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Abstract: This paper focuses on the stochastic stabilization of hidden semi-Markov jump nonlinear
positive systems. First, a notion of stochastic stability is introduced for this class of systems. A
criterion is addressed to ensure the stochastic stability using a stochastic copositive Lyapunov function.
Then, an observed mode is proposed to estimate the emitted value of the hidden semi-Markov process
and the mode-dependent controller is designed using an improved matrix decomposition approach.
Some auxiliary variables are added to decouple the coupling terms in hidden semi-Markov jump
nonlinear positive systems into a tractable condition. All conditions are described in terms of linear
programming. Moreover, the proposed design is developed for systems with partially known emission
probabilities. Two examples are provided to show the validity of the obtained results.
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1. Introduction

Positive systems have been one of the most active research issues over the last few decades and
have extensive applications in the real world [1–3]. As an important kind of positive systems, positive
stochastic systems consist of non-negative states, non-negative outputs, and stochastic switching
rule [4–6]. Evidence suggests that typical positive stochastic jump systems include Markov jump
positive systems (MJ-PSs) and semi-Markov jump positive systems (SMJ-PSs) [7–9]. Compared with
MJ-PSs, SMJ-PSs remove the restriction that sojourn time follows the particular distribution in some
specific scenarios, i.e., the sojourn time of SMJ-PSs does not follow an exponential distribution [10].
It is worth pointing out that system modes are usually assumed to be exactly known in SMJ-PSs [11].
However, in practice, this idealized assumption is hard to achieve. Moreover, it has been observed that
copositive Lyapunov function (CLF) and linear programming (LP) are effective approaches to study
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positive systems [7, 9, 12, 13]. These novel approaches also bring challenges for research of positive
stochastic systems.

As discussed in [11], system modes of SMJ-PSs may be hidden and are hard to be exactly acquired.
To overcome this challenge, hidden Markov jump systems were introduced [14–17]. The literature [18]
proposed a mixed H2/H∞ control framework for hidden Markov jump systems. The work in [19]
designed an H∞ controller to defend multichannel random attacks of nonlinear hidden Markov jump
systems. An extended dissipativity-based controller was designed in [20] for singularly perturbed
systems with hidden Markov processes. It naturally raises a question whether the sojourn time of the
hidden Markov process still needs to follow an exponential distribution or geometric distribution. It
is important to note that hidden semi-Markov processes with the two-layer process have been used
to address the above issue, i.e., hidden and observed layers [21]. The literature [22] constructed a
sojourn time probability density function for non-homogeneous hidden semi-Markov jump systems
with limited information. A novel definition of hidden semi-Markov processes was addressed in [23]
based on the notion of emission probability. For more details, the reader can refer to [24–26].

Most existing results mainly concentrate on hidden semi-Markov jump systems with a completely
known emission probability. However, the emission probability of hidden semi-Markov jump systems
is difficult to completely acquire. The work in [27] proposed a hidden semi-Markov process with a
partially known emission probability. The work in [28] studied an observed mode-dependent control
problem of hidden semi-Markov jump systems with a partially known emission probability. However,
the above results are concerned with linear systems. Up to now, to the best of our knowledge, few
results are reported for hidden semi-Markov jump nonlinear positive systems (HSMJ-NPSs) with
partially known emission probability. This leaves much room to explore the stabilization of
HSMJ-PSs with partially known emission probabilities. For this topic, there are several research
obstacles. First, how to design the control strategy of HSMJ-NPSs under the hidden Markov process
owing to the uncertainties of the process? Unlike the Markov process, it can be directly obtained. It is
hard to catch the information of a hidden Markov process, and some suitable estimation approaches
need to be presented. This increases the complexity of the control design. Second, how to design the
control strategy under the partially known emission probability? It is more difficult to estimate the
Markov process when the emission probability is partially known. Thus, the corresponding control
strategy is full of challenges. Third, how to establish a unified approach to describe and compute the
presented conditions. This paper is to employ CLF and LP to solve the considered design. It is a new
topic in the field of positive systems. Therefore, how to design the corresponding gain matrices, how
to construct a suitable CLF, and how to address LP-based conditions are key to the design. These
inspire the work.

