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1. Introduction

Clarke’s subdifferential operator is associated with a type of nonlinear inclusion known as
hemivariational inequalities. These inequalities have applications in structural analysis and non-
convex optimization. The two main types of inequality problems are variational inequalities and
hemivariational inequalities. Hemivariational inequalities handle nonsmooth, nonconvex energy
functions, whereas variational inequalities primarily deal with convex energy functions. In 1981,
Panagiotopoulos introduced the concept of hemivariational inequality as a method to represent
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mechanical obstacles. Hemivariational inequalities or subdifferential inclusions can be used to model
various nonsmooth contact mechanics issues involving multivalued and nonmonotone constitutive
laws with boundary conditions (see [1-3]). Since then, numerous researchers have made significant
contributions to the field of hemivariational inequalities, as seen in [4-9]. Moreover, neutral differential
systems with impulsive effects have become a prominent area of research, modeling real-world
processes that undergo sudden changes at specific points. This field has far-reaching applications
in areas like finance, economics, mechanics, neural networks, electronics, and telecommunications.
Notably, the authors of [10] investigated the controllability of nonlocal neutral differential inclusions
with impulse effects. Researchers looked at the existence of impulsive multivalued neutral functional
differential inclusions [11, 12].

Research on controllability in hemivariational-type systems has gained significant attention from
the scientific community in recent times. Control problems have significant implications for various
fields, including engineering, physics, and finance [13]. Despite the progress made, many intriguing
questions and concepts remain unexplored. Notably, the authors of [14,15] established the existence of
optimal control in hemivariational inequalities, while [16,17] investigated optimal control in parabolic
hemivariational inequalities. Furthermore, [18, 19] demonstrated the existence of optimal control in
hyperbolic systems, contributing to the advancement of the field. Due to their wide application to
numerous pragmatist mathematics fields, neutral systems have attracted attention recently. Neutral
systems have numerous applications in various fields, including thermal expansion of materials,
biological advancements, surface waves, and stretchability, which benefit from neutral systems either
directly or indirectly. Additionally, researchers have extensively studied hemivariational inequalities
with a neutral type in [20,21]. For further information regarding the system with hemivariational
inequalities, refer to [22-26]. Recently, there has been a surge of interest in Clarke’s subdifferential
evolution inclusion problems, particularly in the context of nonsmooth analysis and optimization.
Frictional contact analysis can effectively characterize the interaction between a piezoelectric body
and an electrically conducting foundation, and the frictional contact between a piezoelectric cylinder
and a foundation exhibits anti-plane shear deformations. Moreover, the authors of [27] have established
approximate controllability results for Sobolev-type Hilfer fractional neutral evolution problems with
Clarke’s subdifferential-type problems. Our proposed problem presents a model that combines the key
elements of hemivariational inequality and fractional impulsive differential equations into a unified
framework. This study establishes approximate controllability results for a neutral differential system
with impulsive effects, formulated as a hemivariational inequality. Next, we will define the specific
system under consideration, which will be the focus of our investigation:

— [ () = g1(p, u(@)] + AlP)u(p) + BV(g), Wpm
+H (o, u(p);w) 20,0, £ € L =[0,a], Y w e M,
u(0) = ug, u'(0) = uy, (L.1)
Au(p;) = Li(u(pi)),
Au' (@) = Ki(u(ey)), i=1,2,3,....m, 0< ¢ <y <..<p, <a.

Here (-, -) 5 stands for the inner product of the separable Hilbert space M and A : D(A) € M —- M
is a closed, linear, and densely defined operator on M. H°(y, ;) denotes the generalized Clarke’s
directional derivative [6] of a locally Lipschitz function H(yp, -) : M — R. The function g; : ¢ X M —
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M. The control function v € V takes values from L*(£, V) and V is the control set which is also a
Hilbert space. Let Z : V — M be the bounded linear operator. Let 0 < ¢; < ¢ < ... < Oy < Q1 = @
be pre-fixed points and the symbol Au(yp;) represents the jump in the state u at time ¢ which is defined
by Au(p;) = u(e;) — u(e;), and u(p; ) and u(¢;") denote the left and right limit of u at ¢;. £; : M — M
and K; : M — M,i=1,2,3,...,m, are impulsive functions.

The structure of the article is presented in the following way:

e We begin by reviewing key definitions, fundamental theorems, and initial findings from a previous
section.

e The core focus then shifts to exploring the existence of mild solutions for the system represented
by Eq (1.1).

e Next, we investigate the approximate controllability of the system (1.1).

e Finally, we solidify our theoretical results by presenting a concrete example.

2. Foundations and background

Let Z and ZZ* be a Banach space and its dual, respectively with || - ||z and (-, -) is the duality pairing
of Z and Z*. The Banach space &% (£, ) is the set of all piecewise continuous functions from
L = [0, a] into Z together with ||u|| 4 = SUPcq ()|l z. Also,

ML) :={0 € Z : U # 0 is (weakly) compact (convex)};
Mp(e)(Z) :={0 C Z: U # 0is closed (convex)}.

