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Abstract:  Sign language is regularly adopted by speech-impaired or deaf individuals to convey
information; however, it necessitates substantial exertion to acquire either complete knowledge or skill.
Sign language recognition (SLR) has the intention to close the gap between the users and the non-users
of sign language by identifying signs from video speeches. This is a fundamental but arduous task as
sign language is carried out with complex and often fast hand gestures and motions, facial expressions
and impressionable body postures. Nevertheless, non-manual features are currently being examined
since numerous signs have identical manual components but vary in non-manual components. To
this end, we suggest a novel manual and non-manual SLR system (MNM-SLR) using a convolutional
neural network (CNN) to get the benefits of multi-cue information towards a significant recognition
rate. Specifically, we suggest a model for a deep convolutional, long short-term memory network that
simultaneously exploits the non-manual features, which is summarized by utilizing the head pose, as
well as a model of the embedded dynamics of manual features. Contrary to other frequent works
that focused on depth cameras, multiple camera visuals and electrical gloves, we employed the use of
RGB, which allows individuals to communicate with a deaf person through their personal devices. As
a result, our framework achieves a high recognition rate with an accuracy of 90.12% on the SIGNUM
dataset and 94.87% on RWTH-PHOENIX-Weather 2014 dataset.
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1. Introduction

Sign language [1] is a visual and silent language accomplished with the kinetic movement of hand
motions, facial expressions and body posture. Sign language represents an efficient and useful method
of communication for both deaf individuals and individuals who have problems speaking in a regular
tone of voice. Employing and understanding sign language demands a respectable amount of time,
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apprenticeship and practice, which is not convenient and achievable for everyone. Furthermore, sign
language has a large basis in culture [1,2], which also restricts its simplification potential. Even though
computer vision and machine learning have reached a wide advancement in the past decade, it is still
difficult to utilize sign language recognition (SLR), which automatically elucidates sign language and
assists deaf-mute individuals in communicating with hearing individuals in their quotidian lives.

Compared with traditional action recognition, sign language recognition is a further exigent task.
First, sign language demands both sensitive hand motions and total body gestures and clearly and
precisely express its meaning. Moreover, facial expressions can be used to illustrate emotions.
Analogous signs can even establish different meanings, which are reliant on the number of recurrences.
Second, various signers may perform signs in a different way, which makes the recognition of sign
language more challenging. Gathering many datasets from as many signers as possible is convenient
yet pricey. Classical SLR systems principally prepare the dataset and manually use features, such
as SIFT [3] and HOG [4], which are correlated with conventional classifiers such as SVM and
KNN [5]. While deep learning is making major advancements, general methods for learning video
and chronological series depictions (e.g., LSTM, RNN) and efficient video-based action recognition
systems (e.g., 3D convolutional neural networks (CNNs)) are initially exploited for SLR assignments
in [6,7]. Attention modules are joined with other modules to improve the precision to more adequately
track down the information of local motion [8]. Additionally, [9] employs semantic segmentation
and detection models to clearly lead the recognition network in a two-phase pipeline. Lately, body-
based approaches have become suitable in gesture recognition tasks [10, 11] and define the growing
attentiveness of their solid flexibility to the dynamic conditions and intricate background. Since the
body-based approaches supply additional information to the RGB procedure, their whole results further
enhance global achievement. Nonetheless, some insufficiency prevents their employment with the
SLR method. Those body-based, deed recognition approaches depend on annotations of ground truth
skeletons afforded by systems of gesture acquisition, thereby limiting themselves to publicly accessible
datasets filmed in supervised surroundings. In addition, a large majority of motion acquisition systems
only regard the coordinates of the principal body and does not supply a real observations of hands. As
mentioned earlier, the data consists of inadequate information to handle SLR since signs are based on
dynamic hand gestures and motions interrelated with different body parts. In [12], the authors tried
to obtain information regarding various hand poses and skeletal structures by employing segregate
models; their work suggested the use of an RNN-based model for SLR. However, their acquired hand
poses were doubtful and the pattern could not correctly model the dynamics of the skeletons.