This paper investigates the stabilization of HSMJ-NPSs with partially known emission
probabilities. The aim is to understand how these unknown emission probabilities affect HSMJ-NPSs
and under which conditions the stabilization can be achieved. By introducing a matrix decomposition
technique and stochastic CLF approach, an observed mode-dependent control approach is derived for
HSMJ-NPSs. The main contributions are summarized as: (i) Hidden semi-Markov jump systems are
developed for positive systems and the corresponding stability analysis is addressed; (ii) A novel
matrix decomposition-based control gain design is proposed; and (iii) A unified framework on the
stabilization of HSMJ-NPSs is constructed by employing the analysis approach of CLF and the
design approach of LP. The rest of this paper is organized as follows: Section II gives the
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preliminaries. Section III presents the main results. An example is provided in Section IV. Finally,
Section V concludes the paper.
Notations: N and N+ denote the sets of non-negative and positive integers, respectively. Rn and Rn×n

are n-dimensional vectors and n × n matrices. For the probability space (Φ,F,P), Φ denotes the
sample space, F denotes the Borel σ-algebra, and P is the corresponding probability measure on F. R⊤

is the transpose of a matrix R. For a matrix W ∈ Rn×n, wi j is its ith row and jth column element, and
W ≻ 0 (⪰ 0) implies that wi j > 0 (≥ 0) for i, j = 1, 2, · · · , n. ∥ · ∥1 is the 1-norm. ∥ · ∥2 is the 2-norm.
E{·} is the mathematical expectation. Finally, denote 1(i)

n = (0, 0, . . . , 0︸      ︷︷      ︸
i−1

, 1, 0, . . . , 0︸  ︷︷  ︸
n−i

)⊤.

2. Preliminaries

Consider a semi-Markov jump nonlinear system defined on the probability space (Φ,F,P):

x(k + 1) = AO(k) f (x(k)) + BO(k)u(k), (2.1)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and input, respectively. f (x(k)) is the nonlinearities of the
system satisfying sector conditions πx2

i (k) ≤ f (xi(k))xi(k) ≤ πx2
i (k), where 1 ≤ i ≤ n, 0 < π ≤ π since

fi(0) = 0. O(k), k ∈ N, is a semi-Markov process taking values in the set P = {1, 2, . . . , P}, P ∈ N+,
which governs the jumps among system modes. The system matrices of the oth mode are denoted by
(Ao, Bo), where Ao ⪰ 0 and Bo ⪰ 0 for O(k) = o ∈ P.

Definition 1. ( [1]) A system is called positive when its states are non-negative for any non-negative
initial conditions and inputs.

Lemma 1. ( [10]) For a matrix A ⪰ 0, the following statements are equivalent:
(i) A ∈ Rn×n is a Schur matrix;
(ii) There exists a vector v ≻ 0 such that (A⊤ − I)v ≺ 0.

Definition 2. ( [24]) Suppose that Op is the index of the system mode at the pth jump, tp is the time
instant at the pth jump with t0 = 0, and κ is the sojourn time. Then the semi-Markov kernel can be
represented as:

ςoh(κ) = P(Op+1 = h, tp+1 − tp = κ|Op = o) = ηoh(κ)δoh, (2.2)

where o, h ∈ P, κ ∈ N, δoh = P(Op+1 = h|Op = o) is the transition probability with δoo = 0, and
ηoh(κ) = P(tp+1 − tp = κ|Op = o,Op+1 = h) is a probability density function.

Throughout this paper, it is assumed that the semi-Markov processes O(k), k ∈ N is hidden, whose
values can be estimated by an observed process O⋆(k) with state space Q = {1, 2, . . . ,Q},Q ∈ N+ and
the emission probability:

ψos = P(O⋆(k) = s|O(k) = o), (2.3)

where o ∈ P, s ∈ Q,
∑

s∈Q ψos = 1, and Γ = [ψos]P×Q is the emission probability matrix.

Definition 3. System (2.1) is said to be stochastically stable if for any initial condition x(k0) = x0 and
O(k0) = O0, the following holds:

lim
k→∞
E{∥x(k)∥1|x0,O0} = 0. (2.4)
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Definition 4. System (2.1) is said to be σ-stochastically stable if for any initial condition x(k0) = x0

and O(k0) = O0, the following holds:

lim
k→∞
E{∥x(k)∥1|x0,O0,κo≤κo

max} = 0, (2.5)

where κo
max is the upper bound of sojourn time for the pth subsystem mode, σerror := | ln Fo(κo

max)|, and
Fo(κo

max) = P(κo ≤ κ
o
max) =

∑κo
max
τ=1

∑
h∈P ςoh(τ).

Remark 1. Definitions 3 and 4 follow the definitions of non-positive hidden semi-Markov jump
systems [24, 26, 28]. For non-positive systems, lim

k→∞
E{∥x(k)∥22|x0,O0} = 0 and

lim
k→∞
E{∥x(k)∥22|x0,O0,κo≤κo

max} = 0 are always used to describe the stochastic stability conditions of
systems. In Definitions 3 and 4, the 2-norm ∥x(k)∥2 is replaced by the 1-norm ∥x(k)∥1. The main
reasons are twofold. First, the 1-norm is more suitable for positive systems. Generally, the 2-norm
represents the energy, and thus a quadratic Lyapunov function can be constructed. Positive systems
are usually used to model populations, the amount of material, etc. The 1-norm ∥x(k)∥1 represents the
sum of all components of the state and is suitable to be introduced for positive systems. Under the
1-norm framework, a copositive Lyapunov function can be chosen for a such class of systems. Second,
the 1-norm is equivalent to the 2-norm. By the norm equivalence principle, the mentioned two norms
are equivalent in a finite space. Thus, it is reasonable to introduce Definitions 3 and 4 for
HSMJ-NPSs.

