, constitutes a pdf after scaling to ensure that the integral over the real line
is one. We provide a simple, yet completely explicit, example of a polynomial Gaussian mixture
depending on a parameter, and show that the behavior of the mixture may vary significantly depending
on the values of this parameter.

Next, Section 5 is devoted to the special case of finite Gaussian mixtures f (x) =
∑n

j=1 γ j eq j(x).
These particular densities, where the weights γ j are usually taken to be nonnegative, have become very
popular in several fields (such as speech recognition and image analysis [31, 38]), primarily because,
in many cases, data is multimodal, i.e., the underlying population is already a combination of different
subpopulations. In such applications, it makes intuitive sense to model multimodal data as a mixture
of unimodal Gaussian distributions to best approximate the original distribution. There is interest
in generalizing the class by allowing some of the weights to be negative while keeping the overall
density nonnegative (see, e.g., [19, 22, 25, 39]). Modeling with finite Gaussian mixtures retains many
of the theoretical and computational benefits of Gaussian models, making them practical for efficiently
modeling very large datasets. For example, the sum of a random variable with a Gaussian mixture
distribution and an independent Gaussian random variable is again distributed as a Gaussian mixture,
with a natural shift in the parameters.
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In addition to the properties mentioned above, there is an approximation theorem [26] which proves
that finite Gaussian mixtures can approximate “arbitrary” probability distribution functions well, at
least for large enough N, where N is the size of the mixture, and a good spread of means and variances,
once one allows for coefficients of arbitrary sign. To summarize, although finite Gaussian mixtures are
commonly represented in the literature as a linear combination of Gaussian pdfs with positive weights,
where this assumption automatically ensures that the resulting Gaussian mixture does not have any
sign-changing zeros along the x-axis, to take full advantage of this class of distributions, it seems
necessary to extend the study to mixtures with coefficients of arbitrary sign. A stumbling block to
their use may have been the need to certify the nonnegativity of the resulting density functions. The
main aim of this paper is to provide an algorithm that can deliver that certification by determining the
number of zero-crossings of the density function: if there are none and the function is normalized to
integrate to one, then a probability function is obtained.

In Section 5, we also present a software tool [5], designed to work in Matlab, that allows the
investigation of the number of zero-crossings in a finite Gaussian mixture. In particular, given a finite
Gaussian mixture (specified by the means, variances, and mixing coefficients), the software returns
a maximal interval where the sign-changing roots may appear—an interval that is always bounded.
Further, if these roots exist, the software identifies them within a desired accuracy level. As a result,
the algorithm will enable us to identify those cases in which the mixture is nonnegative on the real line.

One of our motivations for developing a unified procedure for finding sign-changing zeros in
generalized mixtures of densities stems from the potential limitations of standard root-finder algorithms
in locating the zeros of such functions. Although the numerical search for zeros of arbitrary functions
is a mature field, it appears that the approximations on which many algorithms are based often fail to
provide complete precision, primarily but not limited to the tails of the function. In appendix B.3, we
shall compare our method with standard numerical tools available in the literature, particularly with the
Chebfun software in Matlab. As we shall see in the examples in appendix B.3, there are cases where
the use of Chebfun does not correctly identify mixtures as pdfs, usually due to the presence of several
spurious zeros in the tails of the distribution.

Finally, Section 6 presents an application of our results to the study of the Wasserstein-1 distance
between probability mixtures. In particular, we show that knowledge of the zeros of the difference
between the cumulative probability distribution functions (CDFs), obtained using GBF sequences, is a
necessary tool in computing the distance. To produce the relevant GBF sequence, we discuss separately
the cases of EPT functions and Gaussian mixtures.

2. Presentation of the basic building blocks of the approach

For any sufficiently often differentiable function f : R → R we denote by D f (x) the first order
derivative in x, and generically D the derivative operator; similarly, D j f (x) is the j-th order derivative,
for j ∈ N and D j is the correspondent operator.
For any (real- or complex-valued) square matrix A, |A| is the determinant of A.

2.1. Generalized BF algorithm

Let I be a given interval and f . 0 a function on I. Suppose that f is real analytic and, hence, the
set of zeros of f is discrete and has finite cardinality on any closed and bounded subinterval [a, b] of
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I. We are interested in the sign changing zeros of f , i.e., points x0 such that f (x0) = 0 and for which
there exists an open neighborhood (x0 − ϵ, x0 + ϵ) ⊂ I, ϵ > 0 such that for all y, z in this neighborhood
with y < x0 < z, it holds that f (y) · f (z) < 0. Here, we will present a method to determine all
sign-changing zeros on a given closed and bounded interval [a, b]. We shall denote by R( f , [a, b]) the
set of sign-changing zeros of f on the interval [a, b]. Note that for any given point, so also for the
points a and b, we can determine whether it is a sign-changing zero of f by inspection. Therefore,
we can focus on determining the sign-changing zero in the open interval (a, b). An open interval is
called a simple interval for a function f if it contains at most one sign-changing root of f (possibly
of multiplicity greater than 1). A simple grid for f on the interval [a, b] is a finite sequence of points
G = {x1 < · · · < xn} ⊂ I such that (a, x1), (xn, b), and (xi, xi+1), i = 1, 2, . . . , n− 1 are all simple intervals
for f .

Remark 2.1. The set of sign-changing zeros for the first derivative, R( f ′, [a, b]), is a simple grid for
the function f .

Definition 2.2. Let f be a real analytic function on the interval [a, b]. A sequence of functions {ψi, i =
0, . . . , n} is called a GBF sequence associated to f and a sequence of functions {ϱi, i = 1, . . . , n} is
called the associated sequence of pivots if the following properties are satisfied:

1. ψ0 = f ;
2. ψi and ϱi are quotients of real analytic functions on [a, b] for each i = 1, . . . , n;
3. ψn is the zero function;
4. For each k = 1, 2, . . . , n, D

(
ψk−1
ϱk

)
=

ψk
ϱk

for every value of x for which both sides are defined.

In the case f (x) is a polynomial of degree n − 1, the BF sequence is given by setting, for any
i = 1, . . . , n, ϱi = 1, and ψi = f (i). Then, as noted above, a simple grid for ψi−1 is given by the set
of sign-changing zeros of ψi. Moreover, the n-th derivative of f (x) is the zero function. However,
this same procedure does not work even for simple analytical functions, such as, for instance, f (x) =
sin(x) + x cos(x).

Remark 2.3. In practical applications, the pivots are functions for which the real zeros and poles can
be determined independently. This is the case, for example, for polynomials.

Remark 2.4. We shall use repeatedly in the sequel the following observation. Let G = {x1, . . . , xn}

be a simple grid for a function f on the interval [a, b], given by the sign-changing roots of a function
h. Then, the same grid is a simple grid for the function λ · f , where λ is a continuous, nonvanishing
function on (a, b) \ G.

Remark 2.5. Note that if a simple interval (c, d) for a function f is given, then by inspecting the signs
of f at c and d (actually the signs of f (c + ϵ) and f (d − ϵ) for sufficiently small positive ϵ to be more
precise), one can determine whether f has a sign-changing zero in the open interval and, if so, one
can determine the sign-changing zero with arbitrary precision using a bisection algorithm.

Remark 2.6. Suppose the pivot functions are such that we can independently determine their zeros
and poles. Then, from the definition:

D
(
ψn−1

ϱn

)
=
ψn

ϱn
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and since by assumption ψn ≡ 0, it follows that ψn−1 is a multiple of ϱn, and, hence, ψn−1 inherits the
poles and zeros of ϱn.
For any k, once one knows the poles as well as the sign-changing zeros of ψk, one can form a grid
containing those poles and sign-changing zeros as well as all the zeros and poles of ϱk. It then follows
that the grid is a simple grid for ψk−1. The reason is that for any interval in between two consecutive
grid points, both the sign of ϱk and that of ψk do not change and the functions ψk−1

ϱk
and ψk

ϱk
are well-

defined as they have no poles. Therefore, ψk−1
ϱk

is monotonic on such an interval and, hence, ψk−1 has at
most one sign-changing zero (and no poles) on such an interval.

Therefore, using the previous remark, one can determine all the sign-changing zeros of ψn−1 (if they
exist) using a bisection procedure, and by repeating this procedure for k = n − 2, n − 3, . . . , 1, one can
determine all the sign-changing zeros of f .

2.2. Practical applications and theoretical limitations

In the recent paper [6], the problem of determining zeros of EPT functions (referred to as
exponential polynomials in that paper) is examined from the perspective of "computable analysis"
(see, e.g., [7, 37] and the references therein). A key issue relevant to the present work is the
determination of the zero points. In our algorithm, these points are obtained by bisection or similar
root isolation methods, effectively as limits of some sequence, which means that, in practice, we work
with approximations of these limits. Our algorithm requires determining the sign of a function at
points known only through numerical approximations. If the function’s sign is positive or negative
at such a point, the correct sign can be recovered by using a sufficiently accurate approximation,
assuming continuity. However, if the function’s value is zero, it may be impossible to determine
this without additional information (see, e.g., [6] for approaches to overcoming this issue under strong
assumptions, including an unproven conjecture). While we do not believe this poses a significant
obstacle for our algorithm, it would be interesting to investigate how the implementation could be
made entirely rigorous, accounting for precision levels, round-off errors, and similar factors.