Head pose estimation is an influential way to convey additional information. Considering this, the
main contributions of this paper are as follows:
1) Two features are disclosed, which are the anisotropic feature and the unsmooth variation feature.
Inspired by the work of [13], a learning model of anisotropic angle distribution for the estimation of
head poses is suggested. By employing a covariance pooling layer to apprehend the frame features of
the second order, model learning is performed through an end-to-end CNN.
2) The suggested end-to-end adjoining model that combines both manual and non-manual features for
SLR revealed substantial refinement in the accuracy performance for two publicly available datasets.
3) The suggested multimodal temporal representation (MTR) unit uses temporal receptive fields of
various scales and presents a considerable enhancement in the concluding recognition achievement.
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2. Related work

Over the past few years, SLR has reached important advancements and has acquired a high
recognition rate through the improvement of convenient deep learning structures and the thrusting
of computational potency [14—18]. There are some residual defiances in SLR, which are summarized
in the simultaneous capture of overall body motion information, facial expressions and hand gestures.
Authors in [19] suggested a multi-modal and multi-scale system that utilized spatial features at specific
spatial ranges. An auto-encoder framework with a connectionist-based recognition component was
suggested in [20] to model the sequence. Authors in [21] presented an end-to-end incorporation
of a convolutional module within a hidden Markov model, and illustrated the approximation results
in a Bayesian network. Authors in [8] suggested a CNN correlated with the attention component,
which masters the spatio-temporal attributes from an unrefined video. In [22], the authors consolidated
temporal convolutions and bidirectional recurrences with each other, which showed the efficiency of
temporal information in gesture-based methods. In [23], the authors modeled a hierarchical attention
network (HAN) with latent space to eliminate the temporal segmentation preprocessing. Nonetheless,
these methods principally envisage raw visual features, which could be more effective to explicitly
exploit various hand gestures and body movements. Authors in [24] presented a pose-based, temporal
graph convolution network (GCN) that designs spatio-temporal reliances in trajectories of human
posture. Authors in [25] adopted a hierarchical-LSTM auto-encoder pattern with visual content and a
gloss incorporation for translation. They tackled various granularities by transmitting spatio-temporal
transitions between frames. However, these methods were inefficient enough to exploit the total
information of motion. Non-manual-based gesture recognition principally concentrates on examining
peculiar patterns of motion and human joint position. Non-manual data can be used separately to carry
out effective gesture recognition [26,27]. Furthermore, it can as well be associated with other cues
to obtain multi-cues learning desired for elevated recognition rates [28]. Recurrent neural networks
are common for designing non-manual data, as is seen in [26,27]. Newly, [29] is the first study
to design a graph-based framework, named ST-GCN, for modeling the dynamic patterns in non-
manual data through a GCN. This method attracts plenty of interest and a few ameliorations have
been developed, such as in [30]. Especially, authors in [31] suggested an AS-GCN to delve into
the latent joint connections to reinforce the achievement of recognition. Authors in [32] suggested
a ResGCN, which adapts a bottleneck hierarchy from ResNet [33] to decrease parameters while
growing the model’s capability. Nonetheless, non-manual-based SLR systems have not been explored
enough. In [34], the authors tried to directly spread out STGCN to SLR; however, the results were
unsuccessful, and only reached about 60% recognition on 20 classes of sign language, which is
unfortunately less than traditional approaches. The multi-cues method aims to examine gesture data
received from either various devices or resources to boost the final achievement. This method is
based on the hypothesis that various cues contain single motion information which could possibly
complement each other and ultimately acquire particular and comprehensive action illustrations. For
obtaining robust illustrations for downstream jobs, a view-invariant illustration learning framework
was suggested in [35]. Authors in [36] deployed a shared weights network on a multi-cue script for
obtaining cue vision for image classification. In [37], the authors proposed DA-Net, which is a view-
independent and view-specific module for acquiring features and successfully combined the prediction
scores together. In [22], the authors suggested a feature factorization framework that investigated the
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specific information view shared for RGB-D gesture recognition. A cascaded residual auto-encoder
was modeled in [38] to handle insufficient view classification settings. Inspired by the achievement
of those multi-cue approaches, we intend to delve into more visual, gestural and hand cues alongside
acquiring features from all appearances and combine them through a common framework to reach a
more significant achievement.