3. Main results

In this section, the stabilization of HSMJ-NPSs with completely known and partially known
emission probabilities are presented. First, an observed mode-dependent controller is designed:

u(k) = KO⋆(k)x(k), (3.1)

where KO⋆(k) is a control gain matrix to be determined. Then,

x(k + 1) = AO(k) f (x(k)) + BO(k)KO⋆(k)x(k). (3.2)

Lemma 2. Assume that system (3.2) is positive. If there exist a stochastic CLF
V(x(k),O(k)) = x⊤(k)λO(k) with λO(k) ≻ 0 and constants ρO(tp), λ1 > 0, λ2 > 0, λ3 > 0 with λ2 ≥ λ1 such
that

λ1∥x(k)∥1 ≤ V(x(k),O(k)) ≤ λ2∥x(k)∥1, (3.3)

E{V(x(tp + k),O(tp + k) = h|x(tp),O(tp) = o} ≤ ρO(tp)V(x(tp),O(tp)), (3.4)

E{V(x(tp + k),O(tp + k) = h|x(tp),O(tp) = o} − V(x(tp),O(tp)) ≤ −λ3∥x(tp)∥1, (3.5)

hold, then system (3.2) is stochastically stable for any initial conditions x(k0) = x0 and O(k0) = O0,
where k ∈ [1, tp+1 − tp) and O(kp) ∈ P.

Proof. By (3.5), it follows that

E{λ3∥x(tp)∥1} ≤ E{V(x(tp),O(tp))} − E{E{V(x(tp + k),O(tp + k) = h|x(tp),O(tp) = o}}.
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Together with E{E{V(x(tp+k),O(tp+k) = h|x(tp),O(tp) = o}} = E{V(x(tp+k),O(tp+k) = h|x(tp),O(tp) =
o}, we obtain E{λ3∥x(tp)∥1} ≤ E{V(x(tp),O(tp))} − E{V(x(tp + k),O(tp + k) = h|x(tp),O(tp) = o}. Then,∑∞

n=1 E{λ3∥x(tp)∥1} ≤ E{V(x(t0),O(t0)} < ∞, which means that lim
p→∞
E{λ3∥x(tp)∥1} = 0. By λ3 > 0, we

have lim
p→∞
E{∥x(tp)∥1} = 0. Since λ2 ≥ λ1 > 0, then E{λ1∥x(k)∥1} ≤ max

O(tp)∈O
{ρO(tp)}E{V(x(k),O(k))} ≤

max
O(tp)∈O

{ρO(tp)}E{λ2∥x(k)∥1} holds ∀k ∈ [tp, tp+1). It is not difficult to conclude that lim
p→∞
E{∥x(k)∥1} = 0. By

Definition 3, the system (3.2) is stochastically stable. □

Remark 2. Unlike the Lyapunov function V(x(k),O(k)) = x⊤(k)PO(k)x(k) used in [24, 26], and [28],
a stochastic CLF V(x(k),O(k)) = x⊤(k)λO(k) is used for HSMJ-NPSs in Lemma 2. Such a Lyapunov
function follows the design in [7, 9, 12, 13]. When the state of the system is non-negative, the positivity
of CLF is easy to be guaranteed. It is also clear that CLF has a simpler form than the quadratic
Lyapunov function.

Theorem 1. If there exist constants ℘1 > 1, ℘2 > 1, ρo > 0, Rn vectors λo ≻ 0, µs ≻ 0, and Rm vector
χ(i)

s ≺ 0 such that the conditions

π
∑ℑ

i=1 1(i)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµsAo + Bo
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≻ 0, (3.6a)

℘1π
∑

s∈Q ψ̃sA⊤o µs − ρoλo + ℘1
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≺ 0, (3.6b)

π
∑

s∈Q ψ̃sA⊤o µs − µa +
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≺ 0, (3.6c)

π
∑

s∈Q ψ̃sA⊤o
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs −

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µa +

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.6d)

℘2π
∑

s∈Q ψ̃sA⊤o (
∑

h∈P ς̃oh(1)µs +
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs) − λo + ℘2

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.6e)

λo ≤ ℘1µs, λh ≤ ℘2µs (3.6f)

hold for (o, h) ∈ P × P, (s, a) ∈ Q × Q, κo
max ∈ [2,+∞), respectively, then the system (3.2) is positive

and σ-stochastically stable under the observed mode-dependent controller (3.1) with

Ks =
∑ℑ

i=1
1(i)
ℑ
χ(i)⊤

s

1(i)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµs
, (3.7)

where i ∈ {1, 2, . . . ,ℑ} ∈ Q, ψ̃s = max
o∈P
{ψos}, ς̃oh(κ) = ςoh(κ)∑

o∈P
∑κomax

c=1 ςch(c)
, B = min

o∈P
{Bo}, B = max

o∈P
{Bo}, and Bo

and Bo represent the minimal and maximal elements of the matrix Bo.