(i) In our algorithm, we work with simple intervals – intervals in which the function has at most one
zero-crossing (i.e., sign-changing zero). If the function is zero at an endpoint, say b, a zero-crossing
within the open interval cannot be ruled out, but a bisection procedure will either be able to identify it
or will give a (very) small interval [b−ϵ, b], ϵ > 0 small, that may contain a zero-crossing. The number
ϵ can be made arbitrarily small by sufficiently extending the bisection process. If a zero-crossing is
identified, its location is added to the grid. In cases of apparent non-sign-changing zeros, one might
argue that they should be added to the grid, as they could indicate nearby, undetected zero-crossings.
However, if such zero-crossings exist, they would be extremely close to each other, likely resulting in
the function having the same sign at these points in the next GBF sequence (assuming nonzero values).
Therefore, omitting this pair from consideration is unlikely to cause issues.

(ii) Suppose we are interested in demonstrating that a function f0, with integral equal to one, is
nonnegative, and hence a pdf, using the GBF algorithm. If the function is positive except at some point
x0 where it is zero, the GBF algorithm will identify the point x0. However, as discussed above, it is
not possible to guarantee, based solely on computational outcomes, that the function is nonnegative.
In such a case, it may be safest to refrain from declaring the function nonnegative without further
information. However, if our set contains a pdf p that is positive everywhere on the domain, we can
consider the mapping λ 7→ f0+λp

1+λ , which maps λ ∈ [−ε, ε], 0 < ε < 1, to the function fλ. By selecting
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ε large enough such that f−ε has a demonstrably negative value at x0 while fε has a demonstrably
positive value at x0, we can use bisection on λ (via the GBF algorithm) to find the value λ∗ for which
fλ∗ is on the boundary of the set of pdfs. If f0 is indeed nonnegative and satisfies f0(x0) = 0 as assumed,
then λ∗ = 0. In any case, fλ∗ will be a nonnegative pdf on the boundary of the set of pdfs. In actual
implementation, λ∗ is likely to be very small, and for theoretical purposes, one could replace f0 by fλ∗
to ensure a valid pdf.

In conclusion, it is important to emphasize the distinction between the theoretical algorithm, where
we assume the ability to perfectly identify the limits of convergent sequences, and the implementation
of the algorithm using a computer. We have included results from such implementations in later
sections to demonstrate how the algorithm works, but we are aware that further improvements in
implementation are possible, especially to handle exceptional cases, such as non-sign-changing zeros
of high multiplicity.

2.3. Pivot functions and the construction of a GBF sequence

In this subsection, we outline a strategy to generate a sequence of pivots and hence at a GBF
sequence for a given function, without delving into the specifics for the time being. These details will
be dealt with for several classes of functions in the following sections. Suppose that f is a function in
the linear span V of n linearly independent real analytic functions {h1, . . . , hn}. Let us assume (and in
the sequel we shall discuss when this assumption actually holds) that there exists an n−th order linear
differential operator Φ such that

Φ(h j) = 0 j = 1, . . . , n.

Then, by linearity, it holds that Φ( f ) = 0 as well.
Assume we can factorize Φ into first-order linear differential operators,

Φ = Φn ◦ · · · ◦ Φ1,

where for any j we have Φ j( f ) = D f + b j f for some function b j, for f ∈ V . Then, we can associate
with this a growing sequence of subspaces of V , namely,

V1 = Ker(Φ1),
V2 = Ker(Φ2 ◦ Φ1),
. . .

Vn = Ker(Φn ◦ · · · ◦ Φ1) = Ker(Φ).

Claim 2.7. Under certain regularity conditions there will exist a basis {h̃1, . . . , h̃n} of V =

span(h1, . . . , hn) such that

V1 = span(h̃1), V2 = span(h̃1, h̃2), . . . Vn = V = span(h̃1, . . . , h̃n).

Notice that when j ≤ k, one has

Φk ◦ · · · ◦ Φ1(h̃ j) = 0.
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Now, we set

ϱ1 = h̃1, ϱ2 = Φ1(h̃2), . . . ϱk = Φk−1 ◦ · · · ◦ Φ1(h̃k), . . . ϱn = Φn−1 ◦ · · · ◦ Φ1(h̃n).

We claim that under certain regularity conditions, {ϱ1, . . . , ϱn} can play the role of the sequence of pivot
functions in Definition 2.2.

Now, since f ∈ V , there exists a representation of f in terms of the basis {h̃1, . . . , h̃n},

f =
n∑

j=1

f jh̃ j, f j ∈ R, j = 1, 2, . . . , n.

Then,

Φ1( f ) =
n∑

j=2

f jΦ1(h̃ j),

Φ2 ◦ Φ1( f ) =
n∑

j=3

f jΦ2 ◦ Φ1(h̃ j),

...

Φk ◦ ... ◦ Φ1( f ) =
n∑

j=k+1

f jΦk ◦ ... ◦ Φ1(h̃ j)

...

Φn−2 ◦ ... ◦ Φ1( f ) =
n∑

j=n−1

f jΦn−2 ◦ ... ◦ Φ1(h̃ j)

Φn−1 ◦ ... ◦ Φ1( f ) = fnΦn−1 ◦ ... ◦ Φ1(h̃n)

Φn ◦ ... ◦ Φ1( f ) =0.

We notice that for each k = 1, 2, . . . , n, we haveΦk(ϱk) = 0 by construction and, therefore, bk =
−Dϱk
ϱk
.

However, that means that for each function g ∈ V , one has

Φk(g) = ϱk D
(

g
ϱk

)
, k = 1, . . . , n (3)

which implies, in particular,

Φk ◦ · · · ◦ Φ1( f ) = ϱkD
(
ϱk−1

ϱk
D

(
ϱk−2

ϱk−1
. . .

(
ϱ1

ϱ2
D

(
f
ϱ1

))))
, k = 1, 2, . . . , n (4)

and that, if ϱ1, ϱ2, . . . , ϱn can indeed act as the sequence of pivots, the corresponding GBF sequence for
f is given by ψ0 = f and

ψk = Φk ◦ Φk−1 ◦ . . . ◦ Φ1( f ), k = 1, . . . , n. (5)

In the next subsection, we shall use the Polya-Ristroph formula to obtain such a sequence of
operators {Φ j, j = 1, . . . , n} explicitly and show that we can actually do that in such a way that
h j = h̃ j, j = 1, . . . , n.
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2.4. A formula by Polya and Ristroph

We will make use of a classical formula by G. Polya [28] and results from R. Ristroph [30], which
state the following.

Let {hi} be a finite sequence of real, linearly independent real analytic functions on a given open
interval I. Let, for m ∈ N,

Wm(x) = W(h1, . . . , hm)(x) =

∣∣∣∣∣∣∣∣∣∣∣
h1 h2 . . . hm

Dh1 Dh2 . . . Dhm

. . . . . .

Dm−1h1 Dm−1h2 . . . Dm−1hm

∣∣∣∣∣∣∣∣∣∣∣ (x)

be the Wronskian defined on I. We set W0(x) = 1 and we notice that W1(h1) = h1 and W2(h1, h2) =
h1(Dh2) − (Dh1)h2. Denote, for any real analytic function f ,

Km( f ) =
W(h1, . . . , hm, f )
W(h1, . . . , hm)

. (6)

Then, f 7→ Km( f ) is the unique monic1 m-th order linear differential operator for which {hi, i = 1, . . .m}
is a fundamental set.

Remark 2.8. We introduce the following expansion for the differential operator Km:

Km( f ) =
m∑

j=0

am, jD j f , am,m = 1 (7)

(the dependence on x is suppressed for notational simplicity).
We remark that for 0 ≤ j ≤ m − 1, am, j is the quotient of two real analytic functions and its poles

are therefore the zeros of the denominator and, hence, of Wm(x). Since further (cf. Polya’s paper [28])

DWm(x) = −am,m−1(x)Wm(x),

it follows that whenever Wm(x) does not vanish inside I, the representation

Wm(x) = exp
(
−

∫ x

x0

am,m−1(z) dz
)

Wm(x0) (8)

holds for any x, x0 ∈ I.

Remark 2.9. The following expression of the differential operator Km( f ) is proved in [28] by a direct
computation involving the derivative of the Wronskian, and in [30] via a direct argument based on
induction:

Km( f ) = Wm
Wm−1

D
(

W2
m−1

WmWm−2
D

(
W2

m−2
Wm−1Wm−3

. . .D
(

W2
2

W3W1
D

(
W2

1
W2

D
(

f
W1

))
. . .

)
(9)

In particular, for m = 2 we obtain

K2( f ) = W2
W1

D
(

W2
1

W2
D

(
f

W1

))
. (10)

Note that (9) and (10) hold for all x for which none of the denominators involved are zero.
1i.e., with leading coefficient equal to 1
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From equation (9), it follows that in case the Wronskians W j, j = 1, . . . , n are functions for which
the zeros can be obtained independently (e.g., if they are the (real) zeros of polynomials), then the
quotients ϱk := Wk

Wk−1
, k = 1, 2, . . . , n, where W0 ≡ 1 by convention, can play the role of the sequence of

pivots and then Km( f ), m = 1, 2, . . . , n is the associated GBF sequence in case f lies in the linear span
of {h1, . . . , hn}.

In the following four sections, we will use the general framework presented here to develop pivot
sequences and corresponding GBF sequences for a number of classes of functions and explain how
these can be used to obtain all the sign-changing zeros of a given function on a given closed interval
[a, b]. It will also be explained how for some cases it is possible to extend the results to obtain all
sign-changing zeros on the real line.