3. Proposed approach

The global structure of the end-to-end, continuous SLR system suggested in this work shown
in Figure 1. The pattern entails two-stream convolutional networks. The first ntwork aims to
detect the head pose, while the second network includes the following three components: a spatial
feature extraction component, a temporal feature extraction component and a multi-stage connectionist
temporal classification (CTC) loss training component. In our model, there are five stages of gloss
features. As the first step, the maximum a posteriori (MAP) estimation is used to design the network,
which estimates the head pose. This network entails a convolutional pooling layer, a covariance pooling
layer, and an output layer. For the second step, we employ the Resnet and two fully connected layers
to the input sign language video to obtain the first-stage gloss features (spatial features). Hereafter, the
temporal features are extracted by the suggested MTR unit. Specificaly, the spatial features proceed
the prime MTR unit to obtain the second-stage gloss features; these latter features are successively
adopted as the entry of the second MTR unit to obtain the third-stage gloss features, which become
specified as the fourth-stage gloss features to the transformers timing coding. Lastly, the obtained five
gloss features are combined and trained for model optimization by employing multi-stage CTC loss,
and the conclusive SLR results are acquired by employing the fifth-stage gloss features.

Head Pose Estimation

Spatial Representation Temporal Representation

Figure 1. An overview of the proposed framework.
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3.1. Head pose estimation

Head pose estimation signifies that the computer resolves the parameters of attitude and the position
of the head in 3D space by examining and divining either the video sequence or the input images.
Usually, the head pose is examined as a transformation of the inflexible body part. Head pose
estimation works by measuring the 2D Euler angles, which incorporates the angles of yaw and pitch.
Given a head pose angle Y and an input face image X, the occupation of the head pose estimation
network uncovers the correct label Y from image X.

Two vectors instanced from the last fully connected layers are employed to calculate the similarity
of the cosine. Given two frames, X1 and X2, the neural network is considering as a function that
generates a vector of features. The formula is specified as follows:

NN(X;).NN(X;)
INNXDI X INNXO)I

The feature resemblances are computed between X, which represents the central position, and its
adjoining positions are X,, X3, X4 and Xs, respectively. All matrixes of resemblance are plotted and
can be adjusted with 2D Gaussian distribution (Figures 2(b) and 4(c)) [13]. Next, the map scale can be
obtained by computing all matrices of resemblance.

FS (X1, X5) = Similarity(F(X,), F(Xy)) = (3.1
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Figure 2. Anisotropic label construction.

Figure 3 shows that all poses of the head are arranged in a matrix. This latter has nine columns and
13 rows. Given a frame X of the head pose, its angle of axial pose is interpreted as y;; = (771, i1), where
n and 7 are the column and row numbers of the pose image, respectively. The angle distribution y is
interpreted as,

. gVinn)
SN )L Ca— 3.2
and
8Wmi) = 1,—€XP(—1((m —i)* + (n—a)HQ™") (3.3)
mn 27.[ |Q| 2 9 .

where n represents the column number and m represents the row number in the matrix.
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Figure 3. Head pose generation from Gaussian distribution.

Equation (3.3) shows that the appearance of the Gaussian distribution will be isotropic. The
distribution appearance will be anisotropic whether the diagonal constituents are unequal or not.
n is defined to obtain the 2D anisotropic Gaussian distribution, which can depict the anisotropic
characteristic for the head pose estimation occupation. Based on the quantitative computation shown
in Figure 3, the values of 5 are included in the range of (0.6, 1). In Figure 4, the property of unsmooth
variation (i.e., when the angle range raises up, the image variations boost at first and then decline in
the angle direction of the yaw) is transformed into the various standard deviation values o~ of matrix
M. Figure 4(a) depicts the angle distribution when the yaw = 0° and the pitch = 0°. Figure 4(b) depicts
the angle distribution when the yaw = -45° and the pitch = 0°. We can note that the value of 03 is less
than o1 and greater than o2.

90 (C)
75450 -45-75 7545 0 -45-75 7545 0 -45 75
Yaw (°) Yaw (°) Yaw (%)

Figure 4. Unsmooth variation of head pose angle distribution.

3.2. Spatial feature representation

The spatial feature extraction module incorporates a leading network feature catcher and two fully
connected layers.