Proof. Since B ⪰ 0, π ≥ 0, and µs ≻ 0, it can follow that
∑ℑ

i=1 1(i)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµs ⪰ 0. Give a

nonnegative initial condition x(k0) ⪰ 0. Following Ao ⪰ 0 and (3.7) gives Ao +
Bo

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s∑ℑ
i=1 1(i)⊤

ℑ
B⊤

∑
s∈Q ψ̃sµs

⪰ 0,

which means that Ao + BoKs ⪰ 0. By (3.2) and Definition 1, we obtain x(k0 + 1) ⪰ 0. Thus, one can
have x(k) ⪰ 0 using recursive derivation, that is, the system (3.2) is positive. Using the sector
condition and (3.2) yields that

x(k + 1) ⪰ πAO(k)x(k) + BO(k)KO⋆(k)x(k), (3.8)

x(k + 1) ⪯ πAO(k)x(k) + BO(k)KO⋆(k)x(k) = AO(k)O⋆(k)x(k), (3.9)
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whereAO(k)O⋆(k) = πAO(k) + BO(k)KO⋆(k).
Construct a stochastic CLF as: V(x(k),O(k) = o) = x⊤(k)λo. Then, λmin∥x(k)∥1 ≤ V(x(k),O(k)) ≤

λmax∥x(k)∥1, where λmin = min
o∈P
{λo}, λmax = max

o∈P
{λo}, and λo and λo represent the minimal and maximal

elements of the vector λo, respectively. Thus, the condition (3.3) is guaranteed. Then,

E{V(x(tp + k),O(tp + k))|x0,O0} = x⊤(tp)
(∑

s1∈Q
· · ·

∑
sk∈Q

∏k
i=1 ψosiA

⊤
osi
λo

)
(3.10)

holds for κo
max ∈ [2,+∞), k ∈ [1, tp+1 − tp − 1], and p ∈ [0,+∞). By (3.6f) and (3.10), it follows that∑

s1∈Q
· · ·

∑
sk∈Q

∏k
i=1 ψosiA

⊤
osi
λo − ρoλo

⪯
∑

s1∈Q
· · ·

∑
sk∈Q

∏k
i=1 ψosiA

⊤
osi
℘1µsk − ρoλo

= ℘1

(∑
s1∈Q
· · ·

∑
sk−1∈Q

∏k−1
i=1 ψosiA

⊤
osi

(
∑

sk∈Q
ψoskA

⊤
osk
µsk − µsk−1)

+
∑k−1

n=1
∑

s1∈Q
· · ·

∑
sn−1∈Q

∏n−1
i=1 ψosiA

⊤
osi

(
∑

sn∈Q
ψosnA

⊤
osn
µsn − µsn−1)

+
∑

s1∈Q
ψos1A

⊤
os1
µs1

)
− ρoλo,

(3.11)

where

℘1

(∑k−1
n=1

∑
s1∈Q
· · ·

∑
sn−1∈Q

∏n−1
i=1 ψosiA

⊤
osi

(
∑

sn∈Q
ψosnA

⊤
osn
µsn − µsn−1) +

∑
s1∈Q

ψos1A
⊤
os1
µs1

)
− ρoλo

= ℘1

(∑
s1∈Q

ψos1A
⊤
os1
· · ·

∑
sk−1∈Q

ψosk−2A
⊤
osk−2

∑
sk−1∈Q

ψoskA
⊤
osk−1

µsk−1

−
∑

s1∈Q
ψos1A

⊤
os1
µs1 +

∑
s1∈Q

ψos1A
⊤
os1
µs1

)
− ρoλo

= ℘1

(∑
s1∈Q
· · ·

∑
sk∈Q

∏k−1
i=1 ψosiA

⊤
osi
µsk−1

)
− ρoλo.

Using (3.7) gives K⊤s B⊤
∑

s∈Q ψ̃sµs =
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s . It is also clear that Ks ≺ 0. Together with B ⪰ 0,
ψ̃s = max

o∈P
{ψos}, and (3.6b) yields that

℘1
∑

s1∈Q
ψos1A

⊤
os1
µs1 − ρoλo ⪯ ℘1

∑
s1∈Q

ψ̃s1A
⊤
os1
µs1 − ρoλo

⪯ ℘1π
∑

s1∈Q
ψ̃s1 A⊤o µs1 + ℘1

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s1 − ρoλo ≺ 0.
(3.12)