Consider the non-autonomous second-order initial value problem:

37 () = AlP)3(p) +T(@), 0<z,p<a, (2.1)
3(2) =30, 3'(2) =31, (2.2)

where A(p) : D(A(e)) € M — M, ¢ € [0,a] is a closed densely defined operator and f : [0,a] —» M
is an appropriate function. One can refer to [15, 28-30] and the references therein. A significant
number of articles relate the existence of solutions to the (2.1)-(2.2) problem to the existence of the
evolution operator Q(¢p, z) for the homogeneous equation

3 (@) = A(p)3(e), 0<p<a. (2.3)

Assume that the domain of A(y) is a subspace D that is dense in M and independent of ¢, and that
the function ¢ — A(p)3 is continuous for each 3 € D(A(p)).
In view of Kozak’s work [31], we shall apply the following evolution operator notion in this study.

Definition 2.1. A family Q of bounded linear operators Q(¢, z) : [0,a] X [0,a] — L(M) is called an
evolution operator for (2.3) if the following conditions are satisfied:

(Z1) For each 3 € M, the mapping [0,a] X [0,a] > (¢,2) = O(p,2)3 € M is of class C' and

(i) for each ¢ € [0,al, Oy, p) =0,
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(ii) forall ¢,z € 10, al, and for each 3 € M,
0 0
_Q(QD’ Z)S B =3 _Q(% Z)3 B = -3
(9()0 p=z 0z @=z

(Z2) For all ¢,z € [0,al, if 3 € D(A), then Q(¢.2)3 € D(A), the mapping [0,a] X [0,a] > (¢,2) —
0(p,2)3 € M s of class C? and

(i) £0(p,2)3 = AP, )3
(id) (;"—;Q(so, 23 = 0(¢. 2)B(2)3,
(i) L2 3 Q¢ z)a = =0.

(Z3) For all ¢,z € [0,al, if 3 € D(A), and then £0(¢,2)3 € D(A), then 25 £0(¢,2)3 52 0(p,2)3
and

() ZL0p, 2 = ﬂ(cp) L0(¢, 2)3,
(ii) LL£0(p, 23 = £0p, DA,
and the mapping [0, a] X [0,a] > (p,z7) — ﬂ(go)%Q(tp, Z)3 Is continuous.

Let us take

90(¢p,
Cp.2) = —%.

Also, for some positive constants .47 and .4, we set supy, .. [0, 2l < .45 and
SUPy<,.<q [IC (@, DI < A1 and
10(p + g,2) — Op, DIl < Algl, (2.4)

for all z, ¢, ¢ + g € [0, a]. The mild solution 3 : [0,a] — M of (2.1)-(2.2) is:

3(p) = Clp,2)30 + O, 2)31 + fw (e, mf(mdn.
0
Let us start by discussing the necessary definitions and findings from the multivalued analysis. The
following sources [7,32,33] are recommended for readers in addition to multivalued maps.
Definition 2.2. Given a Banach space Z and a multivalued map H : Z — 22\{0} = N(Z), we say
(i) H is convex and closed valued, only when H(u) is convex and closed valued for all u € Z.

(it) H is said to be upper semicontinuous on Z, if for all y € Z, Hu) # 0 is closed in Z and if for
each open set I| of Z which contains H(u), then there is an open neighborhood E of u such that
H@E) CJ;.

(iii) H is bounded on bounded sets if H(B) = U,egH(u) is bounded in Z for all B € #,(Z) (i.e.,
sup,zisupllikll : k € H(u)}} < o0).

(iv) H is supposed to be completely continuous provided that H(J,) is relatively compact, for all
bounded subset J, C Z.

(v) H has a fixed point if there is a u € Z such that u € H(u).

AIMS Mathematics Volume 9, Issue 10, 26462-26482.



26466

For a locally Lipschitzian functional H : Z — R, we denote H’(g; p), the Clarke’s generalized
directional derivative of H at point ¢ in the direction of p, that is,
H® + - H®®
H’(g; p) := lim sup @+yp) ( ).
y—0* 9—q Y

Also, 0H(q) := {g* € Z* : H%q;p) > {q"; p),forevery p € Z} denotes the generalized Clarke’s
subdifferential.
The subsequent features and outcomes will facilitate our goal achievement:

Lemma 2.3. [9] If the function H : U — R is a locally Lipschitz on an open set G of Z, then
(i) Forall p € Z, it has H%(q; p) = max{{q"; p) : for all ¢* € 6H(q)};

(ii) For all q € U, the gradient 0H(q) is a nonempty, convex, weak*-compact subset of Z* and
lg*llz- < M, for all g* € dH(q);

(iii) The graph of 0H is closed in UX Z;.. That is, if {q,} C U, {q;,} C " are sequences as q, € 0H(q,)
and q, = q € Z, q, — q" weakly” in Z*, then q° € 0H(q) (where the Banach space Z* furnished
with the {*-topology is denoted by Z;.);

(iv) The multifunction U 5 g — 0H(q) € Z" is upper semicontinuous which maps G into Z;..

