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Abstract: Timer options, which were first introduced by Société Générale Corporate and Investment
Banking in 2007, are financial securities whose payoffs and exercise are determined by a random
time associated with the accumulated realized variance of the underlying asset, unlike vanilla options
exercised at the prescribed maturity date. In this paper, taking account of the correlation between the
underlying asset price and volatility, we investigate the pricing of timer options under the constant
elasticity of variance (CEV) model, proposed by Cox and Ross [10], taking advantage of the approach
of asymptotic analysis. Additionally, we validate the pricing precision of the approximate formula
for timer options using the Monte Carlo method. We conduct numerical experiments based on our
corrected prices and analyze price sensitivities concerning various model parameters, with a focus on
the value of elasticity.
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1. Introduction

In quantitative finance, volatility is a crucial factor in pricing derivatives, dynamic hedging, and
portfolio management within the financial market. For FX (foreign exchange) options, prices are
quoted in volatility. Given its significance in evaluating financial derivatives, volatility has been a focal
point in both academia and practice.

For many years, academics have been studying how to model volatility. One of the most famous
volatility models is the Black-Scholes model [1]. They described the dynamic of the asset price in
terms of geometric Brownian model (GBM) in which volatility of the underlying asset is assumed to
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be a constant and the stock price has a log-normal distribution. Because of this, the Black-Scholes
model has the advantage of being tractable, but has the disadvantage of not reflecting the time-varying
volatility in the real market. In fact, in the real market, there is high probability that excess skewness
and leptokurtosis occur as properties of the risk-neutral probability distribution unlike the log-normal
distribution. Since then, to overcome these shortcomings of the Black-Scholes model, two major types
of volatility models have been developed: Stochastic volatility (SV) models and local volatility models.

In SV models, taking account of many extraordinary volatility behaviors in the financial market after
1987 Financial Crash, the existence of a nonflat implied volatility has become remarkable. Therefore,
participants interested in financial transactions have taken notice of the models that can predict the
movement of financial assets, noting that the volatility of an underlying asset follows a stochastic
process, and then the (pure) SV model has been proposed for describing and reflecting real situations
in financial markets. In fact, the Heston model (cf. Heston [2]) and the fast mean-reverting SV model
given by Fouque et al. [3] have become representative SV models, which are designed to capture the
phenomenon of the mean-reversion of volatility in the real market. In addition, the Hull and White
model [4] adopted the instantaneous variance process as a geometric Brownian motion. The mean-
reverting Ornstein-Uhlenbeck process was also used in several models as a stochastic process (see
Scott [5]; Chesney and Scott [6]; Schöbel and Zhu [7]). In addition, Heston model [2] assumed that
the volatility is a Cox-Ingersoll-Ross (CIR) process and the Heston model is the one of most popular
stochastic models because of the tractability.

The local volatility models were developed by Dupire [8] and Derman and Kani [9] for the
continuous and discrete cases, respectively, which are also called non-parametric local volatility
models. In this model, the volatility depends on the both asset price and time, addressing the importance
of the correlation between the change in the underlying asset price and the randomness of volatility to
price options. In addition, Cox and Ross [10] proposed the constant elasticity of variance (CEV) model
as the parametric local volatility models. Especially, as seen in Tian et al. [11], the CEV model has been
known to generate the U-shaped implied volatility contrary to the Black-Scholes model. However, in
the CEV model mentioned by Cox and Ross [10], the movement in volatility and underlying asset price
has perfect correlation, either positively or negatively, relying on the elasticity parameter. However, in
the empirical study, there is definite correlation at all times, showing volatility is time-varying as shown
in Ghysels et al. [12].

Recently, considering that the local volatility models or the SV models fail to capture the empirical
evidence demonstrating that the implied volatility of equity options exhibits smile and skew curves
simultaneously. A model that combines these two volatility models, called a hybrid model, has
been proposed by many researchers, concentrating that the mixed models were designed to have the
advantages of these two type of volatility models. First, one hybrid model was developed based on
the non-parametric local volatility model and the stochastic model (see Van der Stoep et al. [13];
Tian et al. [11]; Cui et al. [14]), namely stochastic local volatility models. Second, another hybrid
model that combines the CEV model and the SV model has also been developed (e.g., Andersen and
Piterbarg [15]; Lord et al. [16]; Choi et al. [17]; Cui et al. [18]).