By (3.6c), we have∑
sn∈Q

ψosnA
⊤
osn
µsn − µsn−1 ⪯

∑
sk∈Q

ψoskA
⊤
osk
µsk − µsk−1

⪯ π
∑

sk∈Q
ψ̃sk A

⊤
o µsk + K⊤sk

B⊤o
∑

sk∈Q
ψ̃skµsk − µsk−1

⪯ π
∑

sk∈Q
ψ̃sk A

⊤
o µsk +

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

sk − µsk−1 ≺ 0.
(3.13)

Substituting (3.12) and (3.13) into (3.11) gives ℘1(
∑

s1∈Q
· · ·

∑
sk∈Q

∏k
i=1 ψosiA

⊤
osi
µsk) − ρoλo ≺ 0. Thus,

it is not difficult to conclude that condition (3.4) is true.
Furthermore, we consider O(tp) = o,O(tp+1) = h,∀o, h ∈ P, o , h, and κ = tp+1 − tp. Then,

E{V(x(tp+1),O(tp+1))|x0,O0,κ≤κ
o
max} = x⊤(tp)(

∑κo
max
κ=1

∑
s1∈Q
· · ·

∑
sκ∈Q

∏κ
i=1 ψosiA

⊤
osi

∑
h∈P ς̃oh(κ)λh) (3.14)

holds for p ∈ [0,+∞). Together with (3.6f) yields that∑κo
max
κ=1

∑
s1∈Q
· · ·

∑
sκ∈Q

∏κ
i=1 ψosiA

⊤
osi

∑
h∈P ς̃oh(κ)λh − λo

⪯
∑κo

max
κ=1

∑
s1∈Q
· · ·

∑
sκ∈Q

∏κ
i=1 ψosiA

⊤
osi

∑
h∈P ς̃oh(κ)℘2µsi − λo

= ℘2

(∑κo
max
κ=2

(∑κ−1
ϱ=1

∑
s1∈Q
· · ·

∑
sϱ∈Q

∏ϱ
i=1 ψosiA

⊤
osi

× (
∑

sϱ+1∈Q
ψosϱ+1A

⊤
osϱ+1

∑
h∈P ς̃oh(κ)µsϱ+1 −

∑
h∈P ς̃oh(κ)µsϱ)

)
+

∑κo
max
κ=2

∑
s1∈Q

ψos1A
⊤
os1

∑
h∈P ς̃oh(κ)µs1 +

∑
s1∈Q

ψos1A
⊤
os1

∑
h∈P ς̃oh(1)µs1

)
− λo,

(3.15)
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where ϱ ∈ [1, κ−1]. Note the facts K⊤s B⊤
∑

s∈Q ψ̃sµs =
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s , Ks ≺ 0, ψ̃s = max
o∈P
{ψos}, and B ⪰ 0.

Together with (3.6d) gives∑
sϱ+1∈Q

ψosϱ+1A
⊤
osϱ+1

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µsϱ+1 −

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µsϱ

⪯ π
∑

sϱ+1∈Q
ψ̃sϱ+1 A⊤o

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µsϱ+1 + K⊤sϱ+1

B⊤o
∑

sϱ+1∈Q
ψ̃sϱ+1

∑κo
max
κ=2

×
∑

h∈P ς̃oh(κ)µsϱ+1 −
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µsϱ

⪯ π
∑

sϱ+1∈Q
ψ̃sϱ+1 A⊤o

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µsϱ+1 −

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µsϱ +

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

sϱ+1 ≺ 0.

(3.16)

By (3.6e), we obtain

℘2
∑

s1∈Q
ψos1A

⊤
os1

(
∑

h∈P ς̃oh(1)µs1 +
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs1) − λo

⪯ ℘2π
∑

s1∈Q
ψ̃s1 A⊤o (

∑
h∈P ς̃oh(1)µs1 +

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µs1) + ℘2K⊤s1

B⊤o
∑

s1∈Q
ψ̃s1

× (
∑

h∈P ς̃oh(1)µs1 +
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs1) − λo

⪯ ℘2π
∑

s1∈Q
ψ̃s1A

⊤
os1

(
∑

h∈P ς̃oh(1)µs1 +
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs1) − λo + ℘2

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s1 ≺ 0.

(3.17)

Substituting (3.16) and (3.17) into (3.15) yields ℘2(
∑κo

max
κ=1

∑
s1∈Q
· · ·

∑
sκ∈Q

∏κ
i=1 ψosiA

⊤
osi

∑
h∈P ς̃oh(κ)µsi)−

λo ≺ 0. It is not difficult to conclude that the condition (3.5) under κo
max ∈ [2,+∞) is true. Therefore,

the system (3.2) is positive and σ-stochastically stable. This completes the proof. □

Remark 3. Theorem 1 designs the controller gain matrix (3.7) using a matrix decomposition technique.
Under the matrix decomposition technique, the controller gain matrix Ks can be transformed into a set
of vector variables, i.e.,

Ks =


ks11 ks12 · · · ks1ℑ

ks21 ks22 · · · ks2ℑ
...