3. Analysis of the class of EPT functions

Consider a function f : [0,∞)→ R of the form (1). We say that f is a real EPT function if

f (x) = ℜ

 m∑
k=1

pk(x)eµk x

 , x ≥ 0, (11)

where m ≥ 1, µk ∈ C, and pk(x) are complex-valued polynomials, for k = 1, . . . ,m. We shall denote
by B the set of real EPT functions. Let us state a few alternative characterizations, that may be useful
in the sequel; see, for instance, [33].

Lemma 3.1. f ∈ B if, and only if, any of the following equivalent characterizations hold:

1. there exist a real ñ × ñ matrix A, a real ñ-dimensional column vector b, and a real ñ-dimensional
row vector c such that f (x) = ceAxb.
If n is the minimal possible choice for ñ, given f ∈ B, then we say that (A, b, c) is a minimal
realization of f and n is the order (or McMillan degree) of the function f .

2. the Laplace transform of f is a strictly proper rational function.
3. f is the solution of a linear differential equation with constant coefficients (Euler-D’Alembert

class).

This last result indicates that there exists a linear differential operator p(D) such that p(D) f = 0.
The associated polynomial p(x) has degree deg(p) ≥ n, and if we search for such an operator p(D)
having minimal degree we obtain deg(p) = n (n is the McMillan degree). If we search for a minimal
degree, monic polynomial, we have the uniqueness of p(D) and the representation

p(x) = |xI − A| ,

where A is the matrix from a minimal realization (A, b, c) of f .
Since p(x) is a real polynomial of degree n, it can be factorized into linear and quadratic real factors

p(x) = p1(x)p2(x) . . . pa+b(x), (12)

where p1, . . . , pa are linear factors pi = x − λi, and pa+1, . . . , pa+b are irreducible quadratic factors
pa+i(x) = x2 − 2θi + ρ

2
i , with θ2

i < ρ
2
i ,

2, and a + 2b = n.

2The roots of pa+i are θi ± i
√
ρ2

i − θ
2
i , which can be written as ρie±i arccos(θi/ρi)
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3.1. GBF sequence for EPT functions

Now, we construct a GBF sequence associated with an EPT function with minimal realization
f (x) = ceAxb. We know that p(D) f (x) = 0 for p(x) = |xI − A|. We start by setting ψ0 = f .

Let p1(x) be the first factor of p(x), as constructed in (12), and assume that p1(x) = x−λ1 is a linear
factor. We set h1(x) = eλ1 x, so that p1(D)h1 = 0. Define

ψ1(x) = p1(D)ψ0(x) = h1D
(
ψ0

h1

)
.

Then, since h1(x) > 0 definitely, it follows that on any interval on which ψ1 does not change sign, then
h−1

1 ψ0 is monotonic, hence the interval will be a simple interval for ψ0. Therefore, the set R(ψ1, [a, b])
of sign-changing zeros for ψ1 defines a simple grid for ψ0. We proceed recursively for any i = 1, . . . , a
(a being the number of linear factors in p(x)), thus constructing a sequence {ψ0, ψ1, . . . , ψa}, where
ψi = pi(D)ψi−1 =

(∏i
j=1 p j(D)

)
ψ0.

Now let us consider pa+1(x), that is, the first irreducible quadratic polynomial in the factorization
of p(x). It seems natural to associate to this term two elements of the GBF sequence. In order to
explain the procedure, recall that pa+1(x) = x2 − 2θa+1x + ρ2

a+1 with θ2
a+1 < ρ2

a+1. Let further ψa(x) =(∏a
j=1 p j(D)

)
ψ0 be the last element of the GBF sequence constructed before.

Consider the fundamental set

h1(x) = exθa+1 sin
(
x
√
ρ2

a+1 − θ
2
a+1

)
, h2(x) = exθa+1 cos

(
x
√
ρ2

a+1 − θ
2
a+1

)
,

associated with the operator pa+1(D).
Recall, from formula (10) that

pa+1(D)ψa(x) = D2ψa(x) − 2θa+1Dψa(x) + ρ2
a+1ψa(x) =

W2

W1
D

(
W2

1

W2
D

(
ψa

W1

))
with W1(x) = h1(x), W2(x) =

∣∣∣∣∣∣h1(x) h2(x)
h′1(x) h′2(x)

∣∣∣∣∣∣.
We can compute W2 by taking into account formula (8): since a2,1 = −2θa+1, we obtain W2(x) =

e2(x−x0)θa+1W2(x0) = ce2xθa+1 for some nonzero constant c.
We define 3

ψa+1 =c
W2

1

W2
D

(
ψa

W1

)
= sin2

(
x
√
ρ2

a+1 − θ
2
a+1

)
D

 ψa

exθa+1 sin
(
x
√
ρ2

a+1 − θ
2
a+1

)
 ,

ψa+2 =
W2

cW1
Dψa+1 =

1

e−xθa+1 sin
(
x
√
ρ2

a+1 − θ
2
a+1

)Dψa+1.

Note that from

ψa+1(x)

sin2
(
x
√
ρ2

a+1 − θ
2
a+1

) = D

 ψa(x)

exθa+1 sin
(
x
√
ρ2

a+1 − θ
2
a+1

)


3One can also define ψa+1 = W1D
(
ψa
W1

)
and ψa+2 =

W2
W1

D
(
ψa+1

W1
W2

)
but the choices made in the text are a bit simpler.
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it follows that if we join the set of zeros of the function sin
(
x
√
ρ2

a+1 − θ
2
a+1

)
with the set of sign-

changing zeros of ψa+1, we will get a simple grid for ψa, from which the sign-changing zeros of ψa can
be deduced by a bracketing procedure.

Moreover, since again

ψa+2 =
W2

cW1
Dψa+1,

it follows that a simple grid for ψa+1 is given by the sign-changing zeros of ψa+2 and the zeros of the

function sin
(
x
√
ρ2

a+1 − θ
2
a+1

)
. Finally, we remark that

ψa+2(x) = pa+1(D)ψa(x).

Note that this implies that ψa+2 has no poles as ψa is real analytic.
Continuing on this way, we obtain a sequence of functions ψa+1, . . . , ψn(x). Notice that n = a + 2b

and

ψn(x) =
b∏

j=1

pa+ j(D)
a∏

i=1

pi(D) f = p(D) f = 0

and {ψ j, j = 0, . . . , n} forms a GBF sequence for f .

Remark 3.2. In [17], this GBF sequence was constructed without a good understanding of why this
works. Here, the link between the factorization of linear differential operators into first-order linear
differential operators and the fundamental solutions of linear differential operators is made for the first
time.

Remark 3.3. An application of this algorithm to monitor the positivity of linear combinations of
exponential functions can, for instance, be found in [1].

4. Analysis of Polynomial-Gaussian mixtures

In this section, we consider functions of the form

f (x) = ℜ

 n∑
j=1

p j(x)eq j(x)

 , (13)

where we assume that
q j are real second-order polynomials. (14)

In this case, with no loss of generality, we can also assume that the polynomials p j are real-valued as
well and we denote h j(x) = p j(x)eq j(x) for j = 1, . . . , n, and also that the functions {h j(x), j = 1, . . . , n}
are linearly independent. We write

f (x) =
n∑

j=1

p j(x)eq j(x) =

n∑
j=1

h j(x). (15)

We will call functions of this type Polynomial-Gaussian mixtures (PGMs). Note that they can also be
viewed as mixtures of Hermite functions.
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4.1. GBF sequence for PGMs

For arbitrary m ≤ n, let us consider the Wronskian determinant Wm. Notice that, given a function
h j, its derivatives of all orders are of the same form:

Dkh j(x) = p j,k(x)eq j(x)

where p j,k(x) is a polynomial whose coefficients can be explicitly computed. Since

W(h1, . . . , hm) =

∣∣∣∣∣∣∣∣∣∣∣
h1 h2 . . . hm

Dh1 Dh2 . . . Dhm

. . . . . .

Dm−1h1 Dm−1h2 . . . Dm−1hm

∣∣∣∣∣∣∣∣∣∣∣
it follows that the Wronskian Wm has the form

Wm(x) = Pm(x)e
∑m

j=1 q j(x)

where Pm is a polynomial and Pm . 0. As we can determine all the zeros of a polynomial within the
interval [a, b] (e.g., using the BF method, the Sturm chain method, etc.), the Polya-Ristroph formula
gives us a GBF sequence:

ψ0 = f =
n∑

j=1

p j(x)eq j(x) ψ1 = W1D
(
ψ0

W1

)
ψ2 =

W2

W1
D

(
W1

W2
ψ1

)
. . .

. . . ψn =
Wn

Wn−1
D

(
Wn−1

Wn
ψn−1

) (16)

Notice that W j

W j+1
=

P j

P j+1
eq j+1 and its inverse W j+1

W j
are rational functions times an exponential of which

we can determine all the zeros and poles. Further, ψn ≡ 0 as f is a solution to the linear differential
equation

W(h1, . . . , hn, f )
W(h1, . . . , hn)

= 0.

So, indeed ψ0 = f , ψ1, . . . , ψn ≡ 0 is a GBF sequence for f .