As volatility has a direct impact on pricing and hedging performance, several volatility derivatives
have been introduced. In particular, these products enable investors to manage the volatility risk, that
is, they are used to hedge volatility risk. Among the volatility derivatives, variance swap is the most
famous [19, 20]. The payoff of variance swap is calculated from the difference between the realized
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variance and a strike price of the contract. Starting with the studies of Carr and Madan [19] and
Demeterfi et al. [21], who evaluated variance swap by replicating the swap payoff with a portfolio
of European options, various studies have been introduced. Zhu and Lian [22] priced the variance
swap under the Heston model. Zheng and Kwok [23] developed a probabilistic approach to evaluate
the variance swap under an SV model with jumps in the underlying asset price. A closed-form pricing
formula for the discrete-time variance swap under general affine GARCH (generalized autoregressive
conditional heteroskedasticity) type models was introduced by Badescu et al. [20]. Issaka [24] evaluate
the variance swap by assuming that the underlying assets follow the multiple SV models. Xi and
Wong [25] priced the variance swap in a rough Heston model [26] and investigated the sensitivity to
roughness on the variance swap.

In addition, as another volatility derivative, there is a timer option. The payoff of the timer option is
similar to that of the vanilla option, but it has a random maturity contrary to the vanilla option, whose
payoff is determined by only the fixed maturity embedded in the option. The timer option expires when
the accumulated realized variance of the underlying asset reaches a predetermined level. In particular,
timer options were first studied by Neuberger [27] as the “mileage option”, another name for timer
options, in academia and launched by the Société Générale Corporate and Investment Banking (SG
CIB) in 2007. Since April 2007, timer options have been traded on the market (see [28]). After the trade
began, several studies have been conducted on the evaluation of time options. Bick [29] considered the
continuous version of timer options, and Li [30] implemented the Monte Carlo simulation to price
timer options. Saunders [31] investigated the pricing of timer options under the fast mean-reverting SV
and provided the closed-form approximation formulas. Liang et al. [32] obtained closed-form pricing
formulas for timer options under the 3/2 and Heston models by using the path-integral techniques.
Bernard and Cui [33] developed a one-dimensional problem for pricing of a timer call option under a
general SV model. In addition, they showed the empirical results in the Hull-White and Heston models.
Li [34] studied perpetual timer options under general SV models. Thus, they obtained pricing formulas
for the Heston model and the 3/2 model. Ma et al. [35] derived a fast approximate analytic method
to evaluate timer options under the Vasicek interest rate model. Li [36] applied the Heston model
to price the timer options. In addition, as mentioned in Zhang et al. [37], the perpetual timer option
was examined based on the Hull-White SV model. [38] developed concise pricing formulas for timer
options using a probabilistic method to explicitly derive probability densities in stochastic volatility
models, including Heston and 3/2. Recently, Wang et al. [39] employed multiscale volatility models
to price timer options, stressing that the factor of the volatility is assumed to follow both fast mean-
reverting and slowly varying factors. In particular, [40] introduced the return timer option, a financial
derivative with a random expiry triggered by the first occurrence of a return exceeding upper or lower
barriers.

In this study, we investigate the timer option prices under the CEV model. In previous studies, the
pricing of the time options has been only evaluated using various stochastic volatility models. To the
best of our knowledge, there has been no research about the timer option pricing based upon CEV
model in which the volatility process is considered to be the SV given by Heston [2] or Fouque et
al. [3]. In fact, since the model dynamics of the underlying asset for the classical timer option is a
form of the SV model, including the fast-mean reverting process given by Fouque et al. [3] or CIR
process described by Heston [2], the pricing procedure of the timer options based upon CEV model
is very similar to that of European options under the stochastic and local volatility (SVCEV) model
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introduced by Choi et al. [17], whose model is driven by the fast-mean reverting volatility process
and constant elasticity of variance process. According to Choi et al. [17], the SVCEV model shows
some improvements over the traditional CEV model. The SVCEV model has been widely used to
evaluate various contingent claims. For example, Bock et al. [41] developed the pricing formula of a
European barrier option under the SVCEV model. In addition, Kim et al. [42] applied the SVCEV
model to evaluate the real options. Furthermore, several extended models based on SVCEV have been
developed. For instance, Choi et al. [43] introduced a multiscale hybrid model consisting of fast and
slow factors and evaluated an equity-linked annuity under the multiscale hybrid model. The previous
SVCEV model [17] derived an approximation solution using up to the first order correction. Recently,
an extended model has been developed using up to the second order correction term [44].

In this article, by using asymptotic analysis on the partial differential equations (PDEs) for timer
options, we derive the approximation formulas of timer options with the CEV model. Later, we call the
timer options under the CEV model TO-CEVs. To demonstrate that our approximated solution for the
timer options has been obtained accurately and effectively, we compare the option value with a Monte-
Carlo price. Moreover, in the numerical implications, we analyze the price sensitivity of the SV for
the given elasticity value on the timer options. Above all else, the most remarkable result of our paper
is that the standard European option under CEV may or may not be overvalued compared with timer
option with CEV, depending on the elasticity value, which is contrary to the results of Sawyer [28]
emphasizing that the price of the European vanilla call options can be quite overvalued compared to
the price of timer call options in the region of in-the-money (ITM).