...
. . .

...

ksℑ1 ksℑ2 · · · ksℑℑ

 =


ks11 ks12 · · · ks1ℑ

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 + · · · +


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...

ksℑ1 ksℑ2 · · · ksℑℑ


= 1(1)

ℑ
× (ks11ks12 · · · ks1ℑ) + · · · + 1(ℑ)

ℑ
× (ksℑ1ksℑ2 · · · ksℑℑ) =

1(1)
ℑ
χ(1)⊤

s

1(1)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµs
+ · · · +

1(ℑ)
ℑ
χ(ℑ)⊤

s

1(ℑ)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµs

=
∑ℑ

i=1
1(i)
ℑ
χ(i)⊤

s

1(i)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµs
.

This means that these vector variables can be computed by using the LP toolbox in MATLAB. In
fact, the term 1(i)⊤

ℑ
B⊤

∑
s∈Q ψ̃sµs is introduced to transform (3.7) into an LP form as shown in the

conditions (3.12), (3.13), (3.16), and (3.17).

Remark 4. From the derivation in Theorem 1, it is easy to achieve the positivity and stochastic stability
of the system (3.2) for κo

max = 2. For the special case κo
max = 1, two points are stated. On one hand, it

can follow from (3.6e) that ℘2π
∑

s∈Q ψ̃sA⊤o
∑

h∈P ς̃oh(1)µs − λo + ℘2
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≺ 0. Together with the
remaining conditions in (3.6), the positivity and stochastic stability of the system (3.2) can be verified
for κo

max = 1. On the other hand, it is assumed that the term
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs equals to zero when

κo
max = 1. This further enhances the validity of the condition (3.6e) for κo

max = 1.

Remark 5. As discussed in the Introduction, there are two widely used switching rules in positive
stochastic systems, i.e., Markov and the semi-Markov processes [9, 10, 29, 30]. Compared with the
Markov process, the semi-Markov process removes the restriction that the sojourn time follows an
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exponential distribution. In [9], the obtained results were concerned with MJ-PSs. In [10, 29, 30],
the stochastic stability of SMJ-PSs was addressed. In fact, system modes of SMJ-PSs may be
hidden [14–17]. However, so far, no efforts have been devoted to the hidden mode issues of MJ-PSs,
not mentioning HSMJ-NPSs. Theorem 1 attempts to construct a novel σ-stochastic stabilization
framework for HSMJ-NPSs in a linear approach. The obtained framework develops the semi-Markov
process of positive systems in [10, 29, 30] to the hidden semi-Markov process. The difficulty lies in
how to design a control strategy for HSMJ-NPSs under the hidden Markov process owing to the
uncertainties of the process. The results in [10, 29, 30] can be regarded as some special cases of the
results in Theorem 1.

Theorem 1 gives sufficient conditions for the σ-stochastic stabilization of HSMJ-NPSs in
observable emission probabilities. In practice, it is hard to obtain full emission probabilities. Thus, we
consider the system (3.2) with partially known emission probabilities. Inspired by the results in [27]
and [28], we introduce the following formal definition of partially known emission probabilities.
Denote Q = Qo,Z ∪ Qo,U with Qo,Z = {s ∈ Q : ψos is known} and Qo,U = {s ∈ Q : ψos is unknown}. On
the other hand, if QZ

o , ∅, then denote Qo,Z = {Z1
o ,Z

2
o , . . . ,Z

qo
o }, 1 ≤ qo ≤ Q, and ψZ

o =
∑

s∈Qo,Z
ψos,

where Zqo
o is the column number of the qth known element in the oth row in the emission probability

matrix.

Theorem 2. If there exist constants ℘1 > 1, ℘2 > 1, ρo > 0, Rn vectors λo ≻ 0, µs ≻ 0, and Rm vector
χ(i)

s ≺ 0 such that the conditions

π
∑ℑ

i=1 1(i)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµsAo + Bo
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≻ 0, (3.18a)

℘1π
∑

s∈Qo,Z
ψ̃sA⊤o µs − ψ

Z
oρoλo + ℘1

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.18b)

π
∑

s∈Qo,Z
ψ̃sA⊤o µs − ψ

Z
oµa +

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.18c)

π
∑

s∈Qo,Z
ψ̃sA⊤o

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µs − ψ

Z
o
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µa +

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.18d)

℘2π
∑

s∈Qo,Z
ψ̃sA⊤o (

∑
h∈P ς̃oh(1)µs +

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µs) − ψZ

oλo + ℘2
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≺ 0, (3.18e)

λo ≤ ℘1µs, λh ≤ ℘2µs, (3.18f)

hold for s ∈ Qo,Z and κo
max ∈ [2,+∞) and the conditions

π
∑ℑ

i=1 1(i)⊤
ℑ

B⊤µsAo + Bo
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≻ 0, (3.19a)