4.2. An alternate approach

Although the above method is mathematically elegant, it requires the computation of high-order
derivatives and the determinants of large matrices, which can make it seem quite elaborate and
difficult to grasp at first glance. To address this, we propose an alternative, more intuitive approach
for constructing the same GBF sequence, offering the reader a clearer structural framework for
understanding the problem. As demonstrated below, this approach is based on an iterative procedure
that only requires the computation of first-order derivatives at each step, rather than Wronskians of
arbitrary order.
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However, it is important to note that this iterative method involves multiple computations of
polynomial quotients, and properly addressing the detection of common factors is crucial. This is
known to be a challenging problem, especially when exact computation is not used. One potential
solution is to compute symbolic expressions of the polynomials, extract common factors, and store
the results in a database. These results could then be adapted to different implementations by simply
substituting the symbolic values of the coefficients with numerical ones. Unfortunately, this approach
was found to be computationally infeasible for larger values of n due to the limitations of symbolic
polynomial division.

Therefore, we opted to implement the computation in Section 5 using the GBF sequence with the
Wronskians approach. Nevertheless, the alternative method is theoretically sound and provides a clear
perspective on the mechanism underlying the construction of the GBF sequence, as we will illustrate
in the example provided in appendix B.1. Recall the representation in (15):

f (x) =
n∑

j=1

p j(x)eq j(x) =

n∑
j=1

h j(x).

We write ψ1 in the following form:

ψ1(x) = h1(x)D
(

f (x)
h1(x)

)
= h1(x)

n∑
j=2

D
(

h j(x)
h1(x)

)
=

n∑
j=2

(
h′j(x) − h j(x)

h′1(x)
h1(x)

)
︸                    ︷︷                    ︸

h1; j

A simple grid for ψ0 = f is given by the zeros and the poles of ψ1 and those of h1 (i.e., those of p1). It
shall be noticed that the functions h1; j(x) have a peculiar form

h1; j(x) = r1; j(x)eq j(x),

where r1; j(x) is a rational function whose poles correspond to (a subset of) the zeros of h1.
Since we are interested in the construction of a GBF sequence, we write

ψ2(x) = h1;2(x)D
(
ψ1(x)
h1;2(x)

)
.

A direct computation shows that this function coincides with the second term in the GBF sequence
defined before. Therefore, just as before, a simple grid for ψ1 is given by the zeros and the poles of
ψ2 and those of r1;2 (the rational factor of h1;2). However, this new formulation shows that while ψ1 is
defined by the sum of n − 1 terms, now ψ2 is given by the sum of n − 2 terms, that is, with a consistent
notation:

ψ2(x) =
n∑

j=3

(
h′1; j(x) − h1; j(x)

h′1;2(x)

h1;2(x)

)
=

n∑
j=3

h2; j(x).

therefore, the procedure finishes in n steps, like before. We can identify the pivot functions as ϱ1 = h1

and ϱk = hk−1;k, k = 2, . . . , n. A worked-out example of this procedure is given in appendix B.1.

AIMS Mathematics Volume 9, Issue 10, 26499–26537.



26513

5. Analysis of the class of Gaussian mixtures with arbitrary coefficients

In this section, we use the Polya-Ristroph formula to construct a GBF sequence for finite Gaussian
mixtures having coefficients of arbitrary sign

f (x) =
n∑

k=1

γkhk(x) x ∈ R (17)

where n is given, and

i) hk(x) = eqk(x) where qk(x) is a second degree, nonpositive polynomial qk(x) = −
1

2σ2
k

(x− µk)2 with

µk ∈ R, σ
2
k > 0 for all 1 ≤ k ≤ n;

ii) for all 1 ≤ k ≤ n, γk ∈ R satisfies
n∑

k=1

σkγk =
1
√

2π
.

By definition, a function of the form (17) is a pdf provided that

iii) f (x) ≥ 0 ∀ x ∈ R.

We shall refer to functions of the form (17) as finite Gaussian mixtures (see, e.g., [24] and the
discussion in Section 1 for an introduction to their properties and main applications in the literature).

Remark 5.1. Recall that for the standard Gaussian density, we define the Hermite polynomials as

H0(x) = 1, Hn(x) = (−1)nex2/2Dne−x2/2, n = 1, 2, . . . .

Then, for q(x) = 1
2σ2 (x − µ)2, it holds

Dne−q(x) =
(−1)n

σn e−q(x)Hn

( x − µ
σ

)
.

Let us denote

Pn(x) =
(−1)n

σn Hn

( x − µ
σ

)
.

Then, we know that Pn(x) is a polynomial of degree n that satisfies the recurrence relation

Pn+1(x) = −
x − µ
σ2 Pn(x) + DPn(x).

With no loss of generality, we assume that hi , h j ∀ i , j since any mixture can be traced back to
this case. Notice that for any given hk(x), its derivatives of all orders are of the form

Dmhk(x) = Pm,k(x)hk(x)

where Pm,k is the generalized m-th degree Hermite polynomial with coefficients µk and σ2
k:

Pm,k(x) =
(−1)m

σm
k

Hm

(
x − µk

σk

)
, m = 1, 2, . . . .
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Since they play an important rôle in the sequel, we introduce the linear functions

ϕk(x) = Dqk(x) = P1,k(x) =
µk − x
σ2

k

, k = 1, . . . , n, (18)

so, for instance, the recurrence relation reads

Pm+1,k = (ϕk + D) Pm,k(x), m = 0, 1, . . . , k = 1, . . . , n.

We can further express the m-th order Wronskian for the sequence {h j}
n
j=1 as

W(h1, . . . , hm) =

 m∏
j=1

e−q j


∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
P1,1 P1,2 . . . P1,m

. . . . . .

Pm−1,1 Pm−1,2 . . . Pm−1,m

∣∣∣∣∣∣∣∣∣∣∣ .
For any j ≥ 1 and for any sequence of increasing integers i1, . . . , i j, we introduce the polynomial

Q j−1
i1,...,i j

=

∣∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

P1,i1 P1,i2 . . . P1,i j

. . . . . .

P j−1,i1 P j−1,i2 . . . P j−1,i j

∣∣∣∣∣∣∣∣∣∣∣ (19)

(and, in particular, Q0
k = 1 for any k ≥ 1) so that

W(h1, . . . , hm) =

 m∏
j=1

e−q j

 Qm−1
1,...,m. (20)

Theorem 5.2. The following relations hold:

Q1
j,k = ϕk − ϕ j, 1 ≤ j ≤ k ≤ n (21)

and
Q j

1,..., j,kQ j−2
1,..., j−1 = Q j−1

1,..., j

[
ϕk − ϕ j

]
Q j−1

1,..., j−1,k + Q j−1
1,..., j DxQ j−1

1,..., j−1,k − Q j−1
1,..., j−1,k DxQ j−1

1,..., j (22)

for 2 ≤ j < k ≤ n.

The proof of this result is given in appendix A.2 for the sake of clarity of exposition. Next, we
can use the above relations to determine a different formulation of the sequence of Wronskians of
the problem, which involves recursively defined polynomials, rather than computing derivatives of
eventually high orders, which we present in the following result.

Theorem 5.3. Let f (x) =
n∑

k=1

γkhk(x) be a finite Gaussian mixture. Then, the GBF sequence obtained

using the Polya-Ristroph formula can be rewritten as

ψ j(x) =


f (x) j = 0

n∑
k= j+1

λk

Q j
1,..., j,k

Q j−1
1,..., j

hk(x) ∀ 1 ≤ j < n.
(23)
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The proof of this result is given in the appendix A.3.

Remark 5.4. The dilemma of choosing one option over another when constructing the GBF sequence
naturally arises for computational purposes. Indeed, while opting for computing the Wronskians
may result in high-order derivatives and large matrices, it would also offer a cleaner and more
direct definition of the objects involved in the GBF sequence construction process. On the other
hand, although the polynomial recursive approach may seem faster since it involves only first-order
derivatives, it should be noted that it entails hidden recursive dependencies as it requires polynomial
division.

In the next subsection, we will outline the main steps of the implemented algorithm, which
computes the GBF sequence following the Wronskians approach. This choice is made to avoid
multiple executions of polynomial divisions, which lead to long execution times if performed with
symbolic coefficients and incorrect detection of common factors in the case of numerical coefficients.
Additionally, it is based on the availability in the literature of a fast algorithm for symbolic determinant
computation using Gaussian elimination procedure [21].

For completeness, we also computed the Wronskians using symbolic expressions and stored them
in a database (see [5]) for dimensions ranging from 2 to 16. This was done to provide the reader with
ready-to-use general results, hoping to inspire future research in finding simpler recursive structures
for GBF sequences.

5.1. Implementation

We have developed a software in Matlab aimed at providing readers with a hands-on tool to
investigate how the GBF approach works in practice. The tool is freely available [5].

The algorithm takes the following parameters as inputs: the number of Gaussians involved in
the mixture, their means, variances, the mixing coefficients, and the desired accuracy level for the
searching-roots algorithm. It is important to note that the procedure does not require a bounded
interval to test the mixture because such an interval is computed internally. Therefore, a searching-
roots problem on the real line is reduced to a constrained searching-roots procedure on a bounded
interval. As outputs, the software returns the location of any sign-changing roots and the bounded
interval in which they are contained.

If the software returns no sign-changing zeros for the Gaussian mixture f (x), and f (x) is positive at
least at one point, then it is nonnegative everywhere and defines a proper pdf.