Lemma 2.4. [9] Let Z be the separable reflexive Banach space, 0 < a < oo and H : (0,a) X Z — R,
such that H(-,w) is measurable for each w € Z and H(y, -) is locally Lipschitz on Z for all ¢ € (0, a).
Then the multifunction (0,a) X Z 3 (¢, w) — dH(p,w) C Z* is measurable.

As discussed in [9], we can investigate the existence of mild solutions and approximate
controllability for the following semilinear inclusions:

|7 @ = g1, u(@))| € AlP)uly) + Bv(p) + IH(p, 2(p)), ¢ € £ = [0, al,
u(0) = ug, ' (0) = uy, (2.5)
Au(pi) = Li(u(p), Au'(¢;) = Ki(u(p:)), i =1,2,3,..,m.

Now, we can explore the implication that every solution to Eq (2.5) is also a solution to Eq (1.1).
Hence, if u € 2% (L, M) is a solution of (2.5), there exists h(p) € OH(p, u(p)) provided h € L*(2, M)
and

L]0 - 166 ute))| = AW + Br(e) + hip), 9 € £ = 0,a],
u(0) = ugy, u'(0) = uy,
Az(pi) = Li(u(pi), Au'(@i) = Ki(u(g)), i =1,2,3,....m,

which implies
(= 1) - g1(eut@)| + A + Brip), )
+(h(@), w)pm =0, ¢ € € = [0,a],for all w € M,

u(0) = up, u'(0) = uy,
Az(@i) = Li(u(yp)), Au'(¢;) = Ki(u(y)), i =1,2,3,...,m.
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Since (h(p), wypm < H(¢, u(p); w) and h(p) € H(p, u(p)),

(=2 |w (@) — g1(p, u(@) | + AlP)u(p) + Bv(9), ) 5

+ H%o, u(p); w), ¢ € & =1[0,a], forall w € M,
u(0) = uo, '(0) = uy,
Au(‘Pi) = Li(”(%’))’ AU/(%’) = %(u(‘pt))a I = 1’ 25 39 ey 1M1

Therefore, our initial focus will be on examining the semilinear inclusion (2.5), which proceeds our
investigation of the hemivariational inequality (1.1). According to established literature [33, 34], the
mild solution for problem (2.5) is defined as below.

Definition 2.5. For all v € L*(8,V), a function u € PE€ (L, M) is a mild solution for (2.5) if there
exists h € L*(8, M) as h(p) € 0H(p, u(p)) almost everywhere on ¢ € 2,

'
u(g) = C(p, Oy + O, Oy = £1(0,u(O)] + f Clg, g1 (2 u(@)dz + f Olp. Dh()dz
0 0

+ f; Q¢ )BVdz+ D Clo, e) Lilulg) + ) Olp, p)Ki(u(p), ¢ € L.

0<pi<p O<gi<e
Let us take the following assumptions:
(A1) The function H : £ X M — R satisfies:

(i) Yue M, ¢ H(p,z)is measurable;
(ii) u — H(y, u) is locally Lipschitz continuous for a.e. ¢ € ¥;
(iii) There is a function b(p) € L*>(£,R*) and e > 0 such that

I0H (g, w)l| = supfl|All : h(p) € OH (@, u)} < b(g) + ellull,
for a.e. ¢ € € and for each u € M.

(A2) In the function g; : £ X M — M, there exists some constants Cy, C, > 0, and for every u € M,
Y1, € &, we have

llg1 (1, u(p1)) — g1(p2, u(@))ll < Cillu(epr) — u(p2)ll,
llg1 (@1, u(@))ll < Co(1 + [lu(e)ID.

(A3) For some constants c¢;, [; > 0, the maps £L;, K; : M — M are continuous, and
1Ll < ci, 1Kol <1, i=1,2,3,...,m, forallu e M.
Let M : L2(2, M) — 2E°M be defined as below:
M(u) = {k € L*(8, M) : k(¢) € 0H (¢, u(¢)) almost everywhere, ¢ € €}, for all u € L*(2, M).

Lemma 2.6. [35] Let (A1) and M be true. If u, — u in L>(8, M), w, — w weakly in L*({, M) and
u, € M(u,), and then u € M(u).

AIMS Mathematics Volume 9, Issue 10, 26462-26482.



26468

Lemma 2.7. [9] Let all hypotheses and (A1) hold. Then for every u € L*(2, M), the set M(u) has
nonempty, weakly compact and convex values.

Theorem 2.8. [9] Consider the Banach space Z which is locally convex and X' : Z — 2< is a compact
convex valued, upper semicontinuous multivalued map such that there exists a closed neighborhood J
of 0 for which ('(J) is relatively compact provided

O={xeZ:yxe (), for somey > 1}

is bounded. Then Y has a fixed point.
3. Existence results

Theorem 3.1. Forallv € L*(2, V), provided that (A1)—(A3) are fulfilled, then (2.5) has a mild solution
on L such that a(NCy + N3e) < 1, where N| = SUp,, cp0.q1 1€ (@, I, N = SUP,, cf0.41 19, 2.