The remainder of this paper is organized as follows: In Section 2, we model stochastic differential
equations (SDEs) to price a timer option under CEV models. Next, in Section 3, we derive the
approximation solution of the option value taking advantage of asymptotic analysis. In Section 4,
we examine the pricing accuracy of the approximated formula for the timer options through a Monte-
Carlo simulation and analyze the parameter sensitivity on the first approximated option price. Finally,
Section 5 provides concluding remarks.

2. Model formulation

In this section, we provide the stochastic dynamics for the price of a timer call option based on
hybrid stochastic and local volatility. According to Choi et al. [17], we assume that the underlying asset
price model, Xt, and its instantaneous variance process, Yt, satisfy the following stochastic differential
equation (SDE) model under a real probability measure P:

dXt = µXtdt + f (Yt)X
θ/2
t dWX

t , (2.1)
dYt = α(m − Yt)dt + βdWY

t , (2.2)

where µ is the expected return rate of the underlying asset process, Xt, f (·) is a smooth function
satisfying 0 < c1 ≤ f ≤ c2 < ∞ for some constants c1 and c2, θ is an elasticity parameter, α and
β are positive constants, and m is the long-run mean level of Y . In addition, WX

t and WY
t are standard

Brownian motions such that d
〈
WX,WY

〉
t
= ρ dt, where |ρ| ≤ 1.

Herein, based on the fact that the volatility of the underlying asset has been demonstrated to be
mean-reverting through data-driven study [45], we construct the model of the volatility as a fast
mean-reverting Ornstein-Uhlenbeck process, as depicted in SDE (2.2). Since the ergodic process Yt
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is explicitly presented by Yt = m + (Y0 − m)e−αt + β
´ t

0 e−α(t−s)dWY
t , the process Yt follows the normal

distribution. i.e., Y ∼ N(m + (Y0 − m)e−αt, β
2

2α (1 − e−2αt)). Interestingly, as t goes to ∞, its invariant
distribution is given by N(m, β

2

2α ), which is independent of the initial volatility level, Y0. Nevertheless,
empirical studies grounded in financial market data (refer to Choi et al. [17] and Choi et al. [44])
indicate that a (pure) stochastic volatility process (in the case of θ = 2) may not accurately capture the
geometric properties of the implied volatility, specifically, the implied-volatility-smile and implied-
volatility-skew phenomena. Therefore, to overcome the aforementioned limitations observed in the SV
model, we consider the timer options based upon the CEV diffusion, which is very similar to that of
European options under stochastic and local volatility (in brief, SVCEV), proposed by Choi et al. [17].

The most distinctive feature of the SVCEV model proposed by Choi et al. [17] lies in the significant
impact of the elasticity parameter θ. This economic parameter, when set to θ = 2, represents the
classical Black-Scholes market, whereas for θ > 2, it depicts the phenomenon noticed in commodity
markets (especially, coal, copper, or gold [46]) where an increase in commodity prices leads to a
concurrent rise in volatility, known as the inverse leverage effect. On the other hand, when θ < 2, it
captures the leverage effect commonly observed in stock markets, where a fall in stock prices results
in an increase in the underlying asset’s volatility. Therefore, the SVCEV model of volatility for the
underlying asset, as adopted from Choi et al. [17], can be considered as a suitable and realistic volatility
model, efficiently capturing the random structures across various financial markets.

Then, by the Girsanov theorem in Øksendal [47], under the risk-neutral measure Q, the stochastic
dynamics in (2.1) and (2.2) are transformed into

dXt = rXtdt + f (Yt)X
θ/2
t dW

X
t , (2.3)

dYt =

1
ε

(m − Yt) −
ν
√

2
√
ε

Λ(Yt)

 dt +
ν
√

2
√
ε

dW
Y
t , (2.4)

where r is risk-free interest rate, ν is the standard deviation of the invariant distribution of Y , and Λ(Yt)
is the market price of volatility risk. In addition, W

X
and W

Y
are transformed Brownian motions such

that
〈
W

X
,W

Y
〉

t
= ρ dt.

We now demonstrate the timer call option and derive its PDE. Let us define the accumulated
variance process at time t as

It =

ˆ t

0
f 2(Yu)Xθ−2

u du.

We note that if θ = 2, then it reduces to the form of the accumulated variance process found in standard
timer options. Next, if we denote a pre-determined variance budget as B, depending on the option
buyer’s choice, then the stopping timer or random maturity, τB, is given by

τB = inf {t > 0, It = B} . (2.5)

In other words, the expiration of the timer option coincides with the initial moment at which the
accumulated variance budget, It, reaches the predetermined variance budget level, B.

