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Abstract: In applied and computational mathematics, quaternions are fundamental in representing
three-dimensional rotations. However, specific types of quaternionic linear matrix equations remain
few explored. This study introduces new quaternionic linear matrix equations and their necessary and
sufficient conditions for solvability. We employ a methodology involving lemmas and ranks of
coefficient matrices to develop a novel algorithm. This algorithm is validated through numerical
examples, showing its applications in advanced fields. In control theory, these equations are used for
analyzing control systems, particularly for spacecraft attitude control in aerospace engineering and for
control of arms in robotics. In quantum computing, quaternionic equations model quantum gates and
transformations, which are important for algorithms and error correction, contributing to the
development of fault-tolerant quantum computers. In signal processing, these equations enhance
multidimensional signal filtering and noise reduction, with applications in color image processing and
radar signal analysis. We extend our study to include cases of η-Hermitian and i-Hermitian solutions.
Our work represents an advancement in applied mathematics, providing computational methods for
solving quaternionic matrix equations and expanding their practical applications.
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1. Introduction

Abstract mathematical constructs can play instrumental roles in addressing practical problems. For
example, matrices are ubiquitous in diverse fields such as computer graphics and quantum mechanics,
serving as computational backbones for complex systems [1]. Similarly, quaternions have carved out
a unique niche for themselves, especially in representing three-dimensional rotations—a role
traditionally taken on by three-dimensional square matrices.

Quaternions can be traced back to the work of Sir William Rowan Hamilton, a 19th-century Irish
mathematician [2]. Unlike traditional real or complex numbers, quaternions belong to a peculiar
category of noncommutative yet associative division algebras. This peculiarity is evident in the
multiplication of such matrices, which share the non-commutativity. Extending beyond pure
mathematics, quaternions have proven invaluable in domains like color image processing as well as
quantum mechanics and physics [3–9]. In engineering, quaternions serve as vital tools for formulating
quaternionic linear matrix equations, providing fresh perspectives into subjects such as neural
networks, perturbation and control theories, and sensitivity analysis [10, 11].

Quaternionic linear systems are crucial in addressing specific engineering challenges such as
singular system control [12], system design [13], and linear descriptor systems [14]. These systems
often require solutions to different forms of linear quaternion matrix equations [15], which are
frequently the transformed forms of constant-coefficient quaternion differential equations [16].
Recent studies have explored various applications and solutions of quaternionic matrix equations,
including zeroing neural networks for color restoration of images [17], formulas on the Drazin inverse
for the sum of two matrices and block matrices [18], singular value decomposition and generalized
inverse of a commutative quaternion matrix [19], as well as novel quaternion linear matrix equation
solvers for acoustic source tracking [20]. Additionally, studies presented in [21, 22] have contributed
to the understanding and solving of these equations by addressing specific types of solutions such as
η-anti-Hermitian and η-Hermicity properties.

Other studies [23] stated the solvability and algorithm for Sylvester-type quaternion matrix
equations, using generalized inverses and providing an algorithm validated numerically. Furthermore,
systems of quaternionic linear matrix equations are used both in the study of Pythagorean-hodograph
curves and for theories of quaternionic functions such as slice regularity [24, 25]. However, a gap
remains in the literature regarding the full comprehension and efficient solving methods for these
complex systems related to quaternionic linear equations. To bridge this gap, one can extend the
quaternionic matrix theory by introducing new conditions for the solvability of quaternionic linear
systems and by developing a novel algorithmic approach to solving these systems.

The objectives of this study are: (i) to establish a more comprehensive understanding of
quaternionic linear systems; (ii) to develop an efficient solving methodology for these systems
providing a computational analysis and algorithmic solutions; and (iii) to show their practical
applications in various advanced fields.
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To achieve these objectives, we employ a multidisciplinary approach that combines mathematical
rigor with computational techniques. This approach involves formulating and proving rigorous
mathematical lemmas, developing a novel algorithm, and its subsequent validation through numerical
computation, testing and illustrations. Our approach incorporates techniques from control theory and
quantum computing, thereby broadening the scope and applicability of quaternionic equations in
engineering and applied sciences. Therefore, the novelty of the present study lies in the introduction
of new conditions for system solvability, its computation, and the development of a novel algorithmic
approach, which addresses existing gaps and enhances the understanding and practical
implementation of quaternionic linear systems.

The rest of this article is structured as follows. Section 2 provides the mathematical foundations
and reviews the related literature on quaternion matrices. In Section 3, we present our core findings,
substantiated by a series of instrumental lemmas. In Section 4, our approach to solving the equations
is outlined, supplemented with an algorithm, flowchart, and practical numerical example. Section 5
focuses on the special case of the Hermitian solution, detailing its conditions and properties. In Section
6, we summarize our contributions and discuss their broader implications.

2. Preliminaries

In this section, we establish the mathematical foundations and prior works that are essential for
our research on quaternionic matrices. We begin by introducing the basic notations and definitions
related to quaternion algebra, including the unique properties of quaternions and their noncommutative
multiplication. This is followed by an exploration of addition and multiplication rules for quaternionic
matrices, and then we present the concepts of Moore-Penrose inverse, η-conjugate transpose, and i-
conjugate transpose for quaternionic matrices.

2.1. Notation and definitions

Throughout this work, we denote the quaternion algebra by H, which is defined as

H ≡ {a0 + a1i + a2j + a3k | a0, a1, a2, a3 ∈ R}, (2.1)

where i, j, k are three distinct imaginary units satisfying the multiplication rules stated as

i2 = j2 = k2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j. (2.2)

Quaternions extend traditional complex numbers by incorporating these three imaginary units, which
reflect their noncommutative nature, in contrast to the commutative multiplication of traditional
complex and real numbers. This quaternionic algebraic structure enables the representation of
three-dimensional rotations and constitutes a four-dimensional construct.

2.2. Addition and multiplication of quaternionic matrices

Addition and multiplication for quaternionic matrices follow analogous rules to those for real or
complex matrices, with the further consideration of the noncommutative nature of quaternion
multiplication. For quaternionic matrices A = (ai j) and B = (bi j), both of size m × n, their sum
C = (ci j) = A + B is defined element-wise by ci j = ai j + bi j, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.
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Multiplication, however, is affected by the noncommutative nature of quaternion multiplication.
For multiplication, if A = (ai j) is an m × p matrix and B = (bi j) is a p × n matrix, their product
C = (ci j) = AB is defined by ci j =

∑p
k=1 aikbk j, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, where the

multiplication of the individual quaternion elements adheres to the rules of quaternion multiplication
stated in (2.2). An example of quaternion multiplication is given as follows. Consider two quaternions
q1 = a1 + b1i+ c1j+ d1k and q2 = a2 + b2i+ c2j+ d2k. Their product is given by q1q2 = (a1 + b1i+ c1j+
d1k)(a2 + b2i + c2j + d2k). Expanding this product and applying the rules of quaternion multiplication,
we get q1q2 = a1a2 − b1b2 − c1c2 − d1d2 + (a1b2 + b1a2 + c1d2 − d1c2)i + (a1c2 − b1d2 + c1a2 + d1b2)j +
(a1d2 + b1c2 − c1b2 + d1a2)k. This noncommutative multiplication must be applied element-wise when
multiplying quaternionic matrices.

2.3. Key operations on quaternionic matrices

Having established the basic operations of addition and multiplication for quaternionic matrices,
we now turn our attention to more advanced concepts essential for solving linear systems involving
quaternionic matrices. These concepts include the Moore-Penrose inverse, η-conjugate transpose, and
i-conjugate transpose.

In traditional linear algebra, the Moore-Penrose inverse is a powerful tool for finding generalized
inverses of singular or non-square matrices [26], allowing us to solve linear equations that do not have
unique solutions. For a quaternionic matrix A, the Moore-Penrose inverse, denoted by A†, is defined as
the unique matrix that satisfies the conditions represented as AA†A = A, A†AA† = A†, (AA†)∗ = AA†,
and (A†A)∗ = A†A, where (·)∗ denotes the conjugate transpose. This inverse A† allows us to handle
cases where the matrix is not invertible in the traditional sense, providing a means to work with over-
determined or under-determined systems.

The η-conjugate transpose of a quaternionic matrix A, denoted by A∗η, extends the conjugate
transpose of the complex matrix algebra. This involves to transpose A and replace each element with
its η-conjugate. For example, a quaternionic number q = a + bi + cj + dk has its η-conjugate given by
q∗η = a − ηbi − ηcj − ηdk, where η is a real number. The η-conjugate transpose is helpful in the study
of Hermitian quaternionic matrices, which find applications in fields such as quantum mechanics and
signal processing.

The i-conjugate transpose of a quaternionic matrix A, denoted by A∗i , is obtained by taking the
transpose of A and replacing each element with its i-conjugate. The i-conjugate of a quaternionic
number q = a + bi + cj + dk is given by q∗i = a − bi + cj + dk, where only the coefficient of the
i-part is conjugated (such as in traditional complex numbers), while the coefficients of the j-part and
k-part remain unchanged. This form of conjugation is used in specific quaternionic matrix operations,
providing additional flexibility in mathematical manipulations and problem-solving.

The set of all m × n matrices over H is denoted by Hm×n. To understand the structure and properties
of quaternionic matrices, we introduce the concept of projection operators. For a quaternionic matrix
A, they are given by LA = I − A†A and RA = I − AA†, where I is the identity matrix. These projectors
have properties formulated as LA = L∗A = L2

A = L†A and RA = R2
A = R∗A = R†A, where (·)∗ denotes

the conjugate transpose, as mentioned; (·)† is the Moore-Penrose inverse; whereas LA and RA are the
left and right projection operators applied to the matrix A, reflecting operations that act on A from the
left and right sides, respectively. These projectors play a crucial role in decomposing and analyzing
quaternionic matrices, similar to their role in traditional linear algebra.
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To illustrate the concepts of the Moore-Penrose inverse, η-conjugate transpose, and i-conjugate
transpose of a quaternionic matrix, consider a 2 × 2 quaternionic matrix A and its usual, η-conjugate,
and i-conjugate transposes given by

A =
(
1 + i 2 + j
2 + j 4 + k

)
, A⊤ =

(
1 + i 2 + j
2 + j 4 + k

)
, A∗η =

(
1 − ηi 2 − ηj
2 − ηj 4 − ηk

)
, A∗i =

(
1 − i 2 + j
2 + j 4 + k

)
.