Proof. Initially, choose any u € Z%€(8, M) C L*(2, M), by Lemma 2.7. Now, define T :
DPE (2, M) — 27CEM 4.
T ={f € PEEM) : £(@) = Cle, 0o + O, Olus = 81(0,u(O))]
¢ v v
¢ [ ameuoiz+ [ owonaa+ [ oo
0 0 0

b Clop Ll + Y O, @)Kilule)), he M), uc FE M)

O<@i<e O<gi<g

It is clear that we can determine a fixed point of the multivalued map ' that satisfies Theorem 2.8.
First, note that the set-valued map T'(u) is convex due to the properties of M(u). Now, let us proceed
with the proof of the theorem as follows:

Step 1. T(B,) C (B,),r > 0, is bounded in %€ (L, M), where B, = {u € E€ (L, M) : |lul|lzy < r}.
Here, it suffices to demonstrate the existence of a positive constant ¢ such that for each o € Y(u), u €
B, |lo||z¢ < €. If o € T(u), then there is a h € M(u) provided

($) = Clp, 0o + O, 01ty = g1(0, u(0))]
P 2
+ fw Cle, 2)81(z, u(2))dz + f (e, )h(2)dz + f O(p, 2)Bv(2)dz
0 0 0
+ L Clp. ) Lilul@)) + ) e, e)Kilulp)), € L.

O<pi<ep O<pi<ep

By Holder’s inequality,
12
o)l < I, 0oll + 10, 0}t = £1(0, uONII + | f Cl, g1z, u(2)d|
0

2 2
+| f 0(g, )| + f 0(¢, BV
0 0
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+ Y lewenLiwen)| + 3 |lcw eoriwen|
0 0<gi<g

<@i<yp

P
< Mlluoll + A2l|[ur — g1(0, uO)]Il + =/V1f Co(1 +r)dz
0

2
+ M f [b(2) + er + 1Bz
0
M L@+ A D @)

O<gi<e O<gi<e

< Mlluoll + Al = 10, uO)I| + AaCa(l + ) + [ Vallbll ez, + era
+ Val UMl + A ) et N Y L=t
i=1 i=1

Thus, T(B,) is bounded.

Step 2. {T'(u) : u € B,} is completely continuous.
Let us note that for any u € B,, o € Y(u), there exists & € M(u) such that for all ¢ € £,

©
@ < IC, O)uoll + 1Q(p, 0}ty — 1(0, O + | fo Clg, g1z, u@)

+| fo 0o + | fo 0 0]
+ 3 |lc@enLiwen| + Y. [lc eoiuen)|

O<pi<g O<pi<g

For0 < ¢ <& <aandt > 0 very small,

llo(§2) — o (€DlIm < IC(€2,0) — CEr, Olllluoll + 1Q(€2,0) — Q&1 O [ty — g1(0, u(O)]I|
=
+ fog IC (&2, 2) — C(&1, 2Ig1(z, u(2))lldz

+ IC(&2,2) — C(&1, 2IlIg1 (2, u(z)lldz
&t

+ IC(&2, DIl MIg1(z, u(2))lldz
&1

=
+f; 10(&2, 2) — Q&1L DNIA(z) + Bv(2)lldz

+ 10(&2,2) — Q&1L DN IA(2) + Bv(2)lldz
&t

+ | 10E. DI Ihz) + Zv()lldz

&

+ Z IC (&2, i) — C&1, eIl Liu(e)l
O<pi<a

+ Z 19(&2, i) — O, eIl K (@)
O<pi<a
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<1IC (&, 0) = C&, O)lluoll + 102, 0) = Q& Ol = 10, uO)]I
=
' f IC(&,2) = C&, DICH( + r)dz
0

+ | IC(&2,2) = C(&1, DNC(1 + ndz + A Co(1 + 1) (& — &)
&t

1t
+ f(f 10(&2, 1) — O(&1, ei)ll[D(2) + er + | AlIIV(2)lI]dz
+ f 10(&2,2) — Q&1 DNI[b(2) + er + | BlIIv(2)I]dz
&t

+ M f [b(2) + er + || B|lIV(2)I]dz + Z IC(&2, i) — C(&r, @Dl LiCu(e)l
&1

O<tp,-<a

+ Z 10(&2, 1) — Q&1 eDIIIFK(u(@)l- (3.1)

O<pi<a

From the uniform operator topology [33, Lemma 6.2], it is easily understood that (3.1) tends to zero of
ueB,asé&H —»Erandt — 0.

Equivalently, for &, = 0 and 0 < &, < a, we can show that ||0(&;) — uo|| »( tends to zero independently
of u € B, as & — 0. Hence, we can conclude that {T'(«) : u € B,} is equicontinuous of FE (L, M).

Finally, from the assumptions (A1) and (A3) and by the definition of a relatively compact set, it is
not difficult to check that {o(r) : o € T(8B,)} is relatively compact in M. Thus, by the generalized
Arzela-Ascoli theorem, we get that T is a multivalued compact map.

Therefore, based on the above arguments, Y is completely continuous.