Technical aspects and execution time

To further reduce computational time, the classical bisection method is replaced by Ridders’ method
which proves to be more efficient in searching-roots problems [29]. Execution times (in secs) are
displayed in Table 1. They were computed by running 100 simulations for each dimension spanning
from 2 to 12 where the parameters were chosen as follows:

• the means were randomly picked in [-10, 10];
• the variances were randomly picked in [0.1, 1];
• the mixing coefficients were randomly picked in [-1, 1];
• the accuracy level was set equal to 2.2204−16.
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n nsim min median average max % time GBF
sequence

2 100 0.23 0.60 0.77 1.55 28.92
3 100 0.43 1.16 1.20 3.98 29.17
4 100 0.83 2.79 2.69 5.74 28.26
5 100 1.49 5.83 5.92 11.14 25.82
6 100 5.06 10.85 11.35 29.91 24.23
7 100 7.96 22.73 22.12 38.28 23.95
8 100 21.20 42.15 42.88 62.92 37.16
9 100 50.44 91.45 91.25 183.57 36.52
10 100 111.18 177.90 177.68 256.83 49.26
11 100 338.22 473.11 486.49 922.00 68.32
12 100 1260.00 1466.10 1533.40 2371.40 79.03

Table 1. Analysis of execution times for dimensions spanning from n = 2 to n = 12.

Furthermore, average execution times for higher dimensions were estimated by fitting available data
by a function of the kind aebx + cedx (a = 0.4517, b = 0.5572, c = 3.61e − 05, d = 1.441) with the
Matlab function fit. The results are shown in Figure 1.

Figure 1. Fitted curve for average execution times up to n = 20.

As we can observe from the plot, average execution times tend to significantly increase from n = 16,
reaching values in the range of 107 secs for n = 20. The increased execution time is due to the heavier
computation of the GBF sequences using the Wronskian approach - as long as to the available hardware
- as we can observe from the last column of Table 1 showing the percentage of time employed in the
construction of the GBF sequence. Furthermore, percentage data highlights the interplay between the
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two main building blocks of the algorithm, namely, the construction of the GBF sequence and the
searching-root procedure, along different dimensions. In fact, we can observe that for 2 ≤ n ≤ 4, the
percentage time dedicated to the construction of the GBF sequence stabilizes around 28 − 29%, while
it decreases around 24 − 26% for 5 ≤ n ≤ 7 before reaching higher values spanning from 36% to 79%
for 8 ≤ n ≤ 12. Therefore, at least at present, we suggest that applications that require high execution
times rely on computing systems with large computational power.

5.2. Some remarks on rotation-invariant generalized Gaussian mixtures

Note that if we have a mixture f (x) of Gaussians with mean zero, then we can (easily) find a
function g on the nonnegative half line such that f (x) = g(x2). Note that g is a sum of exponentials,
so it is an element of the family of EPT functions. Therefore, one can check nonnegativity using
the GBF method for EPT functions described earlier. This actually generalizes to higher dimensional
rotation-invariant Gaussian mixtures. A Gaussian density function f on Rn is rotation invariant with
respect to the origin if f (x) = f (Qx) for any orthogonal matrix Q. This implies that one can write f
as f (x) = g(∥x∥) for an appropriately chosen function g. Actually, g is an exponential function. One
can check the nonnegativity of any generalized mixture

∑n
i=1 αi fi of such rotation-invariant Gaussians

fi, i = 1, 2, . . . , n, say, by checking whether the corresponding EPT function
∑n

i=1 αigi is nonnegative,
where gi chosen such that fi(x) = gi(∥x∥) holds for each i = 1, 2, . . . , n.

Note further that if X ∈ R2 is a bivariate, rotation-invariant Gaussian random variable, the random
variable R2, where R = ∥X∥, is actually exponential; then, if we have a mixture of bivariate Gaussians
that are rotation-invariant with respect to the origin, it will correspond to a mixture of exponential
densities if we proceed as above. This would open up the methods for calibrating such signed mixtures
of exponentials to data, as described in [32], to bivariate rotation-invariant Gaussian mixtures.

6. Wasserstein distance

In this section, we aim to present a different application where our algorithm can be useful since, as
we shall see below, the computation of the Wasserstein distance between two Gaussian mixtures can be
reduced to a simple sum, once we know the position of the zeros of the difference of the corresponding
CDFs. We are not interested in discussing the topic of Wasserstein distance in general, and we refer to
the existing literature for further discussion, see, e.g., [2]. In order to fix the notation, we start with a
few definitions. We let S ⊂ Rn denote a general domain, endowed with the Euclidean distance. Below,
we usually consider S = R.

Definition 6.1. Let Mp(S ) be the space of all probability measures µ on S with finite p-th moment for
some x0 ∈ S : ∫

S
|x − x0|

p µ(dx) < +∞.

Then, the Wasserstein-p distance between two probability measures µ and ν in Mp(S ) is defined as

Wp(µ, ν) =
(
inf
γ

∫
S×S
|x − y|p γ(dx, dy)

)1/p

,

where the infimum is taken among all two-dimensional measures γ with marginals µ and ν, respectively.
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It is proved in [11, Theorem 20.1] that in the particular case when p = 1, we obtain

W1(µ, ν) = sup
{∫

φ d(µ − ν) | φ : S → R 1 − Lipschitz
}
.

An alternate form of the W1 distance was given by Dall’Aglio [9]:4

W1(µ, ν) =
∫ 1

0

∣∣∣F−1(u) −G−1(u)
∣∣∣ du, (24)

where F and G are the CDFs for µ and ν, respectively, and F−1, G−1 denote the quantile functions of µ
and ν, respectively. For the sake of completeness, we recall the definition below.

Remark 6.2. Let us recall the definition of generalized inverse (compare [12]) for a distribution
function F (also called the quantile function of F). F−1 : [0, 1]→ R̄ = [−∞,+∞] is defined by

F−1(u) = inf {x ∈ R : F(x) ≥ u} , u ∈ [0, 1],

with the convention that inf ∅ = +∞. By this definition, the 0-quantile of F is always F−1(0) = −∞.

For our purposes, the following result is the best way to treat the distance between one-dimensional
distributions. Assume that the laws µ and ν have CDFs F and G, respectively. Then the following
result is classical [11, 36].

Theorem 6.3. The Wasserstein-1 distance between µ and ν in M1(R) (see Definition 6.1) is equal to
the L1-distance between the corresponding CDFs F and G:

W1(µ, ν) =
∫
R

|F(x) −G(x)| dx. (25)

The above formula is well-defined in M1(R); for completeness (and since it seems a little tricky) we
prove it below.

Lemma 6.4. Assume that µ and ν belong to M1(R). Then, w(x) = F(x)−G(x) is absolutely integrable.

Proof. We write

W1(µ, ν) =
∫ 0

−∞

|F(x) −G(x)| dx +
∫ +∞

0
|(1 − F(x)) − (1 −G(x))| dx

≤

∫ 0

−∞

{|F(x)| + |G(x)|} dx +
∫ +∞

0
{|1 − F(x)| + |1 −G(x)|} dx.

It is sufficient to prove that the following quantity is finite for arbitrary µ:∫ 0

−∞

F(x) dx +
∫ +∞

0
(1 − F(x)) dx =

∫ 0

−∞

∫ x

−∞

µ(dy) dx +
∫ +∞

0

∫ ∞

x
µ(dy) dx

=

∫ 0

−∞

∫ 0

y
dx µ(dy) +

∫ +∞

0

∫ y

0
dx µ(dy) =

∫ 0

−∞

|y| µ(dy) +
∫ +∞

0
|y| µ(dy) = Eµ[|y|]

and the last quantity is finite by assumption. □
4notice that we do not make any assumption on the form of the distribution
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In the following result, we propose an analog of Markov-Chebyshev’s inequality for CDFs. Here,
we need to impose the existence of a finite p-moment, p > 1, for the pdf.

Lemma 6.5. Let X be an absolutely continuous random variable with pdf f (x), such that the finite
p-moment exists for some p > 1. Then, for any L > 0:∫ ∞

L
(1 − F(x)) dx ≤

1
p − 1

E[|X|p]
Lp−1 . (26)

Proof. We may compute∫ ∞

L

∫ ∞

x
f (y) dy dx ≤

∫ ∞

L

∫ ∞

x

|y|p

xp f (y) dy dx ≤
∫ ∞

L
x−p

(∫ ∞

−∞

|y|p f (y) dy
)

dx =
1

p − 1
1

Lp−1E[|X|p]

as required. □

A similar computation gives a bound for the integral on the interval (−∞,−L) for the distribution
function F(x). We can therefore apply this inequality to the difference w(x).

Lemma 6.6. Let X, Y be random variables with pdfs f (x), g(x) and distribution functions F(x) and
G(x), respectively, such that their finite p-moments exist for some p > 1. Then, there exists a constant
C, depending on p and the p-th moments of X and Y, such that∫

R\[−L,L]
|w(x)| dx ≤ C

1
Lp−1 (27)

where w(x) = F(x) −G(x)

Proof. On the one hand, it is sufficient to compute∫ ∞

L
|w(x)| dx =

∫ +∞

L
|(1 − F(x)) − (1 −G(x))| dx ≤

1
p − 1

E[|X|p + |Y |p]
Lp−1

Since a similar bound holds in the negative semi-axes, the thesis follows. □

6.1. An algorithm for the computation of Wasserstein-1 distance for EPT functions

How to compute the quantity in (25)? Our approach will be to consider the difference w(x) =
F(x) −G(x) and the sign-changing zeros of w(x). A nice feature of EPT functions is that they form an
algebra; moreover, the cumulative density function F(x) of an EPT pdf f (x) = ceAxb is again an EPT
function, with CDF F(x) = 1 + cA−1eAxb. It follows that for EPT functions F and G, the difference
w(x) is an EPT function as well.