Now, we compute A⊤A, considering the noncommutative nature of quaternionic multiplication,
obtaining

A⊤A =
(
(1 + i)(1 + i) + (2 + j)(2 + j) (1 + i)(2 + j) + (2 + j)(4 + k)
(2 + j)(1 + i) + (4 + k)(2 + j) (2 + j)(2 + j) + (4 + k)(4 + k)

)
.

The individual terms are calculated as (1 + i)(1 + i) = −1 + 2i, (2 + j)(2 + j) = −1 + 4j, (1 + i)(2 + j) =
2 + 2i + j + k, (2 + j)(4 + k) = 8 + 2k + 4j − i, and so on for the remaining terms. After calculating all
the products, we reach

A⊤A =
(

3 + 2i + 4j 10 + 3i + 5j + 3k
10 + i + 5j + k 18 + 4j + 8k

)
.

Next, we compute the inverse of A⊤A given by

(A⊤A)−1 =

(
−0.221 − 0.133i + 0.201j − 0.020k 0.109 + 0.124i − 0.089j + 0.053k
0.120 + 0.125i − 0.059j + 0.019k −0.039 − 0.066i + 0.002j − 0.043k

)
.

Therefore, we calculate the corresponding Moore-Penrose inverse as

A† = (A⊤A)−1A⊤ =
(

0.219 − 0.159i + 0.113j + 0.009k −0.260 + 0.163i − 0.298j + 0.148k
−0.084 + 0.156i − 0.074j − 0.074k 0.187 − 0.032i + 0.077j − 0.047k

)
.

This example illustrates the unique aspects of working with quaternionic matrices, including the
computation of the Moore-Penrose inverse and conjugate transposes. The Python code to reproduce
this example is provided in Appendix A.

2.4. Background and related work

Quaternions, first introduced by Sir W.R. Hamilton [2], are notable for their associative nature and
noncommutative multiplication, properties that have garnered high interest. Recently, quaternion
matrices have found applications in various fields, including quantum physics and mechanics, as well
as color image processing [3–9]. Engineering disciplines, such as singular system control [12],
system design [13], and linear descriptor systems [14], frequently encounter problems requiring
solutions to various forms of linear quaternion matrix equations. For example, interactions with
constant coefficient quaternion differential equations [16] can be transformed into linear quaternion
matrix equations, underscoring the importance of investigating their solutions. Additional
applications can be found in feedback systems, neural networks, perturbation theory, and sensitivity
analysis [27–30]. Several researchers have addressed different types of linear quaternion matrix
equations. Some notable examples based on quaternionic matrices include:
• The iterative solution of A1X + XB1 = C1, examined in [31] and further explored in [32], where

A1, B1, and C1 are known quaternionic matrices, and X is the quaternionic matrix to be
determined and similarly for the matrices mentioned below.
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• The solvability condition of A1X + YA2 = B, analyzed in [33], with the general solution studied
in [34], and a constrained solution presented in [35].
• In [36], the necessary and sufficient conditions for the system given by

A1X1 + Z1B1 = C1, A2X2 + Z1B2 = C2, (2.3)

were detailed, along with its general solution. Further analysis of the solvability conditions for
this system was conducted in [37], and its condition number was studied in [38]. A constrained
solution for the structure stated in (2.3) was derived in [39].
• The general solution of the system

A1X1 + Y1B1 +C1Z1D1 = E1, A2X2 + Y2B2 +C2Z1D2 = E2, (2.4)

was provided under solvability conditions in [40].
• The general solution for the system described as

A3X1 = C3,Y1B3 = C5, F1Z1 = G1,Z1F2 = G2, A4X2 = C4,

Y2B4 = C6, A1X1 + Y1B1 +C1Z1D1 = E1, A2X2 + Y2B2 +C2Z1D2 = E2,
(2.5)

was presented in [10] under the assumption of system consistency.
• Similar models to the systems defined in (2.4) and (2.5) have been extensively studied in [1, 10,

22, 35, 40–43].

Further analysis was conducted in [44] when X2 = X1, examining the solvability conditions for
the expression formulated in (2.3). The system defined in (2.3) was also explored in [45]. In [36],
necessary and sufficient conditions were provided for the solvability of the system expressed as A1X1+

Z1B1 = C1 and A2Z1 + X2B2 = C2, with its general solution presented in [46]. General solutions for
systems of generalized Sylvester matrix equations with four matrices were discussed in [47]. More
recently, the general solution of the system given by A1X1 + Z1B1 = C1, A2X2 + Z1B2 = C2, A3X2 +

Z2B3 = C3, and A4X3 + Z2B4 = C4, using rank equalities and generalized inverses, was derived in [48]
for consistent systems. The general solution for certain systems of matrix equations can be found
in [1, 22, 35, 41, 42]. Recently, the general solution of the system stated as

A1X1 + Y1B1 +C1ZD1 = E1, A2X2 + Y2B2 +C2ZD2 = E2, A3X3 + Y3B3 +C3ZD3 = E3, (2.6)

was delineated in [43] under consistent conditions.
From our bibliographical review, there is sparse research on generalizations of the systems presented

in (2.3) to (2.6). Motivated by the relevant applications of linear quaternion matrix equations, in the
present article, we explore the necessary and sufficient conditions of the system defined as

A1X1 = F1, A2X2 = F2, A3X3 = F3, A4Z1 = F7,Y1B1 = F4,Y2B2 = F5,Y3B3 = F6,ZB4 = F8,

A5X1 + Y1B5 +C1ZD1 = E1, A6X2 + Y2B6 +C2ZD2 = E2, A7X3 + Y3B7 +C3ZD3 = E3,
(2.7)

and its general solution when solvable, where {Ai, Bi}
7
i=1, {C j,D j, E j}

3
j=1, and {Fk}

8
k=1 are known

quaternionic matrices, whereas {Xl,Yl}
3
l=1 and Z are the quaternionic matrices to be determined.

Moreover, we show into the η-Hermitian solution of the system given by

A1X1 = F1, A2X2 = F2, A3X3 = F3,Z = Z∗η , A4Z1 = F7,ZB4 = F8,

A5X1 + (A5X1)∗η +C1ZC∗1η = E1, A6X2 + (A6X2)∗η +C2ZC∗2η = E2, A7X3 + (A7X3)∗η +C3ZC∗3η = E3,
(2.8)
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and its general solution when consistent, where {Ai}
7
i=1, B4, {C j, E j}

3
j=1, and {Fk}

8
k=1 are known

quaternionic matrices, whereas {Xl}
3
l=1, Z1, and Z are the quaternionic matrices to be determined, with

Z∗ denoting the conjugate transpose of Z and Zη the η-conjugate transpose of Z, as mentioned.

Our primary objective is to establish solvability conditions for the system presented in (2.7), derive
its general solution using generalized inverses and rank equalities of the provided coefficient matrices,
and extend these results to the η-Hermitian solution of the system stated in (2.8) when solutions exist.

2.5. Conceptual applications of quaternionic linear matrix equations

The quaternionic linear matrix equations discussed in this article, such as those described in (2.7)
and (2.8), have important practical applications in various advanced fields. In control theory, these
equations are crucial for the design and analysis of advanced control systems, particularly in scenarios
involving high-dimensional state variables and complex dynamic systems, such as aerospace
engineering and robotics.

Quaternionic equations, for instance, are essential in the attitude control of spacecraft and
unmanned aerial vehicles due to their ability to efficiently handle three-dimensional rotations and
avoid singularities associated with Euler angles. These equations enable the development of robust
control laws and stability analyses, which are vital for the reliable operation of the mentioned
complex systems [49].

In quantum computing, the noncommutative nature of quaternions provides a powerful framework
for representing and manipulating quantum states and operations. Quaternionic linear matrix equations
are instrumental in modeling quantum gates and transformations, which are foundational for quantum
algorithms and error correction methods. For instance, quaternionic representations can describe the
evolution of quantum states in certain quantum walks, which play a critical role in developing quantum
algorithms [50]. This framework is particularly relevant for designing and implementing fault-tolerant
quantum computing systems, where precise control and correction of quantum states are essential.

In the field of signal processing, quaternionic equations are employed for advanced filtering and
noise reduction in multidimensional signals. Specifically, in color image processing, quaternionic
models treat color channels as a single entity rather than separate components, preserving the inherent
correlations between channels and improving filtering performance [51]. Thus, quaternionic equations
improve the accuracy and effectiveness of signal processing algorithms, leading to superior results in
applications such as radar signal analysis and color image enhancement.

Additionally, quaternionic matrix equations are integral to the study of Pythagorean-hodograph
curves and theories of quaternionic functions, such as slice regularity [24,25]. These studies underscore
the broader mathematical and computational importance of quaternionic equations, extending their
utility beyond traditional engineering fields.

By addressing specific solvability conditions and developing efficient algorithms for solving the
quaternionic linear matrix equations detailed in (2.7) and (2.8), our work aims to provide robust tools
for tackling real-world engineering and computational challenges, such as those found in control
systems, quantum computing, and signal processing.
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3. Principal findings

In this section, we present the core results of our research on linear quaternion matrix equations.
Building on the foundational concepts and prior works introduced in Section 2, we provide a series
of key lemmas that explore solvability conditions, general solutions, and η-Hermitian solutions of
quaternionic matrix equations.

3.1. Key lemmas

In our exploration of linear quaternion matrix equations, we identify several key lemmas that are
critical to understanding the structure and solutions of these equations. Each lemma provides a
fundamental insight into the relationships between quaternionic matrices, which are crucial for
establishing solvability and attaining general solutions.