Step 3. Assume u, — u, in %€, M), o, € Y(u,) and o, — o, in L€ (L, M). Let us check
0. € T(u,). Itis obvious that o, € T (u,) exist only when &, € M(u,) such that

74(9) = C(, 0ug + O, Ot - 21(0, u(0))]
P P P
+ [ caneum@uz [ owam@is [ owamva
0 0 0
+ ) Cle gLt + D O, e)Kiu(p). (3.2)

0<gi<@ O<pi<e
Here {h,},s1 € L*(2, M) is bounded from the hypothesis (A2). Hence we may assume that
h, — h,. weakly in L*(2, M). (3.3)
From (3.2) and (3.3), we have
au(p) = Cle, 0ug + O, 0)[ur — £1(0, u(0))]
+ fo ’ Cl, 2)81(z, u(2))dz + fo ’ (@, D)h.(2)dz + fo ' Oy, 2)#v(2)dz
+ D Cle gLt + D Op, p)Kiu(p)). (3.4)

O<gpi<p O<gpi<e
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We can see that o7, — o, in € (L, M) and h,, € M(u). According to Lemma 2.6 and (3.4), h. € M(u,).
Then, o, € Y(u.), and this shows that T has a closed graph. Hence using Proposition 3.12 of [36]
implies that it is upper semicontinuous.

Step 4. A priori estimate.

Based on the results from Steps 1-3, we have established that the multivalued map T satisfies
the following properties: upper semicontinuity, convex-valuedness, compactness, and relative
compactness of T'(B,). Therefore, 1 meets the conditions of Theorem 2.8, which implies that

O={ue LM :yue Y, y>1}
is bounded. To prove T has a fixed point, let u € U, and & € M(u) such that

u(p) =y~ Cle, Oug + O, 0)[uy — g1(0,u(0)] + " j: C(g, 2)g1(z, u(2))dz

2 2
+y ! fo O(g, Dh(z)dz + ! fo O(p, 2) Bv(2)dz
+y D Clo ) Liu@)) +y™" Y 0o, p)Kiu(pi).

0<gi<e O<pi<¢p
From our assumptions,

2
llu(@)lla < IC (e, Ouoll + 1O, )1y — g1(0, u(ON]Il + ||f0 C(@, 2)81(z, u(z))dz]|

P
+ i fo O(p, 2h(z)dz]| + || j: O(p, 2)Bv(2)dz||
+ L IC@ e Liu@ll + 110, e Kiu@)l

0<@i<p O<gi<p

12
< Mlluoll + A2|[ur — g1(0, u(ON]Il + f/Vlf Co(1 + [lu(z)IDdz
0

4
+=/sz0 [a(2) + ellu(2)ll + |1 BllIv(@)Ildz + A1 Z I-LiuCe)l

O<pi<e

+ M K@)

0<pi<y
< p+ Zllull, (3.5)

where

p =Mluol + Muy — g1(0,u(0)] + MCab + (1Bl 22 2y
BV Va + Y hl+4 ) e
i=1 i=1

H = a(NCy + Ne).

Hence, by the assumption .#] < 1 and (3.5), we can see that
0
llull = sup |lu(p)ll < p + illull, thus [ju|| < =: 0.
pel 1- 1%/1

Hence, Y has a fixed point. O
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4. Approximate controllability results

Consider that the mild solution for the Eq (2.5) is u(-; v), the control variable v has values in L*(2, V),
and the initial value is uy, u; € M. At the terminal time a, the accessible set of the system (2.5) is
defined as R(a, ug, u;) = {u(a; ug, u;) : v € L*(L, V)).

Definition 4.1. The Eq (2.5) is approximately controllable on &, if for any initial value uy,u; € M,
then R(a, ug, u;) = M.

Consider the linear differential system:

{u"(so) = Alp)ulp) + Bv(p), ¢ € £ = [0,al,

4.1
u(0) = ug, u'(0) = uy. 1)

Now, define the operators for the system (4.1) as:
1o =f O(a,2)BA Q" (a,2)dz and  Z(B,Yg) = (B +YG) ™", B> 0,
0

where %" and Q*(y) are adjoint of Z and Q(yp), respectively.

Lemma 4.2. [9] The system (4.1) is approximately controllable on L iff  Z(B, ) — 0 as § — 0* in
the strong operator topology.

Choose any 8 > 0, u € 22€ (¢, M) c L*(2, M) and u, € M, as stated in Lemma 2.7, and it is
possible to define a multivalued map (s : 2€ (L, M) — 27¢M given by

Tp(u) = {f € ZCELM): f(p) = Clp,0up + Qp, 0)[ur — £1(0,u(0))]

P P
+ f C(p,2)81(z, u(z))dz + f O(p, Dh(z)dz
0 0

14
« [Tow B Y Cee L)

O<pi<¢p
+ > 0@ e Kiulg),  he M),
O<pi<p
and
va(p) = B Q" (@, DR B, 1) ua — Cla, 0ty — O(a, 0)[uty — 81(0, u(0))]
- f C(a,2)g1(z, u(z))dz — f O(a, 2)h(z)dz
0 0
- Y Cla.gLiue) - . Oa, e)Kiu(g).
O<p;<a O<pi<a