℘1πA⊤o µs − ρoλo + ℘1
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≺ 0, (3.19b)

πA⊤o µs − µa +
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤

s ≺ 0, (3.19c)

πA⊤o
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs −

∑κo
max
κ=2

∑
h∈P ς̃oh(κ)µa +

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.19d)

℘2πA⊤o (
∑

h∈P ς̃oh(1)µs +
∑κo

max
κ=2

∑
h∈P ς̃oh(κ)µs) − λo + ℘2

∑ℑ
i=1 1(i)

ℑ
χ(i)⊤

s ≺ 0, (3.19e)

λo ≤ ℘1µs, λh ≤ ℘2µs, (3.19f)
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hold for s ∈ Qo,U and κo
max ∈ [2,+∞), respectively, then the system (3.2) is positive and σ-stochastically

stable under the observed mode-dependent controller (3.1) with

Ks =
∑ℑ

i=1
1(i)
ℑ
χ(i)⊤

s

1(i)⊤
ℑ

B⊤
∑

s∈Q ψ̃sµs
, s ∈ Qo,Z, (3.20a)

Ks =
∑ℑ

i=1
1(i)
ℑ
χ(i)⊤

s

1(i)⊤
ℑ

B⊤µs
, s ∈ Qo,U . (3.20b)

Proof. Recalling the fact Q = Qo,Z ∪ Qo,U , the conditions (3.18)–(3.20) can guarantee the validity of
the conditions (3.6) and (3.7). This completes the proof. □

Remark 6. In [9] and [10], the stochastic stabilization of Markov jump positive systems x(k + 1) =

AO(k)x(k) + BO(k)u(k) was designed as: u(k) = KO(k)x(k) =
∑ℑ

i=1 1(i)
ℑ
χ(i)⊤
O(k)

1⊤
ℑ

B⊤
∑
O(k)∈Q ψ̃O(k)µO(k)

x(k). It should be pointed

out that an additional condition χ(i)
O(k) ⪯ χO(k) is introduced in these literature. This increases the

conservatism of the design. In Theorems 1 and 2, an improved control design is proposed in (3.7)
and (3.20). Under the novel design approach, the additional restriction condition χ(i)

s ⪯ χs is removed.

Remark 7. For non-positive Markov jump systems [21–24, 30], quadratic Lyapunov functions were
always used. Owing to the positivity property, quadratic Lyapunov functions are not very effective for
positive systems and it has been observed that CLF and LP are more suitable [7, 9, 10, 12, 13, 29, 31].
How to design the control gain matrices, how to construct a suitable CLF for HSMJ-NPSs, and how
to address LP-based conditions are key to handling the issues of HSMJ-NPSs. A novel stochastic
stabilization framework is constructed in Theorems 1 and 2 for HSMJ-NPSs. It should be noted that
such a design framework is easily developed for other issues of positive stochastic jump systems.

4. Illustrative examples

In [10] and [31], a communication network model with three nodes was established via SMJ-PSs in
the following form:

x(k + 1) = AO(k)x(k) + BO(k)uO(k)(k), (4.1)

where O(k) denotes busy- and idle-time models of communication networks by the semi-Markov
process and x(k) = (x1(k), x2(k), x3(k))⊤ is the number of data transmitted between the three nodes.

Note the fact that switching between busy- and idle-time cases is usually uncertain and random in
communication network operation. Moreover, many uncertainties, such as environment and
temperature, exist in communication network operations. This is a typical nonlinearity phenomenon.
In [26–28], switching rules with uncertain and random are described via a hidden semi-Markov
process. Inspired by [26–28], we further assume switching rules between busy- and idle-time cases of
communication networks under uncertainties are hidden. Thus, the communication network
model (4.1) is changed as:

x(k + 1) = AO(k) f (x(k)) + BO(k)uO⋆(k)(k), (4.2)

where O⋆(k) is an observed process for O(k).
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By the analysis above, it is reasonable to use the system (2.1) with hidden semi-Markov processes
to improve the communication network model, where

A1 =


0.42 0.37 0.29
0.29 0.38 0.33
0.30 0.45 0.49

 , B1 =


0.25 0.29
0.26 0.28
0.29 0.27

 , A2 =


0.52 0.36 0.28
0.30 0.35 0.37
0.30 0.24 0.45

 ,
B2 =


0.29 0.31
0.28 0.28
0.26 0.28

 , A3 =


0.62 0.29 0.26
0.30 0.39 0.37
0.31 0.29 0.49

 , B3 =


0.30 0.32
0.26 0.29
0.29 0.29

 ,
where f (x(k)) = 0.3xi +

xi
x2

i +1 and o, s = {1, 2, 3}. The upper bounds of the sojourn time are κ1
max =

κ2
max = κ

3
max = 5. The emission probability matrix is assumed to have four cases as listed in Table 1,

where ? is an unknown element of the emission probability matrix. The system modes are governed
by the semi-Markov process [ςoh(κ)] = [ηoh(κ)δoh], which is borrowed from [27]:

[δoh] =


0 0.7 0.3

0.4 0 0.6
0.5 0.5 0

 , [ηoh(κ)] =


0 ηκ12 ηκ13
ηκ21 0 ηκ23
ηκ31 ηκ32 0

 ,
where

ηκ12 =
0.6κ · 0.410−κ · 10!