Then, the payoff of a timer call option is max
(
XτB − K, 0

)
, where K is the strike price. Therefore,

we obtain the price of the timer call option at time t as follows:

P(t ∧ τB, x, y, I) = EQ
[
e−r(τB−t∧τB) max

(
XτB − K, 0

) ∣∣∣∣∣Xt∧τB = x,Yt∧τB = y, It∧τB = I
]
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= EQ
[
e−rτB−I max

(
XτB−I − K, 0

) ∣∣∣∣∣X0 = x,Y0 = y
]
, (2.6)

where EQ is the expectation with respect to risk-neutral measure Q.
Now, by using the well-known Feynman-Kac formula and employing the well-known fact, as

described in Li [36], that the price of timer options does not depend on the time variable t, we can
transform this conditional expectation (2.6) into the following partial differential equation:(

1
ε
L0 +

1
√
ε
L1 +L2

)
P(x, y, I) = 0, (2.7)

P(x, y, B) = max(x − K, 0), (2.8)

where

L0 = (m − y)
∂

∂y
+ ν2 ∂

2

∂y2 ,

L1 = −ν
√

2Λ(y)
∂

∂y
+ ν
√

2ρ f (y)x
∂2

∂x∂y
,

L2 = r
(
x
∂

∂x
− ·

)
+ xθ−2 f 2(y)

∂

∂I
+

1
2

f 2(y)xθ
∂2

∂x2 .

3. Asymptotic analysis and first-order approximated solution

In this section, we aim to build an approximate solution utilizing the asymptotic analysis proposed
by Fouque et al. [45]. Referring to Fouque et al. [45], for small parameter ε, we expand the original
solution P(x, y, I) with respect to

√
ε in the following form:

P(x, y, I) = P0(x, y, I) +
√
εP1(x, y, I) + εP2(x, y, I) + · · · , (3.1)

where P0, P1, · · · are functions of (x, y, I) satisfying P0(x, B) = (x − K)+ and Pn(x, B) = 0 for all n ≥ 1.
Now, if we substitute the expansion in (3.1) into the singular perturbed PDE presented in (2.7), we
obtain

1
ε
L0P0 +

1
√
ε

(L0P1 +L1P0) + (L0P2 +L1P1 +L2P0) +
√
ε(L0P3 +L1P2 +L2P1) = O(ε). (3.2)

Now, we present two useful and fundamental results, known as the growth condition and the
centering condition, for asymptotic analysis.

Lemma 3.1. (Growth condition) As y → ∞, if the leading-order price P0(x, y, I) and the correction
term P1(x, y, I) do not grow as much as ∂P0

∂y ∼ ey2/2 and ∂P1
∂y ∼ ey2/2, respectively, then P0 and P1 are

independent of the unobservable variable y.

Proof. The proof is similar to that in Theorem 3.1 of Ha et al. [48] or Lemma 1 and Theorem 4.1 in
the work of Choi et al. [17]. From (3.2), we have the following PDEs:

L0P0 = 0,
L0P1 +L1P0 = 0.

(3.3)

AIMS Mathematics Volume 9, Issue 1, 2454–2472.



2460

Next, the ODE L0P0 = 0 in (3.3) yields

P0(x, I) = c1(x, I)
ˆ y

0
e

(m−u)2

2ν2 du + c2(x, I)

for some functions c1(x, I) and c2(x, I). Then, by using the assumption, as y→ ∞, if the leading-order
price P0 does not grow as much as ∂P0

∂y ∼ ey2/2, then c1(x, I) = 0. Therefore, P0 is independent of the
unobservable y. Similarly, if we apply this assumption to L0P1 + L1P0 = 0, the correction term P1 is
independent of y. �

Lemma 3.2. (Centering condition) If the ODE L0G(y) + G = 0, a Poisson equation for the function
G(y), has a unique solution, then the following centering condition must be satisfied:

〈G〉 ≡
ˆ
R

G(y)Φ(y)dy = 0,

where Φ(y) = 1
√

2πν
e−

(y−m)2

2ν2 is the invariant density distribution of the ergodic process Y.

Proof. Refer to Section 5.2 in Fouque et al. [45]. �

Proposition 3.1. Under the growth condition presented in Lemma 3.1, the leading-order price P0(x, I)
satisfies the following PDE:

LTO−CEV(σ̂)P0(x, I) = 0, (3.4)
P0(x, B) = (x − K)+, (3.5)

where LTO−CEV is given by

LTO−CEV = σ̂2xθ−2 ∂

∂I
+
σ̂2

2
xθ
∂2

∂x2 + r
(
x
∂

∂x
− ·

)
, σ̂ =

√〈
f 2〉.

Proof. According to Lemma 3.2, since L0P2 + L2P0 = 0 is a Poisson equation of P2 with respect to y
and P0 is independent of the variable y, the following centering condition must be hold:

〈L2P0〉 = 〈L2〉 P0 = 0,

where

〈L2〉 = σ̂2xθ−2 ∂

∂I
+
σ̂2

2
xθ
∂2

∂x2 + r
(
x
∂

∂x
− ·

)
≡ LTO−CEV(σ̂)

and the effective volatility σ̂ is given by

σ̂ =

√〈
f 2〉.