Theorem 4.3. Let (A1)—(A3) be true. (g, for all B > 0, has a fixed point on £ = [0, a] if

<1,

NPNBI
a(MCy + Mre)| 1+ 2

where N := Sup,, 1., IC(@, DI, A2 = SUp,, 10,1 1O, 2.
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Proof. For every u € &% (£, M), by the nature of M(u), we can say Yz is convex.
Step 1. For every p > 0, Y3(B,) is bounded in € (£, M),

By ={ue PECEM) :|lullzs < b}

Here, it is sufficient to prove that there exists a positive constant /z and for all o € Yg(u), u €
By, |lollze < lg. If o € Tp(u), there is h € M(u) such that

(¢) = Cl, 0o + O, )1y = g1(0, u(0))]
P 2
+ fw Cle, 2)81(z, u(z))dz + f (e, )h(2)dz + f O(p, 2)#v(2)dz
0 0 0
+ Y Cle e Liuen) + Y Olp.e)Kiu(g)), ¢ € L.

ook oo
Notice that
sl = H% Q' (a, (B, ) (ta = Cla, 0o — Qa, )1y — g1(0, u(0)]
- f: C(a, 2)g1(z, u(z))dz - fo a Q(a, 2)h(z)dz
- OZ Clas ) Liu(p) - OZ Q. soi)%(u(soi)))H
frta o
< 22l + Aol + Al = 510, Ol + aHCx(1 + )
+ MBIl ) Va + eval + N i ci+ M i L] = . (4.2)
5 5
From (4.2),

@y < I, O)tollyg + 110G, O)r = g1(0, uOllye + | fﬂ Clg, )1z, u)
0

+| fo 0o + | fo 0 v
+ 3 e eatiuen|+ > e eokiwe)|
0

<gi<ep 0<gi<g

< Aluoll + Aslllur — g1(0, uONl + A7aC(1 + p) + A5[ Valbll 2z + eva

+IBIVa) + A Y e+ N5 ) 1=,

i=1 i=1
Thus Y3(B,) is bounded in ZE€'(£, M).
Step 2. Consider any u € B, o € Yg(u). There exists h € M(u), for every ¢ € £,
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a(¢) = Cl, 0o + O, )1ty — g1(0, u(0))]
P P

+ fﬂ Clp, 2)81(z, u(2))dz + f (g, )h(2)dz + f O(p, 2)#v(2)dz
0 0 0
+ ) Cle e Liuen + ) Olp, o) Kiu(g).

O<gi<e O<pi<e

Using |[vs(?)|| as (4.2) and also from Theorem 3.1, Step 2, one can obtain that {Ts(u) : u € B,} is
completely continuous.

Step 3. Consider u, — u, in € (L, M), o, € T(u,) and o, = o, in XE (L, M). We investigate
0. € Tg(u,). Indeed, o, € Y(u,) exists only when h, € M(u,) such that

(@) = Ce, 0)uy + O, 0)[u; — g1(0, u(0))]
P P P
+ fo C(p,2)81(z, uy(2))dz + fo O(p, Dh,(2)dz + fo Q(p,2)#BHB Q" (a,)Z (B, )

(X)(ua — C(a, 0)up — Q(a, 0)[uy — g1(0,u(0))] - fog Cla, mg1(n, u.(m)dn

- fo O(a, Mhy(mdn — Z Cla, i) Liu(pi) ~ Z O(a, p)Ki(u(p:))dz

O<pi<a O<pi<a
+ ) Cle L) + | O, e Ki(u(p)). (4.3)
O<pi<e O<t;<t

From (A1), we will prove {/,},s1 € L*(2, M) is bounded. Hence,
h, — h, weakly in L*(¢, M). (4.4)
From (4.3) and (4.4),
aa(p) = Cle, 0)uo + O(p, 0)[z1 — £1(0,2(0))]
+ fo ' C(p,2)81(z, u.(2))dz + fo ' O(p, 2)h.(z)dz + fo ’ O(p, 2)BH* Q" (a, DX (B, 1)
(o =~ C(a, O)utp — Q(a, 0)[ur — g1(0, u(0))] ~ j: C(a. g1, u.(m)dn

- fo Q@ phu)dn = Y Cla,p) Lilug)) = Y 0@ ¢ Kiulpy))dz

O<pi<a O<pi<a
+ ) ClenLiuen + ). Op, o) Kiup). (4.5)
(R O<pi<g

Clearly, o7, — o, in € (L, M) and h, € M(u,). According to Lemma 2.6 and (4.5), h. € M(u,).
Then, o, € T(u.), and this shows that I’ has a closed graph. Hence, by using Proposition 3.12 of [36]
implies that it is upper semicontinuous.