(10 − κ)! · κ!
, ηκ13 =

0.4κ · 0.610−κ · 10!
(10 − κ)! · κ!

,

ηκ21 = 0.9(κ−1)2
− 0.9κ

2
, ηκ23 =

0.510 · 10!
(10 − κ)! · κ!

, ηκ31 = 0.4(κ−1)1.3
− 0.4κ

1.3
, ηκ33 = 0.3(κ−1)0.8

− 0.3κ
1.3
.

Table 1. Four cases of the emission probability matrix Γ.

Case 1 Case 2 Case 3 Case 4
0.70 0.20 0.10
0.10 0.60 0.30
0.40 0.50 0.10




0.70 0.20 0.10
0.10 ? ?
0.40 0.50 0.10




? 0.20 ?
0.10 0.60 0.30
0.40 0.50 0.10




? ? 0.10
0.10 0.60 0.30

? ? 0.10


Choose ρ1 = 1.1, ρ2 = 1.2, ρ3 = 1.3, π = 0.2, π = 0.4, and ℘1 = ℘2 = 1.1. By Theorem 1, one can

obtain for Case 1 that

KCase1
1 =

(
−0.1363 −0.1236 −0.1377
−0.1156 −0.1000 −0.1105

)
,

KCase1
2 =

(
−0.1296 −0.1175 −0.1309
−0.1099 −0.0950 −0.1051

)
,KCase1

3 =

(
−0.1266 −0.1148 −0.1279
−0.1074 −0.0928 −0.1026

)
.

The initial condition of the system is set as x0 =
(

25.5 20.5 17
)⊤

. In this condition, Figures 1
and 2 show the state of open- and closed-loop systems in Case 1. From Figure 1, the states under
completely known emission probabilities are positive and stochastically stable. It means that the
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proposed observed mode-dependent controller is effective. By Theorem 2, one can obtain for
Cases 2–4 that

KCase2
1 =

(
−0.1889 −0.1727 −0.1896
−0.1691 −0.1488 −0.1558

)
,

KCase2
2 =

(
−0.1756 −0.1605 −0.1762
−0.1572 −0.1383 −0.1448

)
,KCase2

3 =

(
−0.1774 −0.1621 −0.1779
−0.1588 −0.1397 −0.1462

)
,

KCase3
1 =

(
−0.2096 −0.2079 −0.2236
−0.1294 −0.1033 −0.0704

)
,

KCase3
2 =

(
−0.2209 −0.2190 −0.2356
−0.1363 −0.1089 −0.0742

)
,KCase3

3 =

(
−0.2403 −0.2383 −0.2564
−0.1483 −0.1184 −0.0807

)
,

and

KCase4
1 =

(
−0.2010 −0.1872 −0.2072
−0.1494 −0.1072 −0.0934

)
,

KCase4
2 =

(
−0.2418 −0.2252 −0.2492
−0.1797 −0.1290 −0.1123

)
,KCase4

3 =

(
−0.1888 −0.1759 −0.1946
−0.1403 −0.1007 −0.0877

)
.

Figures 3 and 4 show the states of open- and closed-loop systems in Case 2, Figures 5 and 6 show
the states of open- and closed-loop systems in Case 3, and Figures 7 and 8 show the states of open- and
closed-loop systems in Case 4. Simulation results show that the designed controller is still effective
under partially known emission probabilities.
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Figure 1. States of the open-loop system in Case 1.
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Figure 6. States of the closed-loop system in Case 3.
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Figure 7. States of the open-loop system in Case 4.

0

25

5

20 30

10

2515

15

20
10 15

20

105
5

0 0

x(k)

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

x
1
(k)

x
2
(k)

x
3
(k)

0
2

2

1

1.51

2

1
0.5

0 0

Figure 8. State for the closed-loop system under Case 4.

5. Conclusions

This paper has studied the stabilization of HSMJ-NPSs with completely known- and partially
known emission probabilities. Hidden semi-Markov jump processes are employed to govern the
switching of systems. Using a CLF and LP, the observed mode-dependent controller is constructed.
The designed stabilization framework will be further developed for other issues of positive systems
such as stability analysis, nonlinear observer design, event-triggered controller design, etc. The results
obtained in this paper are based on an idealized assumption that the considered systems do not contain
external perturbations. Thus, how to construct a stochastic stabilization framework on HSMJ-NPSs
with completely unknown emission probabilities in the presence of disturbance is an interesting topic
in future.
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