As an entry video sequence, VS = (vsy, Vs, ..., vs7) = vs,lllT € RT*exhxw congists of T frames, where
vs, represents the #* frame in the sequence, c depicts the channels number (c = 3) and & * w represents
the dimension of vs,. VS is fed into the Resnet network, R,, to acquire the feature composition fc; =
R,(VS) € RT*1; next, two fully connected layers are used to acquire the feature composition fc, =
R (fc1) € RT™, which represents the concluding spatial feature vector and the spatial feature with
settled sizes. In this work, we have specified the concluded vector as the first-stage gloss feature. The
dimensions of ¢; and ¢, are 512 and 1,024, respectively. The main role of using two fully connected
layers next to the principal network is to incorporate features in the maps of the frame features that
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have proceeded via numerous convolutional and pooling layers to obtain the high-stage significance of
the frame features. We have applied a stochastic gradient stopping [39] between the Resnet and the
fully connected layer to decrease the RAM usage and to speed up the training of the model.

3.3. Temporal feature representation

The temporal feature extraction module suggested in this work contain the following: An MTR
unit and transformers. After passing through the MTR unit, gloss features of the second and the third
stages are acquired. Ultimately, the gloss features of the fourth-stage are acquired after employing the
transfomers.

1) MTR unit: These last years, exceptional continuous sign language recognition systems have
been developed, though most of them utilize local features from the receptive fields of the designated
temporalities. In sign language acquisition, the lengths of video sequences which represent various
glosses are different. Additionally, the expertise of SL by various signers and certain other interferences
over the filming operation produced incoherence in the length of the same word. Therefore, the
obtained results will not be precise, thereby disturbing the achievement of temporal modeling. Figure 5
shows the proposed MTR unit in this work, which employs various ratios of temporal receptive fields to
enhance the temporal representation efficiency. The MTR unit principally contains a multi-scale feature
extraction and feature merging. Numerous one-dimensional CNNs with diverse convolution kernels
are collaterally linked to make a multi-scale feature extraction element. The network is depicted as
follows:

i=0
Net(t) = w(t) X feo(t) = chzw(i)(t - 1), (3.4)
S
where fc, € RT* represents the weight, and fc, € R7* represent the obtained data, S represents
the kernel size, fc, € R7* and T represents the length in terms of time. For the first-stage gloss
feature, the feature size is initial updated from fc, € RT*¢ to fcg € R*T | Afterward, it passes via the
multi-scale feature extraction module. The multi-scale 1D-CNN has the equivalent number of channel
dimensions number and various kernel sizes. The features number and the timing size make no changes
over the treatment of feature pulling out. The kernel size of the beginning convolution layer is 2 X 2,
while taking into account that the maximum size is S and the stride is two:

fc, = cat(Net, (1)), (3.5)

where fc), represents the exit that follows the multi-scale network and n represents the number of
1D-CNNs. Afterwards, we employed a feature merging and sub-sampling twice using a 2D-CNN,
and fcz € R*T1 to obtain the second-stage gloss feature, where T = % We repeat this operation to

procure the third-stage gloss feature fc, € R>72, T, = %
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s

Figure 5. The input and output of the entity inside the multimodal temporal
representation unit.

2) Transformers encoding: The transformers pattern is a traditional pattern of natural language
processing introduced by Google in 2017. Instead of using the sequential structure of RNNs, it employs
the self-attention mechanism, thereby permitting parallel training of the model and acquiring global
information. The temporal sequence is encoded by employing the transformers encoding component
after obtaining the temporal feature vector by the MTR unit, which leads to more precise temporal
features. In our suggested model, two equivalent transformers encoding components were employed
for the second CNN stream. The transformers encoding component was composed of a fully connected
feed-forward element and a multi-head self-attention element. As the input of the multi-head self-
attention element, we have introduced the third-stage gloss feature fc, € R%*"2 in parallel with the
analogous position information. Afterward, the same process was iterated to acquire the final temporal
feature fcs € R2*"2 via the temporal feature f¢), € R2*"2, which was acquired by the fully connected
feedforward element; this gives us the fourth-stage gloss feature. In addition to the model’s capacity to
concentrate on various positions, multi-head self-attention also improves the capability of the attention
structure to manifest the aspects among words inside the concerned sequences. In comparison with the
self-attention of a single-head, every head in multi-head self attention preserves its own matrix (i.e.,
M, M,, M5) to accomplish distinct linear transformations in order, where every head further has its own
particular meaningful information. Furthermore, the fully connected feedforward element consolidates
the illustration in a non-linear manner, thereby permitting the features to be more eloquent.