Step 4. A priori estimate.
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By Steps 1-3, T is convex valued, compact upper semicontinuous, 1'3(B,) is a relatively compact
set and meets Theorem 2.8, and

I={ue €M) :yueTsu), y>1}

is bounded.
Consider u € J. Then there exists 7 € M(u) such that

u(p) =y~ Cle, Oug + ¥~ O, 0)[ur — g1(0, u(0)] +y~' f: C(g, 2)g1(p, u(yp))dz

2 2
+y ! fo O(p, Dh(2)dz + 7y~ ﬁ O, 2)Avp(2)dz
w7 ) CleLiu@) +y D Ol e Kitule),

0<pi<e 0<@i<e
and
V() = B Q' (@ AP Y uta ~ Cla, 0o ~ Qla, 0)[ur ~ 810, u(0))]
- f: C(a,2)81(z, u(2))dz ~ fo a Q(a, Dh(z)dz
= D, Clag)Liule) ~ ), Qa.e)Kilup)).

O<pi<a O<pi<a

Then from our assumptions,

2
llu(@)lIa < IC(@, Ouoll + [[Q(e, 0) [ty = g1(0, u(O)]Il + ||f0 Cle, 2)81(z, u(2))dz||

2
Al [ ot amaaa+ 1 [ 0
0 0
+ > lICp @) L@l + Y 106, e) K@)l

O<gi<g O<gpi<g
< Al + Al = 10, + A7 [ 01+ e+ 5 [ 1be0) + et
0 0
WA
+ wn( S -+ A+ s = 10, 20D+ aHCa(1 + )

+ Ml ss Va +eval + N D civ M li])dz

i=1 i=1

ML)+ A D K@)l
0<p;<p O<pi<ep
< p+ Hallull, (4.6)

where
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p = Mlluoll + Asll[ur — g10, u(ON]I| + A Caa + A[Ibll 20 2:)] Va
NNBIP
+ _—

B

+ MCra + M|z r)] \/5) + M Z ci+ M Z l;.

i=1 i=1

(Iluall + illuoll + Alllur — g1(0, u(0)]]|

NPNIBI
Hs = a(MCy + Me)| 1 + —2——].

B
According to % < 1 and (4.6), we conclude,

lull = sup [lu(@)ll < p + HAllull, and thus [luf] < —— =: £3.
Qe 1- %
Therefore J is bounded which leads to the conclusion that (s has a fixed point. O

Theorem 4.4. Suppose the conditions of the above theorem are satisfied. Then, if system (4.1) is
approximately controllable on the set £, it follows that system (2.5) is also approximately controllable
on &.

Proof. By Theorem 4.3, (s, for all 8 > 0, has a fixed point in %€ (£, M). Let u” be a fixed point of
Yp in € (L, M). Clearly, Y is a mild solution of (2.5). Then, there exists #* € M(«*) such that for
each ¢ € £,

() = Clp, 0y + O, 0)[ur — £1(0, u(0))]

(4 P
+ fo C(p,2)g1(z, u(z))dz + fo (e, D)H(2)dz + f: O(p, ) BH O (a,)Z (B, )

(X)(ua — C(a,0)up — O(a, 0)[u; — £1(0,u(0))] - f Cla, mg:(n, u(m)dn

0

- [ oa@nian- Y, capprain- Y, ookt

O<gi<a O<gi<a
+ > Clop)Litule) + D Ol e Kilu(py).
0<p;<p O<gi<e

Since I — T2 (B, Y8) = BA(B, Y4), we have v’ (a) = u, — BZ(B, T$)E(H). From the above,
E(H’) = u, — C(a,0)ug — Q(a, 0)[u; — g1(0, u(0))] - fo C(a, mgi(n, u(n)dn
- L Q(a, M’ (n)dn — Z Cla, o)) Li(u(y) — Z Q(a, p))Ki(u(p:)).

O<gi<a O<gpi<a

From the hypothesis (A1) and from Theorem 4.3, ||0H (¢, u)|| < b(p) + e|lu(p)|| < b(p) + ep = v(p).
Then,

f I (2)lldz < Ml 2 ) Va.
0
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Consequently {##} is a bounded sequence in L*(2, M). So, there exists a subsequence, {#*}, which will
converge weakly to 4 in L*(2, M). It is expressed as

g = g = C(a, 0)up — Q(a, 0)[u; - £1(0,u(0))] - fﬂ Cla, m)gi (17, u(m)dn

0

- [ cwmnindn= Y capLiwten- Y, o eikito.

O<pi<a O<pi<a
Now,
IE(R) — gll =‘ fo Cla, m[gi1(m, Y’ () — g1(m, y()]dn|| + f: S(a, p[Hm) - h(n)]dnH
<M, sup (2107, Y° () — g1G2, y(7)] + My sup [ () — h(p)]. (4.7)
<n<a <n<a

From Step 2 in Theorem 4.3 and by the Arzela-Ascoli theorem, we get that the compactness of the
right-hand side of (4.7) tends to zero as 8 — 0%, which gives

i’ (@) — will = IBZ B, CHER)I
< IBZB, ()@l + E(H) — gll = 0, as g — 0"

Hence, (2.5) is approximately controllable on £. O
5. Applications

We utilize our theoretical findings on a concrete partial differential equation. We need to provide
the required technological resources to accomplish our goals.
Now, let us take

Alp) = A+ Alyp),

where A is the infinitesimal generator of a cosine function C(¢) with associated sine function Q(¢),
and A(p) : D(A(p)) — M is a closed linear operator with D ¢ D(A(¢p)), for all ¢ € L. We take the
space M = L*(T, C), where the group T is defined as the quotient R/27Z, and we denote by L*(T, C)
the space of 2r periodic 2-integrable functions from R to C. Also, we use the identification between
functions on T and 27 periodic functions on R. Furthermore, H*(T, C) denotes the Sobolev space of
27 periodic from R to C such that u” € L*(T, C).