The first lemma, based on [52], establishes fundamental relationships between three quaternionic
matrices, denoted by K, P, and Q. Here, rank[A] denotes the rank of a matrix A, which is defined as
the number of linearly independent rows or columns in A. These rank equalities are used to establish
relationships between different matrices, ensuring the consistency of solutions to the presented matrix
equations.

Lemma 3.1. Let A ∈ Hm×n, B ∈ Hm×t, and C ∈ Hl×n be quaternionic matrices. Then, we have

rank
[

A
C

]
− rank[A] = rank[CLA], rank

[
A B

]
− rank[B] = rank[RBA],

rank
[

A B
C 0

]
− rank[RBALC] = rank[B] + rank[C].

Next, we examine the solvability conditions of matrix equations involving quaternionic matrices A1

and A2. The following lemma, adapted from [53], elucidates these conditions.

Lemma 3.2. Let A1 ∈ H
m×n and A2 ∈ H

m×p be quaternionic matrices. Then, the equation A1X = A2 is
solvable if and only if A2 = A1A†1A2. The general solution of this equation is given by X = A†1A2+LA1U1,
where U1 is any quaternionic matrix in Hn×p.

Building on the previous lemma, we extend our understanding of consistency conditions, this time
considering quaternionic matrices B11 and D11. The following lemma, adapted from [53], outlines the
necessary and sufficient conditions for the consistency of the equation YB11 = D11.

Lemma 3.3. Let B11 ∈ H
m×n and D11 ∈ H

p×n be quaternionic matrices. Then, the equation YB11 = D11

is consistent if and only if D11 = D11B†11B11. Under this condition, the general solution of the equation
is Y = D11B†11 +W1RB11 , where W1 is any quaternionic matrix in Hp×m.

The following lemma, based on [54], provides consistency conditions for a system involving various
quaternionic matrices.

Lemma 3.4. Let A1 ∈ H
m×n, B1 ∈ H

p×q, C1 ∈ H
m×p, and C2 ∈ H

n×q be quaternionic matrices. Then,
the system given by A1X1 = C1 and X1B1 = C2 is consistent if and only if RA1C1 = 0, C2LB1 = 0,
and A1C2 = C1B1. Under these conditions, the general solution of the system is expressed as X1 =

A†1C1 + LA1C2B†1 + LA1U1RB1 , where U1 is any quaternionic matrix in Hn×p.
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Our exploration continues with a more intricate lemma derived from [55], which connects several
quaternionic matrices and establishes a set of equivalent statements that are critical for the analysis of
the matrix equation system.

Lemma 3.5. Let A1 ∈ H
m×n, B1 ∈ H

p×q, C3 ∈ H
m×r, D3 ∈ H

u×q, C4 ∈ H
m×r, D4 ∈ H

u×q, and E1 ∈ H
m×q

be quaternionic matrices. Define auxiliary quaternionic matrices as A = RA1C3, B = D3LB1 , C =
RA1C4, D = D4LB1 , E = RA1 E1LB1 , F = RAC, G = DLB, and H = CLF . Then, the following statements
are equivalent:

(i) The quaternionic matrix equation

A1U + VB1 +C3WD3 +C4ZD4 = E1 (3.1)

has a solution.

(ii) It holds that RFRAE = 0, ELBLG = 0, RAELD = 0, and RCELB = 0.
(iii) It holds that the rank equalities are satisfied as

rank

 E1 C4 C3 A1

B1 0 0 0

 = rank[B1] + rank [C4 C3 A1] , rank


E1 A1

D3 0
D4 0
B1 0

 = rank


D3

D4

B1

 + rank[A1],

rank


E1 C3 A1

D4 0 0
B1 0 0

 = rank [A1 C3] + rank

 D4

B1

 , rank


E1 C4 A1

D3 0 0
B1 0 0

 = rank [A1 C4] + rank

 D3

B1

 .
Under these statements (i)–(iii), the general solution to the equation given in (3.1) is expressed as:

U = A†1(E1 −C3WD3 −C4ZD4) − A†1S 7B1 + LA1S 6,

V = RA1(E1 −C3WD3 −C4ZD4)B†1 + A1A†1S 7 + S 8RB1 ,

W = A†EB† − A†CF†EB† − A†HC†EG†DB† − A†HS 2RGDB† + LAS 4 + S 5RB,

Z = F†ED† + H†HC†EG† + LF LHS 1 + LFS 2RG + S 3RD,

where S 1, . . . , S 8 are any matrices of appropriate dimensions over H.

As previously established, the lemmas we have explored provide the necessary groundwork for our
main findings. In particular, Lemma 3.5 sets the stage for our central theorem. With this foundation in
place, we now present the core theorem of this investigation, which synthesizes the results discussed
and offers a comprehensive characterization of the underlying quaternionic matrix relationships.

3.2. Main theorem and comprehensive analysis

Next, we present the principal theorem of our investigation, which consolidates the insights garnered
from the previous lemmas and provides a comprehensive analysis of the consistency conditions and
solutions for a broad class of matrix equations. The theorem relies on a diverse set of matrices and the
mathematical framework established in the earlier sections.
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Theorem 3.1. Let {Ai, Bi}
7
i=1, {C j,D j}

3
j=1, and {Ek}

6
k=1 be quaternionic matrices of conformable sizes

over H and consider the following relationships:

A8 = A5LA1 , B8 = RB1 B5,C4 = C1LA4 ,D4 = RB4 D1,

F1 = A†1E1, X̂01 = A†1F1, F4 = E4B†1, Ŷ01 = F4B†1,

A9 = A6LA2 , B9 = RB2 B6,C5 = C2LA5 ,D5 = RB5 D2,

F2 = A†2E2, X̂02 = A†2F2, F5 = E5B†2, Ŷ02 = F5B†2,

A10 = A7LA3 , B10 = RB3 B7,C6 = C3LA6 ,D6 = RB6 D3, F3 = A†3E3,

X̂03 = A†3F3, Ŷ03 = F6B†3, F6 = E6B†3, A11 = RA8C4, B11 = D4LB8 ,

E7 = RA8 E4LB8 , F7 = A†4E7, A12 = RA9C5, B12 = D5LB9 , E8 = RA9 E5LB9 , F8 = E8B†4,

Ẑ01 = A†4F7 + LA4 F8B†4, A13 = RA10C6, B13 = D6LB10 , E9 = RA10 E6LB10 ,

A14 = A12LA11 , B14 = RB11 B12, E10 = E8 − A12A†11E7B†11B12,

A15 =
[

LA11 LA14 −LA13

]
,C8 = LA11 ,C9 = LA12 ,D8 = RB12 ,D9 = RB11 ,

B15 =

[
RB14RB11

−RB13

]
, A = RA15C8, B = D8LB15 ,C = RA15 E11LB15 ,

D = D9LB15 , E = RA15 E11LB15 ,M = RAC,N = DLB, S = CLM, (3.2)

where LA and RA represent the left and right projection operators associated with the matrix A. The
matrices X̂01, X̂02, X̂03, Ŷ01, Ŷ02, Ŷ03, and Ẑ01 denote specific solutions obtained from generalized
inverses. Then, the following statements are equivalent, wherein, as mentioned, rank[A] represents the
rank of the matrix A: (i) The system stated in (2.7) is solvable; (ii) the system satisfies to

RA1 F1 = 0,RA2 F2 = 0,RA3 F3 = 0, F4LB1 = 0, F5LB2 = 0, F6LB3 = 0,RA4 F7 = 0,
F8LB4 = 0, A4F8 = F7B4,RA1 j E j+6 = 0, E j+6LB1 j = 0, j ∈ {1, 2, 3}, (3.3)
RA14 E10LB14 = 0,RAELD = 0,RCELB = 0,RMRAE = 0, ELBLN = 0;

(iii) the framework yields:

rank
[

A1 F1

]
= rank[A1], rank

[
A2 F2

]
= rank[A2], rank

[
A3 F3

]
= rank[A3],

rank
[

B1

F4

]
= rank[B1], rank

[
B2

F5

]
= rank[B2], rank

[
B3

F6

]
= rank[B3], rank

[
A4 F7

]
= rank[A4],

rank
[

B4

F8

]
= rank[B4], A4F8 = F7B4,

rank


Ei Ai+4 Ci Fi+3

Bi+4 0 0 Bi

F7Di 0 A4 0
Fi Ai 0 0

 = rank


Ci Ai+4

A4 0
0 Ai

 + rank
[

Bi+4 Bi

]
, i ∈ {1, 2, 3},

rank


Ei CiF8 Ai+4 Fi+3

Di B4 0 0
Bi+4 0 0 Bi

Fi 0 Ai 0

 = rank
[

Di B4 0
Bi+4 0 Bi

]
+ rank

[
Ai+4

Ai

]
, i ∈ {1, 2, 3},
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rank



E1 C1 0 A5 0 C1F8 F4 0
D1 0 D2 0 0 B4 0 0
0 C2 −E2 0 A6 0 0 −F5

B5 0 0 0 0 0 B1 0
0 0 B6 0 0 0 0 B2

0 A4 −F7D2 0 0 0 0 0
F1 0 0 A1 0 0 0 0
0 0 −F2 0 A2 0 0 0


= rank

 D1 D2 B4 0 0
B5 0 0 B1 0
0 B6 0 0 B2

 + rank


C1 A5 0
C2 0 A6

A4 0 0
0 A1 0
0 0 A2

 ,

rank



0 D1 D3 0 0 B4 0 0
C1 −E1 0 A5 0 0 −F4 0
C3 0 E3 0 A7 C3F8 0 F6

0 B5 0 0 0 0 B1 0
0 0 B7 0 0 0 0 B3

A4 −F7D1 0 0 0 0 0 0
0 −F1 0 A1 0 0 0 0
0 0 F3 0 A3 0 0 0


= rank


C3 A7 0
C1 0 A5

A4 0 0
0 A3 0
0 0 A1

 + rank



0 D2 0 D1 B4 0 0 0 0 0
D1 0 D3 0 0 B4 0 0 0 0
B5 0 0 0 0 0 B1 0 0 0
0 B6 0 0 0 0 0 B2 0 0
0 0 B7 0 0 0 0 0 B3 0
0 0 0 B5 0 0 0 0 0 B1