Therefore, we can obtain the PDE (3.4) with (3.5). �

Now, we provide the analytic form solution to the PDE presented in Proposition 3.1.
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Theorem 3.1. The leading-order price, P0(x, I), is given by

P0(x, I) = e−r B−I
σ̂2 xθ−2 x

ˆ +∞

K̃

( x̃
s

) 1
2(2−θ)

e−(x̃+s)B 1
2−θ

(2
√

x̃s) ds

+ e−r B−I
σ̂2 sθ−2 K

ˆ +∞

K̃

( s
x̃

) 1
2(2−θ)

e−(x̃+s)B 1
2−θ

(2
√

x̃s) ds,

x̃ =
2xe(2−θ) B−I

σ̂2 xθ−2

(2 − θ)2χ
, χ =

σ̂2

(2 − θ)r

(
er(2−θ) B

σ̂2 sθ−2 − er(2−θ) I
σ̂2 sθ−2

)
, K̃ =

2K2−θ

(2 − θ)2χ
,

(3.6)

where the modified Bessel function of the first kind of order q, denoted as Bq(x), is given by

Bq(x) =

∞∑
n=0

(
x
2

)2n+q

r!Γ(n + 1 + q)
.

Proof. If we define the new state variable ξ as ξ = I
σ̂2 xθ−2 , then ∂P0

∂I = 1
σ̂2 xθ−2

∂P0
∂ξ

holds. Therefore, the
PDE problem in (3.4) and (3.5) can be transformed into

∂P0

∂ξ
+
σ̂2

2
xθ
∂2P0

∂x2 + r
(
x
∂P0

∂x
− P0

)
= 0, (3.7)

P0

(
x,

B
σ̂2xθ−2

)
= max(x − K, 0). (3.8)

Surprisingly, this PDE is related to the pricing formula of a European call option under the CEV
diffusion, except that the current time t and expiry date T are now replaced by the initial accumulated
variance budget ξ and variance budget B, respectively. Therefore, referring to Lipton [49], the solution
of PDE (3.7) with boundary condition (3.8) is given by

P0(x, I) = e−r
(

B
σ̂2 xθ−2 −ξ

)
x
ˆ +∞

K̃

(
x̃∗

s

) 1
2(2−θ)

e−(x̃∗+s)B 1
2−θ

(2
√

x̃∗s) ds

+ e−r
(

B
σ̂2 xθ−2 −ξ

)
K
ˆ +∞

K̃

( s
x̃

) 1
2(2−θ)

e−(x̃∗+s)B 1
2−θ

(2
√

x̃∗s) ds,

where

x̃∗ =
2xe(2−θ)

(
B

σ̂2 xθ−2 −ξ
)

(2 − θ)2χ∗
, χ∗ =

σ̂2

(2 − θ)r

(
er(2−θ) B

σ̂2 xθ−2 − er(2−θ)ξ
)

and K̃ =
2K2−θ

(2 − θ)2χ
.

Finally, if we replace ξ with I and use the change of variables ξ = I
σ̂2 xθ−2 , then we can obtain the

leading-order price P0 as in (3.6). �

Next, we continue our asymptotic approaches to obtain an explicit expression for correction term P1,
which plays a key role in this research and will reflect the impact of stochastic volatility on timer prices.

Proposition 3.2. Under the growth condition given in Lemma 3.1, the first-order correction term
P1(x, I) satisfies the following non-homogeneous PDE:

LTO−CEV(σ̂)P1(x, I) = H(x, I; θ), (3.9)
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P1(x, B) = 0, (3.10)

where the non-homogeneous termH(x, I; θ) is given by

H(x, I) = − ν
√

2 〈Λφ′〉 xθ−2∂P0

∂I
+ νρ

√
2 〈 fφ′〉 x

∂

∂x

(
xθ−2∂P0

∂I

)
+

1
2

{
−ν
√

2 〈Λφ′〉 xθ
∂2P0

∂x2 + νρ
√

2 〈 fφ′〉 x
∂

∂x

(
xθ
∂2P0

∂x2

)}
.

Proof. In (3.2), the fourth term (or
√
ε-order term) yields

L0P3 +L1P2 +L2P1 = 0. (3.11)

Now, by using the centering condition for the Poisson equation P3, we can obtain 〈L1P2 +L2P1〉 = 0.
Then, since 〈L2P0〉 = 0, we deduce

L2P0 = L2P0 − 〈L2P0〉

= ( f 2(y) − σ̂2)xθ−2∂P0

∂I
+

1
2

( f 2(y) − σ̂2)xθ
∂2P0

∂x2 .