Remark 6.7. Notice that an EPT function, defined in (11), is an entire function, hence all zeros of w
are isolated and w is a continuous function. In particular, on any interval [a, b], there will be at most
finitely many sign-changing zeros.

Let us assume that there are at most a finite number of sign-changing zeros of w, say ξ1, . . . , ξn, on
the whole positive half-line, and that these have been identified using the GBF method. We use the
convention ξ0 = 0 and ξn+1 = +∞. Then, we can compute∫ ∞

0
|F(x) −G(x)| dx =

n∑
j=0

∫ ξ j+1

ξ j

(F(x) −G(x)) sgn (F(x) −G(x)) dx.
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On each of the intervals (ξ j, ξ j+1), the sign is constant so it can be taken out of the integral. Further,
integrals of the form ∫ ξ j+1

ξ j

(F(x) −G(x)) dx

can be calculated explicitly in the class of EPT functions. In fact, we have∫ ξ j+1

ξ j

(F(x) −G(x)) dx = c1A−2
1

(
eA1ξ j+1 − eA1ξ j

)
b1 − c2A−2

2

(
eA2ξ j+1 − eA2ξ j

)
b2.

Since A1 as well as A2 are continuous-time asymptotically stable, meaning that their spectra satisfy
σ(Ai) ⊂ {z ∈ C : ℜ(z) < 0}, it follows that∫ ξn+1=+∞

ξn

(F(x) −G(x)) dx = −c1A−2
1 eA1ξnb1 + c2A−2

2 eA2ξnb2.

So, we obtain the following formula for the Wasserstein-1 distance between µ and ν:

W(µ, ν) =
n−1∑
j=0

∣∣∣∣c1A−2
1

(
eA1ξ j+1 − eA1ξ j

)
b1 − c2A−2

2

(
eA2ξ j+1 − eA2ξ j

)
b2

∣∣∣∣
+

∣∣∣c1A−2
1 eA1ξnb1 − c2A−2

2 eA2ξnb2

∣∣∣ , (28)

where again we set ξ0 = 0.

Example Let us consider the following pdfs (see their graphs in Figure 2):

f (x) =
π

4
sin

(
π

2
x
)
, g(x) =

45
14

x −
165
28

x2 +
30
7

x3 −
15
14

x4, 0 ≤ x ≤ 2.

It is possible to prove that both f and g are EPT functions, with representation, respectively,

f (x) −→c1 =
(
π
4 0

)
, A1 =

(
0 π

2
−π2 0

)
, b1 =

(
1 0

)⊤

g(x) −→c2 =
(
0 45

14 −
165
14

180
7 −180

7

)
, A2 =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


, b2 =

(
1 0 0 0 0

)⊤

We compute the Wasserstein distance between the CDFs F and G by using formula (28) (in this
example, ξ0 = 0, ξ1 = 1, and ξ2 = 2, while the last term in the formula vanishes since we are
considering a finite interval):

W(F,G) =
∣∣∣∣c1A−2

1

(
eA1ξ1 − eA1ξ0

)
b1 − c2A−2

2

(
eA2ξ1 − eA2ξ0

)
b2

∣∣∣∣
+

∣∣∣∣c1A−2
1

(
eA1ξ2 − eA1ξ1

)
b1 − c2A−2

2

(
eA2ξ2 − eA2ξ1

)
b2

∣∣∣∣ = 2
(
1
π
−

31
112

)
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Figure 2. Graph of the density functions f (x) and g(x) (on the left) and of the function
w(x) = F(x) −G(x) (on the right) on the interval [0, 2].

6.2. An algorithm for the computation of Wasserstein-1 distance for Gaussian mixtures

Here we ask the same question: how do we compute the quantity in (25) in the case of finite Gaussian
mixtures? Again, the two crucial issues are:

• to compute the sign-changing zeros of the difference of the CDFs involved;
• to calculate the integrals of the difference of the CDFs involved over intervals on which the sign

of the difference does not change.

In this case, both the distribution functions involved and their differences are of the form

w(x) =
K∑

i=1

µiΦ(αix + βi),

where Φ is the standard Gaussian distribution function.
A GBF sequence is obtained for w by taking w0(x) = w(x), w1(x) = Dw(x). Then, w1(x) is a

function of the form

w1(x) =
K∑

i=1

µiαiϕ(αix + βi),

where ϕ(x) = 1
√

2π
e−x2/2.

We have already developed a GBF sequence for w1 in Section 5, say ψ0 = w1, ψ1, . . . , ψK . Then, a GBF
sequence for w is given by w0 = w,w1, ψ1, . . . , ψK .

Lemma 6.8. A Gaussian mixture f =
K∑

i=1

δiϕ(αix + βi), and also w, have at most finitely many sign-

changing zeros, and an interval can be identified containing all these.

Proof. We emphasize that this result holds for generalized Gaussian mixtures with a similar proof. We
aim to prove that there exists x0 > 0 such that, for all x > x0, f (x) , 0. Notice that

f (x) =
K∑

i=1

δiϕ(αix + βi) =
1
√

2π

K∑
i=1

δie−β
2
i /2e−qi(x), qi(x) =

α2
i

2
x2 + αiβix
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can be ordered in such a way that
• αi < αi+1, or
• αi = αi+1 and βi < βi+1

(a further equality cannot hold, since otherwise the two polynomials would have been equal). It follows
that

f (x) =
1
√

2π
e−q1(x)

δ1e−β
2
1/2 +

K∑
i=2

δie−β
2
i /2eq1(x)−qi(x)


has the property that the polynomial q1 − qi has the leading (nonzero) coefficient negative for each
i = 2, . . . ,K: therefore, for each i = 2, . . . ,K, there exists xi such that

∣∣∣δieq1(x)−qi(x)
∣∣∣ ≤ 1

2K |δ1| for all
x > xi. Setting x0 = max(x2, . . . , xK), we obtain the claim.

Now we claim that it is possible to find y0 < 0 such that, for all x < y0, f (x) , 0. The proof is the
same as before, except that we shall modify the ordering of the polynomials to take into account the
correct behavior of the first-order term. Actually, we choose
• αi < αi+1, or
• αi = αi+1 and βi > βi+1:

then the proof follows with the same argument as above. □

To conclude this section, we recall that the integral of the Gaussian CDF can be computed explicitly
in terms of the Gaussian distribution itself. The starting point is the following well-known identity:∫ x

−∞

Φ(y) dy = xΦ(x) + ϕ(x), (29)

where Φ is the CDF and ϕ the pdf for the standard Gaussian distribution. Then, from (29) it follows
that∫ b

a
Φ(αx + β) dx =

∫ αb+β

αa+β

1
α
Φ(y) dy

=

(
b +

β

α

)
Φ (αb + β) −

(
a +

β

α

)
Φ (αa + β) +

1
α

[
ϕ (αb + β) − ϕ (αa + β)

]
.

7. Conclusions and further research

In this paper, we explored finite mixture models, focusing our efforts on two specific subclasses of
the functions introduced in (1): Gaussian mixtures and EPT functions, which hold great significance
in probability theory. We hope to revisit the whole class of general mixtures defined in Eq (1) in a
subsequent paper.

The software [5] developed along this paper allows the investigation of the number of zero crossings
of a finite Gaussian mixture. Specifically, for a given finite Gaussian mixture (defined by its means,
variances, and mixing coefficients), the software provides a bounded interval where any sign-changing
roots might occur. If such roots are present, the software locates them with the desired level of accuracy.
In several applications there will be the necessity of suitable modifications of this software, which is
constructed in such a way to be easily adapted to different settings. It is our intention to extend its
current limit of elements in the mixture, which may require a different approach to the algorithm.
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Furthermore, our results are explicitly formulated for the one-dimensional case. While this suffices
for many applications, it poses limitations in certain contexts. Therefore, extending our results to the
d-dimensional case is a crucial area for future investigation.
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A. Technical results and proofs

A.1. Some results in bordered matrices

Let

M =


M̃ c1 c2

bT
1 a1 a2

bT
2 a3 a4


be a square n × n matrix, partitioned in such a way that

• M̃ is a (n − 2) × (n − 2) square matrix,
• c1, c2, b1, b2 are column vectors of length n − 2, and
• a1, . . . , a4 are numbers.

Then, we can compute the determinant of M, and we have the following rule (see, e.g., [20]):

det(M) det(M̃) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣M̃ c1

bT
1 a1

∣∣∣∣∣∣
∣∣∣∣∣∣M̃ c2

bT
1 a2

∣∣∣∣∣∣∣∣∣∣∣∣M̃ c1

bT
2 a3

∣∣∣∣∣∣
∣∣∣∣∣∣M̃ c2

bT
2 a4

∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.1)
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and, if we set

A′ =
(
M̃ c1

bT
1 a1

)
, B′ =

(
M̃ c2

bT
1 a2

)
, C′ =

(
M̃ c1

bT
2 a3

)
, D′ =

(
M̃ c2

bT
2 a4

)
we obtain

det(M) det(M̃) = det(A′) det(D′) − det(B′) det(C′). (A.2)

A.2. Proof of theorem 5.2

Relation (21) follows directly from the definition

Q1
i,k =

∣∣∣∣∣∣ 1 1
P1,i P1,k

∣∣∣∣∣∣
and the definition (18).