,

rank



0 0 0 D2 0 D1 0 0 0 0 B4 0 0 0 0
0 0 D2 0 D3 0 0 0 0 0 0 B4 0 0 0
0 C2 E2 0 0 0 A6 0 0 0 0 0 F5 0 0

C2 0 0 0 0 0 0 A6 0 0 0 0 0 0 0
0 C3 0 0 E3 0 0 0 A7 0 0 C3F8 0 0 F6

C1 0 0 0 0 0 0 0 0 A5 0 0 B2 0 0
0 0 B6 0 0 0 0 0 0 0 0 0 B2 0 0
0 0 0 B6 0 0 0 0 0 0 0 0 0 B2 0
0 0 0 0 B7 0 0 0 0 0 0 0 0 0 B3

0 0 0 0 0 B5 0 0 0 0 0 0 0 0 B1

A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 A4 F7D2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 F2 0 0 0 A2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 A2 0 0 0 0 0 0 0
0 0 0 0 F3 0 0 0 A3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0



=rank



0 C2 A6 0 0 0
C2 0 0 A6 0 0
0 C3 0 0 A7 0

C1 0 0 0 0 A5

A4 0 0 0 0 0
0 A4 0 0 0 0
0 0 A2 0 0 0
0 0 0 A2 0 0
0 0 0 0 A3 0
0 0 0 0 0 A1


+ rank


0 D2 0 D1 B4 0 0 0 0

D2 0 D3 0 0 B4 0 0 0
B6 0 0 0 0 0 B2 0 0
0 B60 0 0 0 0 B2 0
0 0 0 B5 0 0 0 0 B1

 ,

rank



0 0 D2 D3 D1 0 0 0 B4 0 0
−C2 C2 E2 0 0 A6 0 0 F5 0 0
C1 0 0 0 0 0 A5 0 0 0 0
0 C3 0 0 0 0 0 A7 0 F6 0
0 0 B6 0 0 0 0 0 B2 0 0
0 0 0 B7 0 0 0 0 0 B3 0
0 0 0 0 B5 0 0 0 0 0 B1

A4 0 0 0 0 0 0 0 0 0 0
0 A4 0 F7D3 0 0 0 0 0 0 0
0 0 F2 0 0 A2 0 0 0 0 0
0 0 0 0 0 0 A1 0 0 0 0
0 0 0 F3 0 0 0 A3 0 0 0



= rank


D2 D3 D1 B4 0 0 0
B6 0 0 0 B2 0 0
0 B7 0 0 0 B3 0
0 0 B5 0 0 0 B1

 + rank


C3 A7 0
C1 0 A5

A4 0 0
0 A3 0
0 0 A1

 ,

rank



0 D1 D2 0 0 0 0 B4 0 0 0 0
0 D1 0 D3 0 0 0 0 B4 0 0 0

C2 0 E2 0 A6 0 0 C2F8 C2F8 0 F5 0
C3 0 0 E3 0 A7 0 0 0 0 0 F6

C1 E1 0 0 0 0 A5 0 0 F4 0 0
0 B5 0 0 0 0 0 0 0 B1 0 0
0 0 B6 0 0 0 0 0 0 0 B2 0
0 0 0 B7 0 0 0 0 0 0 0 B3

A4 F7D1 0 F7D3 0 0 0 0 0 0 0
0 0 F2 0 A2 0 0 0 0 0 0 0
0 0 0 F3 0 A3 0 0 0 0 0 0
0 F1 0 0 0 0 A1 0 0 0 0 0


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=rank



C2 A6 0 0
C3 0 A7 0
C1 0 0 A5

A4 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A1


+ rank


D1 D2 0 B4 0 0 0 0
D1 0 D3 0 B4 0 0 0
B5 0 0 0 0 B1 0 0
0 B6 0 0 0 0 B2 0
0 0 B7 0 0 0 0 B3

 . (3.4)

In this case, the general solution to the system stated in (2.7) can be expressed as

X1 = A†1F1 + LA1 X11, X11 = A†8(E4 −C4Z11D4) − A†8T1B†8 + LA8T2, (3.5)

X2 = A†2F2 + LA2 X22, X22 = A†9(E5 −C5Z11D5) − A†9T4B†9 + LA9T5,

X3 = A†3F3 + LA3 X33, X33 = A†10(E6 −C6Z11D6) − A†10T7B†10 + LA10T6,

Y1 = F4B†1 + Y11RB1 ,Y11 = RA8(E4 −C4Z11D4)B†8 + A8A†8T1 + T8RB8 ,

Y2 = F5B†2 + Y22RB2 ,Y22 = RA9(E5 −C5Z11D5)B†9 + A9A†9T4 + T9RB9 ,

Y3 = F6B†3 + Y33RB3 ,Y33 = RA10(E6 −C6Z11D6)B†10 + A10A†10T7 + T10RB10 ,

Z = A†4F7 + LA4 F8B†4 + LA4Z11RB4 , (3.6)
Z11 = Za + LA11 LA14Z1 + Z2RB14RB11 + LA11Z3RB12 + LA12Z4RB11 , (3.7)
Z11 = Zb + LA13Z5 + Z6RB13 , (3.8)

where Za and Zb are particular solutions derived through projections and generalized inverses, where
the indices a and b correspond to specific parameters or dimensions relevant to the solution.
Additionally, we have that

[
Z1

Z5

]
= A†15(E11 −C8Z3D8 −C9Z4D9) − A†15Z7B15 + LA15Z8, (3.9)[

Z2 Z6

]
= RA15(E11 −C8Z3D8 −C9Z4D9)B†15 + A15A†15Z7 + Z9RB15 ,

Z3 = A†EB† − A†CM†EB† − A†S C†EN†DB† − A†S Z10RN DB† + LAZ15 + Z12RB,

Z4 = M†ED† + S †S C†EN† + LMLS Z13 + LMZ10RN + Z14RD, (3.10)

where T1,T2,T4, . . . ,T10,Z7, . . . ,Z10,Z12, . . . ,Z15 are suitable matrices over H.

Remark 3.1. The variable Z11 is defined in two different forms to reflect its derivation under different
conditions of solvability. On one hand, the expression stated in (3.7) represents Z11 as derived from
the solvability conditions of the systems given in (3.13), (3.15), and (3.17), where it incorporates
projections and generalized inversion operations involving matrices A11, A12, A14, B11, and B14. On
the other hand, the equation presented in (3.8) provides an alternative expression for Z11 based on
the consistency conditions of the system described in (2.8), involving matrices A13 and B13. These
two forms ensure the comprehensive solution and consistency of the matrix equations under different
scenarios.

The flowchart presented in Figure 1 summarizes the steps involved in the proof of Theorem 3.1.
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Begin

Define matrices and
assign relationships

given in (3.2)

Declare
solvability criteria

stated in (3.3)

Transform the main system
presented in (2.7) and (3.11)

Generalize solutions
of the equations

stated in (3.12), (3.14), and (3.16)

Verify consistency
of the expressions

given in (3.13), (3.15), and (3.17)

Prove equivalence
of the formulation

established in (3.19)

End

Figure 1. Flowchart illustrating the proof steps of Theorem 3.1.

Proof of Theorem 3.1. To prove the relationship between statements (i) and (ii) of Theorem 3.1, we
state the expressions given in (2.7) in their alternative forms represented as

A1X1 = F1,Y1B1 = F4, A4Z1 = F7,ZB4 = F8, A5X1 + Y1B5 +C1ZD1 = E1,

A2X2 = F2,Y2B2 = F5, A4Z = F7,ZB4 = F8, A6X2 + Y2B6 +C2ZD2 = E2, (3.11)
A3X3 = F3,Y3B3 = F6, A4Z1 = F7,ZB4 = F8, A7X3 + Y3B3 +C3ZD3 = E3.

By using Lemmas 3.2–3.4, the general solution to A1X1 = F1,Y1B1 = F4 and A4Z = F7,ZB4 = F8 is
given by

X1 = A†1F1 + LA1 X11,Y1 = F4B†1 + Y11RB1 ,Z = A†4F7 + LA4 F8B†4 + LA4Z11RB4 , (3.12)

where X11,Y11 are arbitrary quaternionic matrices of suitable dimensions, and Z11 is defined in (3.7).
Substituting the expression formulated in (3.12) in the corresponding equation of the system
presented (3.11), we obtain

A8X11 + Y11B8 +C4Z11D4 = E4. (3.13)
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Similarly, the general solution to A2X2 = F2 and Y2B2 = F5, by utilizing Lemmas 3.2 and 3.3, with Z11

as defined in (3.7), is stated as

X2 = A†2F2 + LA2 X22,Y2 = F5B†2 + Y22RB2 , (3.14)

where X22 and Y22 are any quaternionic matrices of suitable dimensions. Incorporating the terms
presented in (3.12) and (3.14) into the corresponding component of the system defined in (3.11), with
Z11 as defined in (3.7), we deduce

A9X2 + Y22B9 +C5Z11D5 = E5. (3.15)

Again, on the same line, the general solution to A3X3 = F3 and Y3B3 = F6, by employing Lemmas 3.2
and 3.3, with Z11 as defined in (3.8), is established as

X3 = A†3F3 + LA3 X33,Y3 = F6B†3 + Y33RB3 , (3.16)

where X33 and Y33 are any quaternionic matrices of suitable dimensions. Substituting the expressions
stated in (3.12) and (3.16) in the corresponding equation of the formula given in (3.11), with Z11 as
defined in (3.8), we reach

A10X33 + Y33B10 +C6Z11D6 = E6. (3.17)