In addition, from the relation L0P2 +L2P0 = 0, P2 satisfies

P2 = −L−1
0 L2P0

= −(φ(y) + C)xθ−2∂P0

∂I
−

1
2

(φ(y) + C)xθ
∂2P0

∂x2 , for C ∈ R,

where the function φ(y), at most polynomially growing (refer to Lemma 3.1 in Fouque et al. [3]), is
solution to the following Poisson equation:

L0φ(y) = f 2(y) − σ̂2.

Then, 〈L1P2 +L2P1〉 = 0 becomes

〈L2〉 P1 = − 〈L1P2〉

= 〈L1φ(y)〉 xθ−2∂P0

∂I
+

1
2
〈L1φ(y)〉 xθ

∂2P0

∂x2

= −ν
√

2 〈Λφ′〉 xθ−2∂P0

∂I
+ νρ

√
2 〈 fφ′〉 x

∂

∂x

(
xθ−2∂P0

∂I

)
+

1
2

{
−ν
√

2 〈Λφ′〉 xθ
∂2P0

∂x2 + νρ
√

2 〈 fφ′〉 x
∂

∂x

(
xθ
∂2P0

∂x2

)}
≡ H(x, I; θ).

Therefore, combining the results L2P1 = H(x, I; θ) and the boundary condition P1(x, B) = 0, we
complete the proof. �

Next, we present the first-order correction term P1(x, I), which is the solution to the PDE given in
Proposition 3.2.
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Theorem 3.2. The first-order correction term P1(x, I) is given by

P1(x, I) = −

ˆ
R

ˆ B
σ̂2 xθ−2

I
σ̂2 xθ−2

e−r
(
s− I

σ̂2 xθ−2

)
H(x∗, s; θ) D(x∗, s; x, I) ds dx∗, (3.12)

where the transition probability density function, D(x∗, s; x, I), is described by

D(x∗, s; x, I) = (2 − θ)k
1

2−θ (u1u1−θ
2 )

1
2−θ e−u1−u2 ,

k =
2r

σ̂2(2 − θ)(er(2−θ)(s−I) − 1)
,

u1 = kx2−θer(2−θ)(s−I), u2 = (x∗)2−θk.

Proof. As shown in Theorem 3.1, if we define the new state variable ξ as ξ = I
σ̂2 xθ−2 , then ∂P1

∂I = 1
σ̂2 xθ−2

∂P1
∂ξ

holds. Therefore, the PDE problem in (3.9) and (3.10) can be transformed into

∂P1

∂ξ
+
σ̂2

2
xθ
∂2P1

∂x2 + r
(
x
∂P1

∂x
− P1

)
= 0, (3.13)

P1

(
x,

B
σ̂2xθ−2

)
= 0. (3.14)

Now, using the Feynman-Kac formula and referring to Choi et al. [17], the solution to the
PDE (3.13) with the source term, H(x, I; θ), as defined in Proposition 3.2, and with a zero boundary
condition (3.14), is given by

P1(x, ξ) = EQ
−ˆ B

σ̂2 xθ−2

ξ

e−r(s−ξ)H(x, s)ds
∣∣∣∣∣Xt = x

 .
Finally, if we replace ξ with I, then we can obtain the analytic-form solution P1(x, I) as described
in (3.12). �

4. Accuracy and numerical experiments

This section investigates the error of the approximation of the timer call option price P(x, y, I) given
by (2.6) under the CEV model and examines the price sensitivities on the TO-CEV with regard to the
model parameters.

4.1. Accuracy of the approximation

If we combine the results of leading-order term P0(x, I) presented in Theorem 3.1 and the correction
term P1(x, I) described in Theorem 3.2, then we can obtain a first-order approximation to the TO-CEV
price P(x, y, I), which is denoted by P̃ε , given by

P(x, y, I) ≈ P0(x, I) +
√
εP1(x, I) ≡ P̃ε(x, I). (4.1)

Then, one may want to examine the accuracy of the above approximation P̃ε(x, I). In this regard,
by referring to Fouque and Lorig [50], if we assume that the payoff function and its derivatives
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are continuously differentiable and bounded, utilizing the asymptotic expansions methods, then the
accuracy of P̃ε(x, I) is given by ∣∣∣∣∣P(x, y, I) − P̃ε(x, I)

∣∣∣∣∣ ≤ O(ε). (4.2)

However, for a non-smooth payoff, that is, the payoff function is not continuously differentiable, it is
required to introduce a regularization argument because of the singularity at x = K. In this research, we
numerically investigate the accuracy of the analytic form solution to the PDE (2.7) via Monte-Carlo
simulations (refer to Table 1 in Section 4.2.1), instead of providing the mathematical proof for the
accuracy.