3) Multi-stage CTC loss: Continuous SLR resides in faintly supervised learning. The entry is
an unsegmented video sequence and misses a stringent accordance between labeled sequences and
video frames. By succeeding to the step of the encoding of the entry sequence, it is highly suitable
to employ CTC functioning as a decoder. The latter was initially conceived for recognizing speech,
principally to carry out end-to-end temporal classification of the unsegmented signal to figure out the
issue of contrasting lengths of entry and exit video sequences. During the last few years, CTC has been
frequently employed in CSLR. It proposes a blank label {—} to indicate labels that do not classified
over-decoding (i.e., each word in the entry video sequence that does not apply to the vocabulary of sign
language). Thereby, the entry and exit video sequences can be paired, and the dynamic programming
algorithm can be employed for decoding [40]. Given an entry video sequence VS of T frames, every
frame label is depicted by m = (711, 75, ..., m7), where m € v N —, and v represents the vocabulary of sign
language. The label posterior probability is given as follows:

p@lVS) = I, p(mllVS) = T, Y, r,, (3.6)

for a specific sequence-stage label s = (sy, s, ..., 5.), where L represents the sequence word number.
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CTC specifies a mapping that numerous instances of this entity are mapped to one instance of another
entity, the process of which is to eliminate any duplicate and blank labels in the path. Therefore,
the label conditional probability s is defined as the addition of the occurrence probabilities of all
correlating paths:

pGsIVS) = > p(lIvs), (3.7)

neB-1(s)

where B~!(s) = n||B(r) = s represents the inverse mapping. A CTC loss is specified as the negative
log-likelihood of the label conditional probability.

Lere = =In p(s||VS). (3.8)

Therefore, the multi-stage CTC loss can be denoted as follows:

Lsum =—In Hi=lnp(s”VSi), (39)

where n represents the CTC number.

The softmax function was implemented for normalization right after getting the four-stage gloss
feature. The normalized outcome is decoded by CTC to acquire Lcrcs. Evenly, corresponding Lercy,
Lcrea, Leres, and Lerey are acquired for the first, second, third, and fourth gloss features, respectively.
Finally, these five CTC losses are summed to obtain the concluding loss for training:

Lgym = —InTliZ14p(s||VS ). (3.10)
4. Experiment and analysis

4.1. Experimental result and analysis

In this work, the suggested pattern of CNN (MNM-SLR) and another derivative of CNN
(VGG16) [27] was inspected for SLR on two large-scale sign language benchmarks: SIGNUM and
RWTH-PHOENIX-Weather 2014. In this division, the experimental results for these two patterns are
debated, while, considering that a similar analysis with different state-of-art methods will be introduced
in Section 4.2. Several metrics, such as processing time, loss, accuracy, and recognition prediction
results, are employed to evaluate the performance of these two models.

4.1.1. Accuracy

To measure the classifier efficiency, the classification accuracy is the best used metric indicator. It
is specified as the proportion of properly guessed instances to the overall number of instances in the
dataset, as the following equation shows:

TN+TP
FN+FP+TN+TP’
where TP, FP, TN, and FN are the true positive, false positive, true negative, and false negative,
respectively. The accuracy of classification for SIGNUM employing MNM-SLR and VGG-16 is
presented in Table 1. The concluding precision reached by the MNM-SLR model for continuous signs

Accuracy = “4.1)
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1s 88.96% and 94.37% for SIGNUM and RWTH-PHOENIX, respectively. The reached precision of
classification using the VGG-16 model is 88.17% and 92.45% for SIGNUM and RWTH-PHOENIX,
respectively. The results disclose that a higher achievement is obtained with MNM-SLR in comparison
to VGG-16. Moreover, the performance of the two models has been tested on the expanded dataset.
This was performed for the generalization of trained models. Data expandation is the operation of
producing further data by transforming the initial possessed dataset. In this work, two supplementary
instances per sample were produced by adopting the process of scaling and rotation. Therefore, a
random inbound and outbound scaling of [0.7—1.4] and a random rotation in the interval [-15°, + 15°]
were employed. The results of the classification for the expanded dataset are presented in Table 2. The
distinguished augmented dataset results are sufficiently persuasive to demonstrate the generalization
capability of the trained models.

Table 1. Accuracy and loss performance.

Model MNM-SLR VGG-16
Ace. (@) SIGNUM 88.96 88.17
%) RWTH-PHOENIX 94.37 92.45
. SIGNUM 0.72 0.87
085 RWTH-PHOENIX 0.53 0.64

Table 2. Results of classification for the expanded dataset.