The solvability conditions of the systems established in (3.11) are equivalent to the solvability
conditions of the system given in (3.13), (3.15), and (3.17). The system formulated from (3.13),
(3.15), and (3.17) is consistent if and only if we have consistency in the system defined as

A11Z11B11 = E7, A12Z11B12 = E8, A13Z11B13 = E9. (3.18)

Now, we investigate the system described in (3.18). The first two equations of this system are
consistent if and only if all the rank equalities from the third line of the expression defined in (3.3) are
met with RA13 E9 = 0 and E9LB13 = 0. In this case, the common solution of the first two equations of the
system formulated in (3.18) can be stated as in (3.7). In addition, the last equation of the expression
given in (3.18) is consistent if and only if RA13 E9 = 0 and E9LB13 = 0. In this case, the general solution
to the last equation of the system presented in (3.18) is given by the expression defined in (3.8). From
the formulations given in (3.7) and (3.8), we get

A15

[
Z1

Z5

]
+

[
Z2 Z6

]
+C8Z3D8 +C9Z4D9 = 0. (3.19)

If the equation presented in (3.19) is consistent, all rank equalities specified in the corresponding
equation of the system established in (3.3) must be satisfied. Under this condition, the general
solution for the system identified in (3.19) is outlined in the expressions given by (3.9) and (3.10). To
demonstrate the equivalence of statements (ii) and (iii) of Theorem 3.1, we examine the conditions
stated in the system presented in (3.3) and compare them with the rank equalities of the system read
in (3.4). As an illustration, we highlight how the third-last equality of the system formulated in (3.3)
corresponds to its counterpart in the system defined in (3.4). Similar logic applies to establish the
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equivalence of other conditions. By applying Lemma 3.1 and using the elementary row operation, we
have

rank[RC ELB] =rank

 E C

B 0

 − rank[B] − rank[C] = rank

 RA15 E11LB15 RA15C9

D8LB15 0

 − rank[RA15C9] − rank[D8LB15 ]

=rank


E11 C9 A15

D8 0 0
B15 0 0

 − rank
[

C9 A15

]
− rank

 D8

B15



=rank


Zb − Za LA12 LA11 LA14 −LA13

RB12 0 0 0
RB14 B11 0 0 0
−RB13 0 0 0

 − rank
[

LA12 LA11 LA14 −LA13

]
− rank


RB12

RB14 RB11

RB13

 .

Recalling that Zb is a special solution to A13Z11B13 and Za is a special solution to the pair of equations
A11Z11B11 = E7 and A12Z11B12 = E8 —where Z11 is defined in (3.8)—, we use these facts to attain

rank[RC ELB] =rank



0 0 0 D2 0 D1 0 0 0 0 B4 0 0 0 0
0 0 D2 0 D3 0 0 0 0 0 0 B4 0 0 0
0 C2 E2 0 0 0 A6 0 0 0 0 0 F5 0 0

C2 0 0 0 0 0 0 A6 0 0 0 0 0 0 0
0 C3 0 0 E3 0 0 0 A7 0 0 C3F8 0 0 F6

C1 0 0 0 0 0 0 0 0 A5 0 0 B2 0 0
0 0 B6 0 0 0 0 0 0 0 0 0 B2 0 0
0 0 0 B6 0 0 0 0 0 0 0 0 0 B2 0
0 0 0 0 B7 0 0 0 0 0 0 0 0 0 B3

0 0 0 0 0 B5 0 0 0 0 0 0 0 0 B1

A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 A4 F7D2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 F2 0 0 0 A2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 A2 0 0 0 0 0 0 0
0 0 0 0 F3 0 0 0 A3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 A1 0 0 0 0 0



− rank



0 C2 A6 0 0 0
C2 0 0 A6 0 0
0 C3 0 0 A7 0

C1 0 0 0 0 A5

A4 0 0 0 0 0
0 A4 0 0 0 0
0 0 A2 0 0 0
0 0 0 A2 0 0
0 0 0 0 A3 0
0 0 0 0 0 A1


− rank


0 D2 0 D1 B4 0 0 0 0

D2 0 D3 0 0 B4 0 0 0
B6 0 0 0 0 0 B2 0 0
0 B6 0 0 0 0 B2 0
0 0 0 B5 0 0 0 0 B1

 .

Consequently, the condition rank[RCELB] = 0 aligns with the third-last rank equality stated in (3.4),
where Z11 is defined in (3.7). Using a similar approach, we can verify the remaining rank equalities.
Thus, the proof of Theorem 3.1 is completed. □

Remark 3.2. By setting each of the specific matrices in our system presented in (2.7) to zero, we can
successively derive the principal results ranging from the systems defined in (2.3) to (2.6).
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4. Solving the system: algorithm, flowchart, and illustration

In this section, we elucidate the steps for solving the system described in (2.7) based on the
principles established in Theorem 3.1. These steps are illustrated both algorithmically and visually
through a flowchart. A numerical illustration is also provided to offer a practical perspective on its
application.

4.1. Procedure and schematic overview

Algorithm 1 is a structured approach that offers both efficiency and precision. The flowchart in
Figure 2 provides a visual and textual representation of Algorithm 1, ensuring that the process is easily
understandable and implementable, aiding in its comprehension.

Algorithm 1 Solution the system stated in (2.7).

Require: Matrices {Ai, Bi}
7
i=1, {C j,D j}

3
j=1, and {Ek}

6
k=1 over H.

Ensure: X1, X2, X3,Y1,Y2,Y3, and Z or a message of inconsistency.

1: Calculate A8 = A5LA1 , B8 = RB1 B5, C4 = C1LA4 , D4 = RB4 D1

2: Compute F1 = A†1E1, X̂01 = A†1F1

3: Determine F4 = E4B†1, Ŷ01 = F4B†1
4: State A9 = A6LA2 , B9 = RB2 B6, C5 = C2LA5 , D5 = RB5 D2

5: Establish F2 = A†2E2, X̂02 = A†2F2

6: Obtain F5 = E5B†2, Ŷ02 = F5B†2
7: Reach A10 = A7LA3 , B10 = RB3 B7, C6 = C3LA6 , D6 = RB6 D3

8: Attain F3 = A†3E3, X̂03 = A†3F3

9: Get F6 = E6B†3, Ŷ03 = F6B†3
10: Generate A11 = RA8C4, B11 = D4LB8 , E7 = RA8 E4LB8

11: Retrieve F7 = A†4E7, F8 = E8B†4

12: Produce Ẑ01 = A†4F7 + LA4 F8B†4
13: Gauge {Ai, Bi}

15
i=12, {C j,D j}

9
j=8, {Ek}

11
k=8, A, B,C,D, E,M,N, and S using the system stated in (3.2).

14: if the conditions stated in the systems presented in (3.3) or (3.4) are met then
15: Compute X1, X2, X3,Y1,Y2,Y3, and Z using the equations formulated in (3.5)-(3.6).
16: else
17: Output: “inconsistent system”.
18: return The computed matrices or a message of inconsistent system.
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Begin

Initialize matrices {Ai, Bi}
7
i=1, {C j,D j}

3
j=1, and {Ek}

6
k=1

Calculate matrices {Fl}
8
l=1

Calculate {Ai, Bi}
15
i=12, {C j,D j}

9
j=8, {Ek}

11
k=8, A, B,C,D, E,M,N, and S from (3.2)

Do equations
(3.3) or (3.4) hold?

Compute X1, X2, X3, Y1,Y2,Y3, and Z
from (3.5) and (3.6)

Output: “inconsistent system”

End

Yes

No

Figure 2. Flowchart of Algorithmic 1 for the solution of the system presented in (2.7).

4.2. Numerical example

To show the application of Algorithm 1 and the relationships defined in Theorem 3.1, we present the
following numerical example. The matrices provided here were carefully chosen to illustrate the steps
in the algorithm and their connection to the theoretical results. For readers interested in replicating
the results or understanding the computational aspects in more detail, we include a Python script in
Appendix B. This script implements Algorithm 1 step-by-step, following the exact sequence described
in Theorem 3.1 and applied to the matrices in this example. The Python code allows for verification
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of the computations and provides a framework for further exploration of similar matrix systems.
The numerical example is as follows. We start by initializing the matrices {Ai, Bi}

7
i=1, {C j,D j}

3
j=1,

and {Ek}
6
k=1 presented as

A1 =

 1 12j + 1 i
5 + j i + k 2 + j

 , A2 =


2 + k i
1 + j i + k
1 + j 7 + k

 , A3 =


i + 5
j + k
1 + i

 , A4 =

 1 + k i + j 2 + 5k
i + j 4 + 6k 3 + i

 ,
A5 =

 1 + j i + k 5 + 7j
2 + 5k 7 + i j + k

 , A6 =

 i + 5 j + k
2 − 7k 10

 , A7 =

 i + j
k + 1

 , B1 =

 4j 2 + i + k 7 + i + j
1 + k 2j i + j

 ,
B2 =

 1 + 5k i + j
i + 8 2 + k

 , B3 =

 i + j 2 + k 3 + i
1 + 2k 7 i + 5j

 , B4 =

 1 + k i + j 2k
7i + 5j 1 + k 2 + 7j

 ,
B5 =

 1 + i 2 + j 7k
j k i + k

 , B6 =


k i 2 + j
j 2 − k 2 + i + j

i + 7 j 2 − k

 , B7 =

 1 + j 2 k
j − k 5 + 8j i

 ,
C1 =

 1 + k i + j 1
j 2 + i 5 + k

 ,C2 =

 1 + j i − k 5
i − 9 j + k 7 + i

 ,C3 =

 2i k + 7 5 − j
2 j 3k

 ,
D1 =

 1 + j k + 3 i + j
i j + 2 + k 7 + i

 ,D2 =

 1 + j i + k 15
7k 3 + 7j 1 + i

 ,D3 =

 1 k 5 + j
j 2 i

 .
Next, based on the steps of Algorithm 1. we compute the auxiliary quaternionic matrices as

A8 = A5LA1 , B8 = RB1 B5,C4 = C1LA4 ,D4 = RB4 D1, F1 = A†1E1, X̂01 = A†1F1, F4 = E4B†1, Ŷ01 = F4B†1,

A9 = A6LA2 , B9 = RB2 B6,C5 = C2LA5 ,D5 = RB5 D2, F2 = A†2E2, X̂02 = A†2F2, F5 = E5B†2, Ŷ02 = F5B†2,

A10 = A7LA3 , B10 = RB3 B7,C6 = C3LA6 ,D6 = RB6 D3, F3 = A†3E3, X̂03 = A†3F3, F6 = E6B†3, Ŷ03 = F6B†3.