Next, we consider the case of j > 2. With a slight abuse of notation, we denote by

Q j−1
i1,...,i j

(y1, . . . , y j)

the determinant in (19) where in each column we consider a different variable yi. Notice that we recover
the polynomial in x when we let y1 = · · · = y j = x:

Q j−1
i1,...,i j

(x) = Q j−1
i1,...,i j

(x, . . . , x).

Let Di denote the differentiation with respect to the variable yi. Then, the following formula holds
(chain rule),

DxQ j−1
i1,...,i j

(x) = [D1 + · · · + D j]Q
j−1
i1,...,i j

(x, . . . , x). (A.3)

Finally, we introduce the notation

∆ j = ϕ j + D j,

where ϕ j, defined in (18), is taken as a multiplication operator. By the results in Remark 5.1, we know
that

∆ jPm, j = Pm+1, j

and

 j∑
i=1

∆i

 Q j−1
i1,...,i j

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
P1,i1 P1,i2 . . . P1,i j

. . . . . .

P j−2,i1 P j−2,i2 . . . P j−2,i j

P j,i1 P j,i2 . . . P j,i j .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.4)
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Now, let us write Q j
1,..., j,k as the determinant of a bordered matrix in the following form

Q j
1,..., j,k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1 1
P1,1 . . . P1, j−1 P1, j P1,k

. . . . . .

P j−2,1 . . . P j−2, j−1 P j−2, j P j−2,k

P j−1,1 . . . P j−1, j−1 P j−1, j P j−1,k

P j,1 . . . P j, j−1 P j, j P j,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Our aim is to apply formula (A.2). It is clear that

det(M) = Q j
1,..., j,k

as well as

det(M̃) = Q j−2
1,..., j−1;

it remains to identify the other terms. Recall the definition of matrices A′, B′,C′, and D′ from the
previous subsection. We have

A′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1
P1,1 . . . P1, j−1 P1, j

. . . . . .

P j−2,1 . . . P j−2, j−1 P j−2, j

P j−1,1 . . . P j−1, j−1 P j−1, j


, B′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1
P1,1 . . . P1, j−1 P1,k

. . . . . .

P j−2,1 . . . P j−2, j−1 P j−2,k

P j−1,1 . . . P j−1, j−1 P j−1,k



C′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1
P1,1 . . . P1, j−1 P1, j

. . . . . .

P j−2,1 . . . P j−2, j−1 P j−2, j

P j,1 . . . P j, j−1 P j, j


, D′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 . . . 1 1
P1,1 . . . P1, j−1 P1,k

. . . . . .

P j−2,1 . . . P j−2, j−1 P j−2,k

P j,1 . . . P j, j−1 P j,k


hence

det(A′) = Q j−1
1,..., j, det(B′) = Q j−1

1,..., j−1,k.

By comparing with (A.4), we see that

det(C′) =

 j∑
i=1

∆i

 Q j−1
1,..., j; , det(D′) =

 j−1∑
i=1

∆i + ∆k

 Q j−1
1,..., j−1,k.

By taking y1 = · · · = y j = yk = x and recalling (A.3), we finally obtain

Q j
1,..., j,k =

1

Q j−2
1,..., j−1

Q j−1
1,..., j


 j−1∑

i=1

ϕi + ϕk

 + Dx

 Q j−1
1,..., j−1,l − Q j−1

1,..., j−1,k


 j−1∑

i=1

ϕi + ϕ j

 + Dx

 Q j−1
1,..., j


and simplifying the relevant terms we obtain the thesis. ■
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A.3. Proof of theorem 5.3

We recall from (16) that using the Polya-Ristroph formula, we have the GBF sequence

Ψ j =
W j

W j−1
D

(
W j−1

W j
Ψ j−1

)
∀ 1 ≤ j ≤ N,

where for simplicity we let W0 = 1; this formula can be rewritten as

Ψ j =
W j

W j−1

(
W j DW j−1 −W j−1 DW j

(W j)2 Ψ j−1 +
W j−1

W j
DΨ j−1

)
=DΨ j−1 −

(
DW j

W j
−

DW j−1

W j−1

)
Ψ j−1.

Now, using (20) we have that

DW j

W j
=

j∑
i=1

P1,i +
DQ j−1

1,..., j

Q j−1
1,..., j

, 1 ≤ j ≤ N,

which implies that we can introduce the rational functions

s1 B P1,1

and, for 2 ≤ j ≤ N,

s j B
DW j

W j
−

DW j−1

W j−1
=

DQ j−1
1,..., j

Q j−1
1,..., j

−
DQ j−2

1,..., j−1

Q j−2
1,..., j−1

+ P1, j =

D
(

Q j−1
1,..., j

Q j−2
1,..., j−1

)
Q j−1

1,..., j

Q j−2
1,..., j−1

+ P1, j

and Ψ j can be written as

Ψ j(x) = (D − s j(x))Ψ j−1(x).

Recall that

Ψ0(x) =
N∑

k=1

λkhk(x),

which implies that (compare with (18))

Ψ1(x) = (D − s1(x))Ψ0(x) = λ1(D − P1,1)h1 +

N∑
k=2

λk(D − P1,1)hk(x) =
N∑

k=2

λk(P1,k − P1,1)hk(x)

and recalling the definition of Q1
1,k in (21), we obtain

Ψ1(x) =
N∑

k=2

λkQ1
1,khk(x)
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in accordance with (23).
Now we proceed by recursion. Assume that for 2 ≤ j ≤ N, it holds

Ψ j−1(x) =
N∑

k= j

λk

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

hk(x).

Then,

Ψ j(x) =(D − s j(x))Ψ j−1(x) =
N∑

k= j

λk

D
Q j−1

1,..., j−1,k

Q j−2
1,..., j−1

 hk(x)

+

N∑
k= j

λk

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

Dhk(x) − s j

N∑
k= j

λk

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

hk(x).

Let us denote

Λ
j−1
k =

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

, k ≥ j;

then we have

Ψ j(x) =
N∑

k= j

λk

(
DΛ j−1

k

)
hk(x) +

N∑
k= j

λkΛ
j−1
k P1,k hk(x)

−
DΛ j−1

j

Λ
j−1
j

N∑
k= j

λkΛ
j−1
k hk(x) − P1, j

N∑
k= j

λkΛ
j−1
k hk(x)

=

N∑
k= j+1

λk

DΛ j−1
k −

DΛ j−1
j

Λ
j−1
j

Λ
j−1
k

 hk(x)

+

N∑
k= j+1

λkΛ
j−1
k

(
P1,k − P1, j

)
hk(x)

=

N∑
k= j+1

λk Λ
j−1
k

DΛ j−1
k

Λ
j−1
k

−
DΛ j−1

j

Λ
j−1
j

+
(
P1,k − P1, j

) hk(x).

In order to prove (23), it is sufficient to prove that for any k ≥ j + 1, it holds

Λ
j−1
k

DΛ j−1
k

Λ
j−1
k

−
DΛ j−1

j

Λ
j−1
j

+
(
P1,k − P1, j

) = Q j
1,..., j,k

Q j−1
1,..., j

. (A.5)

We will repeatedly use the identity

D f
f
−

Dg
g
=

D( f /g)
f /g
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to compute the left-hand side of the claim (A.5): we get

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1


D

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

−

D
Q j−1

1,..., j−1, j

Q j−2
1,..., j−1

Q j−1
1,..., j−1, j

Q j−2
1,..., j−1

+
(
P1,k − P1, j

)
=

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1


D

Q j−1
1,..., j−1,k

Q j−1
1,..., j−1, j

Q j−1
1,..., j−1,k

Q j−1
1,..., j−1, j

+
(
P1,k − P1, j

)
=

Q j−1
1,..., j−1,k

Q j−2
1,..., j−1

DQ j−1
1,..., j−1,k

Q j−1
1,..., j−1,k

−
DQ j−1

1,..., j−1, j

Q j−1
1,..., j−1, j

+
(
P1,k − P1, j

)
Recalling (22), the quantity within bracket equals to

Q j
1,..., j,k Q j−2

1,..., j−1

Q j−1
1,..., j−1,k Q j−1

1,..., j−1, j

which allows us to prove (A.5). ■

B. Examples

B.1. An example for Polynomial-Gaussian mixtures

In this example, we study the behavior of the sum of two polynomial-Gaussian functions f (x) =
h1(x) + αh2(x), with α ∈ R. In order to provide a complete example, we fix

h1(x) = (x2 + 1)e−x2
, h2(x) = (x2 + 4x)e−(x−1)2/2

so that µ1 = 0, σ2
1 =

1
2 , µ2 = 1, σ2

2 = 1.
The first step is the choice of the interval [a, b]. Since the second term has a larger variance, it is the

dominant term for |x| → ∞; hence, for α > 0, we have f (x) > 0 for |x| → ∞, and conversely for α < 0.
Therefore, we can always choose a ≪ 0 and b ≫ 0 such that f (x) has constant sign (equal to sgn(α))
outside the interval [a, b]. As α varies in (−10, 10), for instance, it is sufficient to take a ≤ −5, b ≥ 5.