We define Au(p) = u”’(p) with domain D(A) = H*(T, C). Then, A can be written as

(o8]

Au = Z —n2<u, X)) Xn, u € D(A),

n=1

where x,(¢) = \/#Tﬂe"”*"(n € Z) is an orthonormal basis of M. It is well known that A is the infinitesimal
generator of a strongly continuous cosine function C(¢) on M. The cosine function C(yp) is given by

(o)

Clou = Z cos nt{u, x,)x,, u € M, ¢ € R.

n=1
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The connected sine operator (Q(¢))ger 18

(o)

O(u = Z o m(u, X)X, U €M, @ €R.

n

n=1

It is clear that ||C(p)|| < 1 for all ¢ € R, so it is uniformly bounded on R.
Assume the following second-order non-autonomous neutral differential system of the form:

2

90 J g
%[@u«o, P) = &1(e.)(¢.9)| = 39 + B() 5 oule.9)

+ Bi(p, 9) + plp, ulp,9)), 0<¢<a,
u(p,0) =u(p,m) =0, 0<p<a,
M(O, 80) = uO(p)’ 1% € (07 ﬂ')a

0
a—y(O, 9) = ui(p), (5.1)
o

Pk

Aulp)(9) = f bulgr — ulp. )de,

0

a Pk
Aa—u(gok)(p) = f bi(pr — @)ui (@, p)dy,
@ 0

where B : R — R is a continuous function such that SUPe(0,4] IIB(@)Il = co, and u(ep, ) represents the
temperature at 9 € (0,7) and ¢ € (0,a). Let ¢(p,u(p,9)) = ¢1(&1,9(p, 9)) + ¢2(p, ulp, )) and
&2(p, u(p, 9)) is the temperature function of the form —¢, (@, u(p, 9)) € IH(p, p, u(p, 9)), (@, ) €
(0,a) x (0, 7). Here, the nonsmooth and nonconvex function H = H(yp, ¢, k) is defined as a locally
Lipschitz energy function. dH is the generalized Clarke’s gradient in the third variable k [6]. Assume
that H fulfills the assumptions (A1), H(k) = min{h;(v), h,(v)}, and h; = R — R(i = 1,2) are convex
quadratic functions [16].

Now we take A()u(p) = B(p)u(p) defined on H'(T,C). It is easy to see that A(p) = A + Alp)
is a closed linear operator. Initially, we will show that A + A(¢) generates an evolution operator. It is
well known that the solution of the scalar initial value problem

P’ () ==’ p(p) + q(¢),
p(s) =0, p'(s) = pi,

is given by
D1 . 1 (.
p(t) = —sinn(e —z) + — sinn(¢ — 1)q(1)du.
n nJ.

Therefore, the solution of the scalar initial value problem

p"(¢) = -’ p(p) + inB(p)p(y), (5.2)
p() =0, p'(2) = pi, (5.3)
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satisfies the following equation:

ple) = % sinn(e —z) + i‘fw sinn(e — 1)B(1)g(1)d1.

Z

By the Gronwall-Bellman lemma, we obtain
Ip(] < Ere? (5.4)

for z < ¢ and c is a constant. We denote by p, (¢, z) the solution of (5.2)-(5.3). We define

Q. = ) pulep, D, )%, UM, p R,

n=1

It follows from the estimate (5.4) that Q(¢p, z) : M — M is well defined and satisfies the condition of
Definition 2.1. We set u(t) = u(y, -), that is, u(@)(p) = u(p, 9), ¢ € £, ¢ € [0,n]. Then, we assume the
infinite dimensional Hilbert space 7', and we have

vV = {v ‘v E Zvn,xj with Zv? < 00},
J=1 J=2

with ¥ as

o0
_ 2y
Ml = (v
J=2

Let us define & € L(V', M) as below:
By = 2vyx1 + vaxf < oo,forall v = Zv]x] ev.

J=2 =2

It continuous that
By =Q2v+v)x + Z v,x,, forallv = Zv]x] e M.

J=3 J=2

Assume these functions satisfy the requirements of the hypotheses. From the above choices of the
functions and evolution operator A(y) with &, system (5.1) can be formulated as system (2.5) in M.
Since all hypotheses of Theorem 4.4 are satisfied, the approximate controllability of system (5.1) on £
follows from Theorem 4.4.

6. Conclusions

The principles of approximate controllability of second-order differential impulsive systems with
the impact of hemivariational inequalities are the main focus of this article. The generalized Clarke’s
subdifferential technique and multivalued maps were used to suggest and demonstrate the necessary
requirements for existence and approximate controllability. In the future, we will extend the results
with finite delay and stochastic systems.
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