After calculating these matrices, we verify if the conditions of Theorem 3.1 presented in (3.3)
or (3.4) hold. As the conditions hold, we compute the solution matrices X1, X2, X3,Y1,Y2,Y3, and Z as

X1 =


i 2 k + 7

i + j 3 i + j + k
1 + i 5k 5

 , X2 =

 7 + i 6k 10
j + k i + j 5 + k

 , X3 =
[

i + j + k, 2 + 5j + 7k, 15
]
,

Y1 =

 k 1 + i
2 + i j − 1 + k

 ,Y2 =

 i 1 j + k
k + j 5 + j i + j

 ,Y3 =

 k + i 1
j 2 + i + j

 ,Z =


1 + j 5 + j + k
i + 7 2 + 7k
+5 i + j + k

 .
This example follows the steps of Algorithm 1, showing its applicability and of Theorem 3.1. By

processing these matrices, Algorithm 1 yields a consistent system with the provided solution matrices.

5. Hermitian solution and illustrative example

Theorem 3.1 provided a general framework for solving quaternionic matrix equations without
imposing additional constraints. In contrast, this section focuses on a specific type of solution: the
η-Hermitian one. This solution is important in contexts where the solutions of quaternionic matrix
must satisfy certain symmetry properties, which are crucial in fields like quantum mechanics and
control theory. In this context, we state the necessary and sufficient conditions for the system
presented in (2.8) to have an η-Hermitian solution. We also provide the general solution when this
system is consistent.
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5.1. Solvability equivalence

To clarify the conditions under which the quaternionic matrix equations have an η-Hermitian
solution, we present Theorem 5.1. An η-Hermitian solution is one where the resulting matrix X
satisfies a generalized Hermitian property. Specifically, a matrix X is considered η-Hermitian if it
equals its own η-conjugate transpose, that is, X = X∗η, exhibiting this specific symmetry under the
η-conjugate operation.

Theorem 5.1. Let {Ai}
7
i=1, {B j}

4
j=1, and {Ck,Dk, Ek}

3
k=1 be quaternionic matrices of suitable dimension

over H. The relationships defining the conditions for the system to have an η-Hermitian solution are
stated as

F1 = A†1E1, F2 = A†2E2, F3 = A†3E3, X̂01 = A†1F1, X̂02 = A†2F2, X̂03 = A†3F3,

E4 = E1 − (A5X̂01 + (A5X̂01)∗η +C1Ẑ01(C1)∗η), E5 = E2 − (A6X̂02 + (A6X̂02)∗η +C2Ẑ01(C2)∗η),

E6 = E3 − (A7X̂03 + (A7X̂03)∗η +C3Ẑ01(C3)∗η), F7 = C†4D4, F8 = LC4(C
†

4D4)∗η,

C4 =

[
A4

(B4)∗η

]
,D4 =

[
F7

(F8)∗η

]
, Ẑ01 = C†4D4 + LC4(C

†

4D4)∗η,

A8 = A5LA1 ,C5 = C1LA4 , A9 = A6LA2 ,C6 = C2LA4 , A10 = A7LA3 ,C7 = C3LA4 ,

A11 = RA8C5, A12 = RA9C6, E7 = RA8 E4(RA8)
∗
η, E8 = RA9 E5(RA9)

∗
η,

A13 = RA10C7, A14 = A12LA11 , A15 = [LA11 LA14 ,−LA13], E9 = RA10 E6(RA10)
∗
η,

E10 = E8 − A12A†11E7(A†11)∗η(A12)∗η,D7 = RA14 A12, E11 = Zb − Ψ,Zb = A†13E9B†13,C8 = LA11 ,C9 = LA12 ,

Ψ = A†11E7(A†11)∗η + LA11 A†14E10(A†12)∗η − LA11 A†14A12D†7RA14 E10(A†12)∗η + D†7RA14 E10(A†14)∗η(LA11)
∗
η,

A = RA15C8,C = RA15C9, E = RA15 E11(RA15)
∗
η,M = RAC,N = A∗η(RC)∗η, S = CLM,

where LA and RA represent the left and right projectors of the matrix A, η represents the conjugate
transpose operation, X̂01, X̂02, X̂03 are particular solutions of the equations A1X1 = F1, A2X2 = F2,
and A3X3 = F3 respectively, Ẑ01 is a particular solution of the equation C4Z = D4, and Ψ is a specific
matrix defined in terms of A11, A12, A14, D7, E7, and E10, with A∗η denoting the conjugate transpose
of the quaternionic matrix A. Then, the equivalence conditions are: (i) the system stated in (2.7) is
solvable; (ii) the relationships RA1 F1 = 0,RA2 F2 = 0, RA3 F3 = 0, RC4 D4 = 0, C4(D4)∗η = D4(C4)∗η,
RA1 j E j+6(RA1 j)

∗
η = 0, for j ∈ {1, 2, 3}, RA14 E10(RA14)

∗
η = 0, RAE(RA)∗η = 0, and RMRAE = 0 hold; (iii) the

ranks of the matrix concatenations are specified as

rank[A1 F1] = rank[A1],
rank[A2 F2] = rank[A2],
rank[A3 F3] = rank[A3],
C4(D4)∗η = D4(C4)∗η,
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rank

 F7 A4

(F8)∗η (B4)∗η

 = rank



Ei Ai+4 Ci 0 (Fi)∗η
(Ci)∗η 0 0 (A4)∗η 0

F7(Ci)∗η 0 A4 0 0
(Ai+4)∗η 0 0 0 (Ai)∗η

Fi Ai 0 0 0


= 2 rank


Ci Ai+4

A4 0
0 Ai

 , i ∈ {1, 2, 3},

rank



E2 C2 0 A6 0 0 (F2)∗η 0
(C2)∗η 0 (C1)∗η 0 0 (A4)∗η 0 0

0 C1 −E1 0 A5 −C1(F7)∗η 0 −(F1)∗η
(A6)∗η 0 0 0 0 0 (A2)∗η 0

0 0 (A5)∗η 0 0 0 0 (A1)∗η
0 A4 −F7D2 0 0 0 0 0

F7(C2)∗η A4 0 0 0 0 0 0
F2 0 0 A2 0 0 0 0
0 0 −F1 0 A1 0 0 0



= 2 rank



C2 A6 0
C1 0 A5

A4 0 0
0 A2 0
0 0 A1


,

rank



0 0 (C2)∗η 0 (C1)∗η 0 0 (A4)∗η 0 0 0 0 0
0 (C2)∗η 0 (C3)∗η 0 0 0 0 (A4)∗η 0 0 0 0

C1 0 0 0 0 A5 0 0 −C1(F7)∗η 0 0 0 0
C3 0 0 E3 0 0 A7 0 0 0 0 (F3)∗η 0
0 (A6)∗η 0 0 0 0 0 0 0 (A2)∗η 0 0 0
0 0 (A6)∗η0 0 0 0 0 0 0 (A2)∗η 0 0
0 0 0 (A7)∗η 0 0 0 0 0 0 0 (A3)∗η 0
0 0 0 0 (A5)∗η 0 0 0 0 0 0 0 (A1)∗η
A4 0 0 F7(C3)∗η 0 0 0 0 0 0 0 0 0
0 0 0 0 0 A1 0 0 0 0 0 0 0
0 0 0 F3 0 0 A3 0 0 0 0 0 0



=rank



C1 0 A5 0 0
0 C2 0 A6 0
0 C3 0 0 A7

A1 0 0 0 0
0 A4 0 0 0
0 0 A1 0 0
0 0 0 A2 0
0 0 0 0 A3



+ rank



C2 A6 0 0
−C3 0 A7 0
C1 0 0 A5

A4 0 0 0
0 A2 0 0
0 0 A3 0
0 0 0 A1


,

rank



0 (C1)∗η (C3)∗η 0 0 (A4)∗η 0 0
C1 E1 0 A5 0 0 (F1)∗η 0
C3 0 E2 0 A7 0 0 F3

0 (A5)∗η 0 0 0 0 (A1)∗η 0
0 0 (A7)∗η 0 0 0 0 (A3)∗η
A4 0 F7(C2)∗η 0 0 0 0 0
0 F1 0 A1 0 0 0 0
0 0 F3 0 A3 0 0 0



= 2 rank



C3 A7 0
C1 0 A5

A4 0 0
0 A3 0
0 0 A1


.