4.2. Numerical experiments

In this section, we provide numerical implications by using the asymptotic approximations (4.1)
of the TO-CEV prices. In addition, we compare the option price calculated by the closed-form
with that obtained from the Monte-Carlo method. The parameters we have chosen in the numerical
experiments are described by X0 = 100,T = 1.0, r = 0.03,K = 100, B = 0.3, v = 0.05, 〈Λ(y)ψ′(y)〉 =

0.0141, 〈 f (y)ψ′(y)〉 = 0.0023, ρ = −0.1,m = 0.5, u = 1.0, f (y) = ey and 〈 f (y)2〉 = 0.0272, referring to
Ha et al. [48].

4.2.1. Accuracy and Monte-Carlo simulation

We show the accuracy of the model formula by comparing the price of the timer option, presented by
the model formula and the option value through Monte Carlo (MC) simulation. Table 1 demonstrates a
comparison of the results. In the table, PMC represents the Monte Carlo price and P̃ε is the approximate
option price given by (4.2). In addition, we calculate the relative percentage error given by 100 ×∣∣∣∣PMC−P̃ε (x,I)

PMC

∣∣∣∣ for the numerical implications. According to Table 1, by performing simulations 10000,
50000, or 100000 times, we obtain stable MC simulation results. Furthermore, we confirm that the
value of relative error approaches zero as ε goes to zero. The average CPU times (in seconds) required
for the execution of PMC are 27.5863, 4894.1, and 34745 for simulations conducted 10000, 50000,
and 100000 times, respectively. In contrast, the CPU time for P̃ε is 0.6485. Consequently, our options’
formula verifies the excellence of the model not only with regards to the computational accuracy but
also in terms of the computational efficiency.

4.2.2. Sensitivity to the parameters

Figure 1 displays the changes in the correction term price P1 with respect to the accumulated
variance under the variance budget for a given θ value. As seen in both figures, as the value of
the accumulated variance is less than the variance budget (B), the impact of the correction price is
significant, but when the v is greater than the B, the values of the correction term are zero and have no
influence on the option price. In fact, in the case of timer options, as the accumulated variance reaches
the variance budget, the options get exercised. Therefore, when the aggregated variance is larger than
the budget level, the effect of the stochastic volatility (SV) must be zero, and then the correction term
price remains zero. Moreover, it can be seen that the greater the variance budget level, the lower the
price impact of the correction term is for the accumulated variance. It implies that as the time-to-
maturity of the timer options is higher (as the budget levels get bigger), the price sensitivities become
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smaller, which ultimately decreases the influence of the stochastic volatility (SV) on the timer option.
What’s more remarkable is that, as shown in Figure 1, the more the elasticity value increases, the more
the price of the correction term is sensitive to the variance budget. It means that the effect of the SV on
the timer option tends to rise as the elasticity parameter gets larger, and in particular, it becomes more
prominent as the expiration is longer for the larger elasticity value.

Figure 2 shows the changes in the correction term P1 of the timer option with constant elasticity
of variance (CEV) with regard to the underlying asset for each strike price and for a given elasticity
parameter. As seen in Figure 2(a)–(d), the correction prices have a tendency to decrease sharply as the
underlying asset is near the strike price (K) regardless of the value of the elasticity θ. It implies that the
SV has a more significant impact on the time option if the value of the underlying asset is adjacent to
the strike value (K) for the elasticity parameter θ, especially, exhibiting a hump phenomenon for the
graph of the correction term for θ > 2.

Figure 3 presents the comparison of the price of the timer option (TO) and the price of the timer
CEV options (TO-CEVs). Taking account of the fact that the classical timer option has the elasticity
θ = 2, note that the price of TO-CEVs tends to decrease as the elasticity value gets bigger, and the
sensitivities of the option value get larger when the elasticity decreases.

Table 1. For given θ = 1.8, 1.9, 2.1 and θ = 2.2, solutions P̃ε and errors are given against
ε, where “R.Error” is the relative percentage error. Note that the baseline parameters are
given by X0 = 100,T = 1.0, r = 0.03,K = 100, B = 0.3, v = 0.05, 〈Λ(y)ψ′(y)〉 =

0.0141, 〈 f (y)ψ′(y)〉 = 0.0023, ρ = −0.1,m = 0.5, u = 1.0, f (y) = ey and 〈 f (y)2〉 = 0.0272.

θ = 1.8 θ = 1.9

Simul.
ε 0.01 0.001 0.0001 0.01 0.001 0.0001
P̃ε 17.0555 17.5684 17.7306 21.3202 21.8599 22.0306

10000 31.1461 18.5245 17.0744 25.8019 21.0699 22.6008
R.Error(%) 45.24 5.16 3.84 17.36 3.74 2.52

50000 31.8303 18.3064 18.1076 25.7835 21.1684 21.7066
R.Error(%) 46.41 4.03 2.08 17.31 3.26 1.49

100000 31.9046 18.6246 17.7975 25.8621 21.3048 22.184
R.Error(%) 46.54 5.67 0.37 17.56 2.61 0.69