The next step is the computation of the function ψ1(x). Notice that this function (and, a fortiori, the
simple grid it provides for f (x)) is independent of the constant α. We obtain

ψ1(x) = h1,2(x) = Dh2(x) − h2(x)
Dh1(x)
h1(x)

=
1

1 + x2 e−(x−1)2/2(4 + 6x + x2 + 5x3 + 5x4 + x5)

so that a simple grid for f (x) is given by the real sign-changing zeros of the polynomial

p1,2(x) = 4 + 6x + x2 + 5x3 + 5x4 + x5,

and we obtain the following grid:

G = {x1 = −3.57116, x2 = −1.72866, x3 = −0.638509}.
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Finally, the existence of sign-changing zeros for f (x) can be determined by computing the values of
f (x) in the points of G ∪ {a, b}, which turns out to depend linearly on α. Thus, we are able to construct
the table in Figure A1, where the analysis of the grid (and the presence of sign-changing zeros) is
shown.

According to the table, for α = 0.5, no sign-changing zeros are present for the function f0.5(x) =
h1(x)+ 1

2h2(x), while for α = 2 there exist 4 sign-changing zeros for the function f2(x) = h1(x)+2h2(x).
Their plots are given in Figure A2.

0.8955

2.1173

-3

0

α

1.6700

a = −5 b = 5x1 = −3.57 x2 = −1.73 x3 = −0.64

Figure A1. Analysis of the grid for the function f (x). The parameter α varies in (−3, 3) and
x in (−5, 5). The orientation of the lines shows if the function is increasing or decreasing
at the zero. The blue line implies that the function takes a positive value in the point of the
grid, and red it is negative. No further zeros exist outside the interval [a, b]. Notice that for
0 < α < 0.8955, the function f (x) is nonnegative on the whole real line.

-4 -2 2 4

1

2

3

4

-4 -2 2 4

5

10

15

Figure A2. Graph of the functions f0.5(x) (on the left) and f2(x) (on the right). The orange
line represents the sign of the function, so to help capture the sign-changes.

B.2. An example for finite Gaussian mixtures

In this example, we show how the GBF algorithm computes the sign-changing roots of a Gaussian
mixture with parameters
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• n = 4;
• mu = [0, 1, 2, 3];
• s = [1, 0.07, 0.06, 0.8];
• lambda = [1,−0.5,−0.5, 1].

and the accuracy level for the Ridders’ method set equal to eps = 2.2204e − 16. The main steps
executed by the software are described as follows:

• Step 1: Computation of the GBF sequence;
• Step 2: Computation of the bounded interval I which contains all the eventual sign-changing

roots.
• Step 3: Iterative backward scanning of the GBF sequence embedded with the computation of

grids and sign-changing roots for all levels.

We mention that the implemented version of the GBF algorithm was slightly modified from its
theoretical version to reduce the execution times of the sign-changing roots algorithm. In fact, in Step
3, at each level the corresponding grid-induced partition is expanded by incorporating both previous
grid points and current ones to reduce the lengths of the intervals in which the Ridders’ method is
applied. To capture the key idea behind this augmentation technique, we will refer to this backward
recursive augmentation of grid-induced partitions as GBF cascade.

It should be noted that the version of the GBF algorithm we implemented was slightly modified from
its theoretical version to reduce the execution times of the sign-changing roots algorithm. Specifically,
in Step 3, at each level j where 0 ≤ j ≤ n − 1, the partition induced by the corresponding grid is
enlarged by integrating both the previous grid points and the ones from the current level to reduce
the lengths of the intervals where the Ridders’s method is applied. To capture the essence of this
expansion strategy, the backward recursive augmentation of grid-induced partitions is referred to as
the GBF cascade effect.

In the current example, the bounded interval was I = [0.4903, 2.8369]. The GBF procedure
employed to compute the sign-changing roots of the Gaussian mixture is displayed in Figure A3. The
peculiar form of this figure is meant to emphasize the GBF cascade effect and the construction of the
grid, as well as the determination of the sign-changing zeros at the last level.
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Figure A3. GBF procedure for the Gaussian mixture discussed in appendix B.2. Endpoints
of the interval I are represented as black dashed vertical lines. Grid-induced partitions are
displayed as orange and green dashed vertical lines to distinguish between points stemming
from zero-crossings of the GBF functions and zeros of the pivot functions, respectively. The
Gaussian mixture is plotted in blue and its sign-changing roots as black x markers. The plot
shows how the GBF cascade effect from level 3 down to level 0 leads to the identification
of the sign-changing roots. More specifically, we observe that a grid-induced partition at a
specific level j is used to determine the subsequent one at level j− 1 until the bottom level is
reached and the sign-changing roots are computed.
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B.3. Numerical examples with the Chebfun package

For a more comprehensive discussion on Chebfun, please refer to [10], [35]. In this paper, we aim
to elucidate the limitations of the Chebfun method when applied to the analysis of finite Gaussian
mixtures. Our primary focus is on the poor approximation of tail behavior, or, more broadly, regions
we term as valleys.

A valley is defined as an interval within the function where values are minimal and exhibit negligible
variation, remaining close to zero. The accurate approximation of these valleys is crucial for achieving
reliable numerical approximations of finite Gaussian mixtures. In fact, sign-changing patterns often
reside within valleys and manifest at a microscopic scale that is typically undetectable by standard
algorithms.

In what follows we will show, through a series of examples, how Chebfun‚Äôs approximation falls
short when it comes to accurately representing valleys and, hence, the sign-changing roots within them.

Example 1

i. Consider a finite Gaussian mixture f having the following parameters

n = 4;
mu = [2, 3, 4, 5];
s2 = [0.4, 0.6, 0.8, 1];
lambda = [0.2, 0.4,−0.2, 0.6].
accuracy level equal to eps = 10−12.

ii. The GBF algorithm detects no sign-changing roots on the real line;
iii. Chebfun with input interval [−10, 20] identifies 69 roots: 42 negative within the interval

[−10,−3.6224] and 27 positive within [13.7823, 20].

This discrepancy is due to the methodological choice of Chebfun, which computes a polynomial
approximation of degree 154 to represent the overall Gaussian mixture. The plot of f along with
the roots identified by Chebfun are shown in Figure A4.

To avoid the poor approximation of the tails, one might consider reducing the width of the input
interval. However, as shown in the following example, this could result in the loss of roots that lie
along the tails.

Example 2

i. Consider a finite Gaussian mixture f having the following parameters:

n = 4;
mu = [2, 4, 6, 8];
s2 = [0.2, 0.4, 0.6, 0.8];
lambda = [0.2, 0.4, 0.6,−0.2].
accuracy level equal to eps = 10−12.

ii. The GBF algorithm detects 2 sign-changing roots on the real line, specifically x1 = −7.3460,
x2 = 7.3460 within the interval I = [−7.7857, 7.7857];
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Figure A4. Plot of the Gaussian mixture f from Example 1 in [−10, 20]. The roots identified
by Chebfun are shown in red.

iii. Chebfun with input interval [−10, 20] identifies 136 roots: 135 negative within [−20,−1.8294]
and one positive. Among them, one (−7.3131) is very close to x1 and the positive one coincides
with x2.

Again, the discrepancy lies in Chebfun’s polynomial approximation, which is of degree 251, to
represent the overall Gaussian mixture. The Gaussian mixture f along with the zeros identified by
Chebfun and the GBF algorithm respectively are shown in A5.

Hence, by narrowing the input interval to avoid the poor approximation of the left tail, there is a
high risk of missing the correct sign-changing zero x1.

However, valleys could also arise in the central body of the function, as shown in the next example.

Example 3

i. Consider a finite Gaussian mixture f having the following parameters:

n = 5;
mu = [5, 2, 4, 6, 16];
s2 = [1, 1/50, 1/25, 1/25, 1/50];
lambda = [−1.5, 2, 0.5,−0.5, 0.5].
accuracy level equal to eps = 10−12.

ii. The GBF algorithm detects 6 sign-changing roots on the real line, specifically x1 = 1.4106,
x2 = 2.467, x3 = 3.6651, x4 = 4.2515, x5 = 14.6261, x6 = 17.8229 within the interval I =
[1.35948, 17.8405];
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Figure A5. Plot of the Gaussian mixture f from Example 2 in [−10, 20]. The roots identified
by Chebfun are shown in red, while sign-changing roots identified by the GBF algorithm are
indicated by black x markers.

iii. Chebfun with input interval [−10, 20] identifies 247 roots: 162 negative within [−20,−3.0649]
and 85 positive within [1.4106, 20] based on a polynomial of degree 862. Among them, only x1,
x2, x3, and x4 are correctly identified. The roots x5 and x6 are located in a valley region, which
aligns with the left tail and right tail of the last component of the mixture, respectively. Within
this region, Chebfun identifies 29 roots in the proximity of x5 and 52 in the proximity of x6. This
high density of roots makes it impractical to correctly identify the roots of the finite Gaussian
mixture.
The Gaussian mixture f along with the zeros identified by Chebfun and the GBF algorithm,
respectively, are shown in A6.
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Figure A6. Plot of the Gaussian mixture f from Example 3 in [−10, 20]. The roots identified
by Chebfun are shown in red, while sign-changing roots identified by the GBF algorithm are
indicated by black x markers.
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