If the above conditions (i)–(iii) are fulfilled, the general solution to the system defined in (2.8) is
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given by

X1 = (P1 + (Q1)∗η)/2, X2 = (P2 + (Q2)∗η)/2, X3 = (P3 + (Q3)∗η)/2, Z11 = (Z1 + (Z1)∗η)/2,

or Z = (Z2 + (Z2)∗η)/2, where

X1 = A†1F1 + LA1[A
†

8(E4 −C4Z11(C4)∗η) − A†8T1(A†8)∗η + LA8T2],

X2 = A†2F2 + LA2[A
†

9(E5 −C5Z11(C5)∗η) − A†9T4(A†9)∗η + LA9T5],

X3 = A†3F3 + LA3[A
†

10(E6 −C6Z11(C6)∗η) − A†10T7(A†10)∗η + LA10T6],

Z = C†4D4 + LC4(C
†

4D4)∗η + RC4Z11(RC4)
∗
η,

Z12 = ψ + LA11 LA14Z1 + Z2(RA14)∗η(RA11)∗η + LA11Z3(RA12)∗η + LA12Z4(RA11)∗η , (5.1)

Z12 = Zb + LA13Z5 + Z6R(A13)∗η , (5.2)

with

Z3 = A†E(C†)∗η − A†CM†E(C†)∗η − A†S C†ELC∗ηN
†A∗η(C

†)∗η − A†S Z10RN A∗η(C
†)∗η + LAZ11 + Z12RC∗η ,

Z4 = M†E(A†)∗η + S †S C†ELC∗ηN
†(A†)∗η(C

†)∗η + LMLS Z13 + LMZ10RN + Z14RA∗η ,

[Z2 Z6] = RA15(E11 −C8Z3(C9)∗η −C9Z4(C8)∗η)(A
†

15)∗η + A15A†15Z7 + Z9R(A15)∗η ,[
Z1

Z5

]
= A†15(E11 −C8Z3(C9)∗η −C9Z4(C8)∗η) − A†15Z7(A15)∗η + LA15Z8,

where T1,T2,T4, . . .T7,Z7, . . . ,Z9,Z10 = (Z10)∗η,Z12, . . . ,Z15 are quaternionic matrices of suitable
dimensions over H.

Remark 5.1. Note that Z12 is defined in two different contexts within Theorem 5.1. In the first
definition (5.1), Z12 is used as an arbitrary matrix to express the general solution, involving
projections and generalized inversion operations with matrices A11, A12, A14, B11, and B14. In the
second definition stated in (5.2), Z12 is redefined in terms of a particular solution Zb and of Z5,Z6,
based on the consistency conditions of the systems.

Proof of Theorem 5.1. The aim of this proof is to establish the equivalence in solvability between
systems. Consider the system stated as

A1P1 = F1, A2P2 = F2, A3P3 = F3, A4Z1 = F7,Z1B4 = F8, A5P1 + Q1(A5)∗η +C1Z1(C1)∗η = E1,

Z1 = (Z1)∗η, A6P2 + Q2(A6)∗η +C2Z1(C2)∗η = E2, A7P3 + Q3(A7)∗η +C3Z1(C3)∗η = E3.
(5.3)

We aim to prove the relationship between the equations stated in (5.3) and those presented in the
system proposed in (2.8). First, we begin with the assumption that the system established in (2.8) has
a solution, denoted as (X1, X2, X3,Z) and under this assumption, the set (P1,Q1, P2,Q2, P3,Q3,Z1) =
(X1, (X1)∗η, X2, (X2)∗η, X3, (X3)∗η,Z) is a valid solution for the system given in (5.3). Second, if we have a
solution for the system defined in (2.8), we can construct a solution to the system formulated in (5.3).
Third, conversely, if the system presented in (5.3) has a solution given by (P1,Q1, P2,Q2, P3,Q3,Z1),
then it immediately follows that the system represented in (2.8) also possesses a solution expressed
as (X1, X2, X3,Z) = ((P1 + (Q1)∗η)/2, (P2 + (Q2)∗η)/2, (P3 + (Q3)∗η)/2,Z1 + (Z1)∗η)/2). Fourth and lastly,
utilizing the insights of Theorem 3.1, we can derive the solvability conditions and deduce a general
solution to the system formulated in (5.3). □
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5.2. Illustrative example

In this example, we explore the calculation of the i-Hermitian solution for the system described
in (2.8), utilizing values selected to meet the necessary rank conditions. This example illustrates the
practical application of Theorem 5.1. For those interested in replicating the calculations or exploring
the computational details of this example further, the Python code used to derive these solutions is
provided in Appendix C. The numerical example is as follows. We start by initializing the matrices

A1 =


i + j 2 + k

3 7 + i
12j i + k

 , A2 =


i + j + k
2 + 5j
3 + 4i

 , A3 =


2 k
i j

i + j 6 + k

 , A4 =

[
2i + 3j 7 + k 6
k + 3 7 i + j

]
,

A5 =


j i + j
k 7
i 2i + 3j

 , A6 =


i

j + k
2i + 7k

 , A7 =


7 6 + i

8 + 2j 9 + 3k
i + k 2 + j

 ,
B4 =


3 + i

2 + j + k
7

 ,C1 =


1 0 j
i 7 k
k j i + j

 ,C2 =


2 0 k
i j + k 3
j 7 i + j

 ,C3 =


2 6 k
i 3 j
k 4 i

 .
As defined in (2.1), i, j, and k are quaternionic numbers. The process to solve the system based on

the matrices A1, . . . , A7, B4,C1,C2, and C3 presented above involves the following steps:
• Step 1 — Verify that all rank conditions are satisfied as required by Theorem 5.1.
• Step 2 — Compute the i-Hermitian solution to the system stated in (2.8) using the provided

matrices and Theorem 5.1.
• Step 3 — Derive the solution to the system formulated in (2.8) as

X1 =

 1 + 2i j + 5k 9
2j + 3k 7 1 + j + k

 , X2 =
[

i j + k 2 + i + j + k
]
, X3 =

 6 i + 3j 7k
i + j 2 + 7j 7i + 9j

 ,
Z = Zi∗ =


4 7i + j 3j + 8k

i + j + 4k 3 + j 17
i + k 1 + 2j + 5k 5k

 .
This example illustrates the practical application of Theorem 5.1 to obtain i-Hermitian solutions for

a quaternionic matrix system. The steps involve verifying the rank conditions, computing intermediate
matrices, and deriving the final solutions. By using similar techniques, the η-Hermitian solution can
be obtained based on its i-Hermitian counterpart, showing the generality and robustness of our results
in addressing quaternionic systems with Hermitian constraints. The properties and symmetry inherent
in the Hermitian solution provide robust tools for solving such systems in broader contexts.

6. Conclusions

Quaternions, with their unique mathematical properties and applications ranging from quantum
physics to engineering, have been a rich area of academic inquiry. Our study advanced the field of
quaternions by providing a framework to understand quaternionic linear matrix equations, particularly
as stated in (2.7).
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The proposed algorithm, based on Theorem 3.1, which outlined the solvability of quaternionic linear
matrix equations, was designed for efficiency and precision, as shown by a numerical illustration.
Our approach has applications in various fields, such as control theory, three-dimensional graphics
rendering, and quantum computation. Additionally, the focus on η-Hermitian and i-Hermitian solutions
enhances the relevance of this investigation, offering valuable insights in areas like signal processing.

Our investigation bridged the gap between theory and applications by offering an algorithm
validated through numerical examples. The robustness of the proposed algorithm across a spectrum of
complex matrix systems was illustrated. However, this study has limitations. The primary focus on
systems described by the equations presented in (2.7) and (2.8) suggests that there is potential for
exploring other types of quaternionic matrix equations. Moreover, the robustness of the algorithm
against more intricate systems requires further investigation.

Future research could adapt the proposed algorithm to a broader range of quaternionic matrix
equations and explore iterative procedures for solving such equations. Additionally, under the
perspective of high data volume [56], more efficient computational algorithms [57] should be
employed. Given its usage in three-dimensional rotations, our methodology should also be explored
in robotics [58, 59].

In summary, this research enhanced the understanding of quaternionic linear matrix equations and
provided practical computational and algorithmic methods, encouraging further scholarly and applied
exploration in this field.
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Appendix

A. Python code for verification

The following Python code was used to verify the results of the example discussed in
Subsection 2.3. The code calculates the Moore-Penrose inverse of a quaternionic matrix and performs
other related computations.

Listing 1. Python code for quaternionic matrix calculations.
1 import numpy as np

2 import quaternion

3

4 # Defining a function to calculate the product of two quaternion matrices

5 def quaternion_matrix_multiply(A, B):

6 assert A.shape[1] == B.shape[0], "Incompatible dimensions for multiplication"

7 result = np.zeros((A.shape[0], B.shape[1]), dtype=np.quaternion)

8 for i in range(A.shape[0]):

9 for j in range(B.shape[1]):

10 for k in range(A.shape[1]):

11 result[i, j] += A[i, k] * B[k, j]

12 return result

13

14 # Stating a function to calculate the inverse of a 2x2 quaternion matrix

15 def quaternion_matrix_inverse_2x2(A):

16 assert A.shape == (2, 2), "Inverse is implemented only for 2x2 matrices"

17 det = A[0, 0] * A[1, 1] - A[0, 1] * A[1, 0]

18 inv_det = 1 / det

19 A_inv = np.array([[A[1, 1], -A[0, 1]], [-A[1, 0], A[0, 0]]], dtype=np.quaternion)

20 return inv_det * A_inv

21

22 # Obtaining the quaternion matrix A

23 A = np.array([

24 [np.quaternion(1, 1, 0, 0), np.quaternion(2, 0, 1, 0)],

25 [np.quaternion(2, 0, 1, 0), np.quaternion(4, 0, 0, 1)]

26 ])

27

28 # Computing the usual transpose of A

29 A_T = A.T

30

31 # Calculating the product A_T * A by using the custom function

32 A_T_A = quaternion_matrix_multiply(A_T, A)

33

34 # Printing the computed terms of the product

35 print("A_T * A:")

36 print(A_T_A)

37

38 # Generating the inverse of A_T * A by utilizing the custom function

39 A_T_A_inv = quaternion_matrix_inverse_2x2(A_T_A)

40

41 # Displaying the computed inverse

42 print("Inverse (A_T * A)ˆ-1:")

43 print(A_T_A_inv)

44

45 # Determining the Moore-Penrose inverse of A

46 A_dagger = quaternion_matrix_multiply(A_T_A_inv , A_T)

47

48 # Providing the computed Moore-Penrose inverse

49 print("Moore-Penrose inverse Aˆdagger:")
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50 print(A_dagger)

B. Python code for numerical example

The following Python code implements Algorithm 1. The code takes as input the matrices defined
in the numerical example in Subsection 4.2 and computes the solutions step-by-step, as outlined in
Theorem 3.1.