θ = 2.1 θ = 2.2

Simul.
ε 0.01 0.001 0.0001 0.01 0.001 0.0001
P̃ε 31.0636 31.9086 32.1757 35.8661 36.5744 36.7984

10000 37.2880 31.5311 33.0563 44.0128 36.9723 37.2356
R.Error(%) 16.69 1.19 2.66 18.51 1.07 1.17

50000 37.5411 32.9560 32.8798 44.2231 36.8926 37.1461
R.Error(%) 17.25 3.17 2.14 18.89 0.86 0.93

100000 37.9496 32.5929 32.4217 44.7175 37.0560 36.6976
R.Error(%) 18.14 2.09 0.75 19.79 1.29 0.27

Figure 4 exhibits the changes of the TO-CEV prices against the underlying asset for a given
elasticity value, comparing them with those of the European CEV options (EO-CEVs). As shown
in Figure 4(a)–(f), one can observe that the price gap between the TO-CEVs and EO-CEVs depends on
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the value of the elasticity. We can see that, for θ > 2 or θ = 2, definitely, the prices of EO-CEVs tend to
be bigger than that of the TO-CEVs, and as the elasticity parameter increases, the phenomenon is more
pronounced, demonstrating that our findings that TO-CEVs are noticeably underestimated compared
with EO-CEVs are consistent with those of Sawyer [28]. However, in the case of θ < 2, the price
difference between TO-CEVs and EO-CEVs becomes smaller as the elasticity value grows down-after
all, the TO-CEVs tend to be overpriced compared to the EO-CEVs in terms of underlying asset price,
contrary to the results of Sawyer [28]. In particular, as seen in Figure 4(c), the EO-CEVs and the
TO-CEVs have almost the same values in the region of deep ITM. In fact, referring to the empirical
evidence verifying that the elasticity value calibrated from the historical data analysis of the volatility
of the S &P 500 index is between 1.9 and 2, given by Choi et al. [17] and Figure 4(c),(d), it can be
observed that the price of the EO-CEVs tend to get larger than that of the TO-CEVs in the real financial
situation, especially, in the area of ITM. It implies that, even in the case of θ < 2, if we take account of
the elasticities obtained in the real situation, the value of TO-CEVs becomes undervalued compared to
that of EO-CEVs in the region of ITM, similar to the findings described by Sawyer [28].
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Figure 1. Value of the correction term Pε
1 in terms of the accumulated variance v for the

given θ. Note: X0 = 100,T = 1.0, r = 0.03,K = 100, 〈Λ(y)ψ′(y)〉 = 0.0141, 〈 f (y)ψ′(y)〉 =

0.0023, ρ = −0.1, ε = 0.001,m = log(0.1), u = 1.0, f (y) = exp(y), 〈 f (y)2〉 = 0.0272.
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Figure 2. Value of the correction term Pε
1 with respect to the underlying asset x for the given

θ. Note: B = 0.03, v = 0.01. The values of the remaining parameters are the same as in
Figure 1.
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Figure 3. Comparison of the values of timer CEV option (TO-CEV) with respect to the
underlying asset x for a given θ. Note: B = 0.3, v = 0.05. The values of the remaining
parameters are the same as in Figure 1.
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(b) Vanilla and TO price under CEV with θ = 1.8
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(c) Vanilla and TO price under CEV with θ = 1.9
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(d) Vanilla and TO price under CEV with θ = 2.0
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(e) Vanilla and TO price under CEV with θ = 2.1
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Figure 4. Value of Vanilla and timer option prices by CEV models with respect to the
underlying asset x for the given θ. Note: B = 0.022, v = 0.02. The values of the remaining
parameters are the same as in Figure 1.
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5. Conclusions

In this paper, we investigated the valuing problem of timer options under the constant elasticity of
variance (CEV). In the real financial market, timer options are one of the financial derivatives that take
account of the level of volatility so that the options are expired as the realized variance arrives at the
variance budget. The purpose of this research is to analyze the price sensitivities between the timer
options with the CEV (TO-CEVs) and the standard European CEV options (EO-CEVs).

First, under the partial differential equations (PDEs) obtained from the underlying asset model and
Feynman-Kac formula, we derive the approximated analytic solutions for the options by making use of
the method of asymptotic analysis given by Fouque et al. [3]. Second, we implemented the numerical
experiments to verify the pricing accuracy of our analytic-form formulas for the timer CEV options,
compared to Monte Carlo prices. Third, we observed the pricing sensitivities of the options in terms
of some model parameters, emphasizing the impact of the SV on the timer options in terms of the
elasticity parameter. Fourth, we found that the timer CEV options tend to be underpriced compared
with the standard European CEV options for θ > 2 or the elasticity values that reflect the real market
situation, in line with the results of [28]. Finally, our research can be more widely applied to several
challengeable volatility managing problems or risk management strategies, including the problem for
the timer options under diverse underlying asset models.
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