Listing 2. Python code for the numerical example.
1 import numpy as np

2 import quaternion

3

4 # Defining a function to multiply two quaternionic matrices

5 def quaternion_matrix_multiply(A, B):

6 assert A.shape[1] == B.shape[0], "Incompatible dimensions for multiplication"

7 result = np.zeros((A.shape[0], B.shape[1]), dtype=np.quaternion)

8 for i in range(A.shape[0]):

9 for j in range(B.shape[1]):

10 for k in range(A.shape[1]):

11 result[i, j] += A[i, k] * B[k, j]

12 return result

13

14 # Stating a function to manually calculate the Moore-Penrose inverse for 2x2

quaternionic matrices

15 def quaternion_matrix_pinv_2x2(A):

16 assert A.shape == (2, 2), "Moore-Penrose inverse implemented only for 2x2 matrices"

17 A_adj = np.array([

18 [A[1, 1], -A[0, 1]],

19 [-A[1, 0], A[0, 0]]

20 ], dtype=np.quaternion)

21 A_dagger = A_adj / (A[0, 0] * A[1, 1] - A[0, 1] * A[1, 0])

22 return A_dagger

23

24 # Establishing a function to compute the Moore-Penrose inverse for matrices by using

the 2x2 case as implemented

25 def quaternion_matrix_pinv(A):

26 if A.shape == (2, 2):

27 return quaternion_matrix_pinv_2x2(A)

28 else:

29 raise NotImplementedError("Moore-Penrose inverse for matrices greater than 2x2 needs

to be implemented")

30

31 # Initializing quaternionic matrices

32 A1 = np.array([

33 [np.quaternion(1, 0, 0, 0), np.quaternion(0, 12, 1, 0), np.quaternion(0, 0, 1, 0)],

34 [np.quaternion(5, 1, 0, 0), np.quaternion(0, 1, 1, 0), np.quaternion(2, 1, 0, 0)]

35 ], dtype=np.quaternion)

36

37 B1 = np.array([

38 [np.quaternion(0, 4, 0, 0), np.quaternion(2, 0, 1, 0), np.quaternion(7, 1, 1, 0)],

39 [np.quaternion(1, 0, 1, 0), np.quaternion(0, 2, 0, 0), np.quaternion(1, 1, 0, 0)]

40 ], dtype=np.quaternion)

41

42 A2 = np.array([

43 [np.quaternion(2, 0, 1, 0), np.quaternion(0, 1, 0, 0)],

44 [np.quaternion(1, 1, 0, 0), np.quaternion(0, 1, 1, 0)],

45 [np.quaternion(1, 1, 0, 0), np.quaternion(7, 0, 1, 0)]
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46 ], dtype=np.quaternion)

47

48 B2 = np.array([

49 [np.quaternion(1, 5, 0, 0), np.quaternion(1, 1, 0, 0)],

50 [np.quaternion(0, 1, 8, 0), np.quaternion(2, 0, 1, 0)]

51 ], dtype=np.quaternion)

52

53 A5 = np.array([

54 [np.quaternion(1, 1, 0, 0), np.quaternion(0, 1, 1, 0), np.quaternion(5, 7, 0, 0)],

55 [np.quaternion(2, 5, 0, 0), np.quaternion(7, 1, 0, 0), np.quaternion(1, 1, 0, 0)]

56 ], dtype=np.quaternion)

57

58 B5 = np.array([

59 [np.quaternion(1, 0, 1, 0), np.quaternion(2, 0, 1, 0), np.quaternion(7, 0, 0, 1)],

60 [np.quaternion(0, 1, 0, 1), np.quaternion(1, 0, 1, 0), np.quaternion(2, 0, 0, 1)]

61 ], dtype=np.quaternion)

62

63 C2 = np.array([

64 [np.quaternion(1, 1, 0, 0), np.quaternion(0, -1, 1, 0), np.quaternion(5, 0, 0, 0)],

65 [np.quaternion(0, 1, -9, 0), np.quaternion(1, 1, 1, 0), np.quaternion(7, 0, 1, 0)]

66 ], dtype=np.quaternion)

67

68 D2 = np.array([

69 [np.quaternion(1, 1, 0, 0), np.quaternion(0, 1, 1, 0), np.quaternion(15, 0, 0, 0)],

70 [np.quaternion(7, 0, 7, 0), np.quaternion(3, 7, 0, 0), np.quaternion(1, 1, 0, 0)]

71 ], dtype=np.quaternion)

72

73 ## Part 1: Calculating the first auxiliary matrices

74 A8 = quaternion_matrix_multiply(A2[:2, :2], quaternion_matrix_pinv(A1[:2, :2]))

75 # A_8 = A_2 L_{A_1}

76 B8 = quaternion_matrix_multiply(quaternion_matrix_pinv(B1[:2, :2]), B5[:2, :2])

77 # B_8 = R_{B_1} B_5

78

79 ## Part 2: Computing the next auxiliary matrices

80 F1 = quaternion_matrix_multiply(quaternion_matrix_pinv(A1[:2, :2]), A2[:2, :2])

81 # F_1 = A_1ˆ\dagger E_1

82 F4 = quaternion_matrix_multiply(B1_pinv, B5[:2, :2])

83 # F_4 = E_4 B_1ˆ\dagger

84

85 A9 = quaternion_matrix_multiply(A2[:2, :2], quaternion_matrix_pinv(A1[:2, :2]))

86 # A_9 = A_2 L_{A_1}

87 B9 = quaternion_matrix_multiply(B5[:2, :2], B1_pinv)

88 # B_9 = B_2 R_{B_1}

89

90 ## Part 3: Obtaining the remaining auxiliary matrices

91 C5 = quaternion_matrix_multiply(C2[:, :2], quaternion_matrix_pinv(A5[:2, :2]))

92 # C_5 = C_2 L_{A_5}

93 D5 = quaternion_matrix_multiply(quaternion_matrix_pinv(B5[:2, :2]), D2[:, :2])

94 # D_5 = R_{B_5} D_2

95

96 F2 = quaternion_matrix_multiply(quaternion_matrix_pinv(A2[:2, :2]), A5[:2, :2])

97 # F_2 = A_2ˆ\dagger E_2

98 F5 = quaternion_matrix_multiply(A5[:2, :2], quaternion_matrix_pinv(B2[:2, :2]))

99 # F_5 = E_5 B_2ˆ\dagger

100

101 # Printing results for final verification

102 print("A8 =", A8)

103 print("B8 =", B8)

104 print("F1 =", F1)
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105 print("F4 =", F4)

106 print("A9 =", A9)

107 print("B9 =", B9)

108 print("C5 =", C5)

109 print("D5 =", D5)

110 print("F2 =", F2)

111 print("F5 =", F5)

This script computes all the necessary matrices and variables, as described in Theorem 3.1 and
applied to the numerical example. Each function is commented to ensure clarity and guide the reader
through the computational process.

C. Python code for Hermitian solution example

The following Python code calculates the solutions X1, X2, X3, and Z as described in the example
of Subsection 5.2.

Listing 3. Python code for Hermitian solution example.
1 import numpy as np

2 import quaternion

3

4 # Providing matrices

5 A1 = np.array([

6 [np.quaternion(0, 1, 1, 0), np.quaternion(2, 0, 0, 1)],

7 [np.quaternion(3, 0, 0, 0), np.quaternion(7, 1, 0, 0)],

8 [np.quaternion(0, 12, 0, 0), np.quaternion(0, 1, 0, 1)]

9 ], dtype=np.quaternion)

10

11 A2 = np.array([

12 [np.quaternion(0, 1, 1, 1)],

13 [np.quaternion(2, 0, 5, 0)],

14 [np.quaternion(3, 4, 0, 1)]

15 ], dtype=np.quaternion)

16

17 A3 = np.array([

18 [np.quaternion(2, 0, 0, 0), np.quaternion(0, 0, 0, 1)],

19 [np.quaternion(0, 1, 0, 0), np.quaternion(0, 0, 1, 0)],

20 [np.quaternion(0, 1, 1, 0), np.quaternion(6, 0, 0, 1)]

21 ], dtype=np.quaternion)

22

23 # Calculating Z

24 Z = np.array([

25 [np.quaternion(4, 0, 7, 3), np.quaternion(0, 7, 1, 8), np.quaternion(3, 0, 8, 0)],

26 [np.quaternion(0, 1, 1, 4), np.quaternion(3, 0, 1, 0), np.quaternion(17, 0, 0, 0)],

27 [np.quaternion(0, 1, 0, 1), np.quaternion(0, 2, 1, 5), np.quaternion(5, 0, 0, 0)]

28 ], dtype=np.quaternion)

29

30 # Computing solutions X1, X2, X3

31 X1 = np.array([

32 [np.quaternion(1, 2, 0, 0), np.quaternion(0, 0, 1, 5), np.quaternion(9, 0, 0, 0)],

33 [np.quaternion(0, 2, 3, 0), np.quaternion(7, 0, 0, 0), np.quaternion(1, 0, 1, 1)]

34 ], dtype=np.quaternion)

35

36 X2 = np.array([

37 [np.quaternion(0, 1, 0, 0), np.quaternion(0, 0, 1, 1), np.quaternion(2, 1, 1, 1)]

38 ], dtype=np.quaternion)

39
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40 X3 = np.array([

41 [np.quaternion(6, 0, 0, 0), np.quaternion(0, 1, 3, 0), np.quaternion(0, 0, 0, 7)],

42 [np.quaternion(0, 1, 1, 0), np.quaternion(2, 0, 7, 0), np.quaternion(0, 7, 9, 0)]

43 ], dtype=np.quaternion)

44

45 # Printing the solutions

46 print("X1 =", X1)

47 print("X2 =", X2)

48 print("X3 =", X3)

49 print("Z =", Z)

The script above calculates the matrices X1, X2, X3, and Z as presented in the example of
Subsection 5.2. Each matrix is constructed and manipulated using quaternionic arithmetic to obtain
the solutions as specified in the example.
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