Model SIGNUM RWTH-PHOENIX

Original Aug Original Aug

MNM-SLR 88.96 90.12 94.37 94.87
VGG-16 88.17 89.11 92.45 93.42

4.1.2. Loss

In this work, the cross-entropy loss function is adopted to compute the loss that takes place in the
multiple gestures classification of sign language, which is defined as follows:

Loss = Z 0;.log 5[, 4.2)

i=1

where O; represents the i value in the output of the model, O; depicts the analogous purpose value, and
n represents the scalar value number in the exit of the model. The loss value calculated for two various
patterns is shown in Table 1. This computed loss for all various CNN patterns regularly decreases with
the augmentation of the iteration for a while, then subsequently obtains a determined value. For the
SIGNUM dataset, the average loss for MNM-SLR and VGG-16 decrease to 0.72 and 0.87, respectively.
For the RWTH-PHOENIX-Weather 2014 dataset, the loss for MNM-SLR and VGG-16 decreases to
0.53 and 0.64, respectively.
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4.1.3. Confusion matrix

In the interest of better assessing the suggested framework, an alternative performance metric
termed the confusion matrix, is also determined in this work. This matrix recapitulates the properly
and wrongly predicted words of every class; therefore, the recognition precision of every class can
be excerpted from it. Figures 6 and 7 demonstrate the confusion matrices of the obtained results
employing our MNM-SLR system, which is applied on 26 classes of the RWTH-PHOENIX-Weather
2014 dataset. A qualitative analysis of the manual and non-manual confusion matrices (Figures 6 and
7) demonstrate that by employing non-manual features, it is possible to accurately determine more
classes, which were classified incorrectly when employing solely manual features. We note that non-
manual features can be employed to support differentiate various signs from each other.

00000

True Label

Predicted Label

Figure 6. Confusion matrix with manual features only.
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c20
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c22
c23
c24 ¢
c25
c260
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Figure 7. Confusion matrix with both manual and non-manual features.

4.1.4. Other parameters

Computational time is a crucial criterion for sign language recognition in real-time applications.
The entire parameters for every convolutional layer can be represented as follows:
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Pioww=WXhXpf+1)Xf, 4.3)

where w and h represent the width and height of the filter, respectively, pf depicts the filter number of
the previous layer and f depicts the filter number. The entire parameters for every fully connected layer
(Py.) can be represented as follows:

P =(clxpl+1)Xc, 4.4)

where cl represents the current layer and pl represents the previous layer.
It is obvious by the distinction of the attainments that the suggested model of MNM-SLR employs
a decreased computational time and fewer parameters as compared to other CNN architectures.

4.1.5. Cross-validation

K-fold is a cross-validation method to maintain the pattern achievement. Therefore, to assess the
achievement on the whole data interval, a 10-fold cross-validation was employed for MNM-SLR. The
assessment results for 10 folds are shown in Tables 3 and 4 for MNM-SLR and VGG-16, respectively.

Table 3. MNM-SLR framework results with 10-fold cross validation.
K-fold SIGNUM RWTH-PHOENIX-Weather

1 88.96 94.37
2 88.17 93.97
3 87.64 93.18
4 88.90 94.12
5 88.25 94.26
6 86.97 93.77
7 87.17 93.89
8 88.69 93.14
9 88.77 94.10
10 88.97 94.18

Table 4. VGG-16 framework results with 10-fold cross validation.
K-fold SIGNUM RWTH-PHOENIX-Weather

1 88.17 92.45
2 88.34 90.83
3 87.12 91.36
4 86.84 91.86
5 87.91 92.17
6 88.06 90.79
7 87.47 91.92
8 87.23 92.13
9 88.01 92.62
10 88.23 92.38
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4.2. Comparaison with state of the art

DenseTCN is a dense temporal convolution network introduced by [41] and assumes the actions
in hierarchical views. To learn the short-term correlation in this system, a temporal convolution
(TC) is choosen in between neighboring features and extended to a dense hierarchical configuration.
In [42], the authors nominated a CTM framework that enclosed the support of a temporal convolution
pyramid module and a connectionist decoding pattern to design short-term and long-term sequence
learning. Authors in [43] suggested a cross-modal learning model that weighed the text information
for ameliorating vision-based CSLR. Hence, two efficient encoding networks are at first exercised
for producing text and video enclosures before their alignment and mapping within a joint latent
representation. Authors in [44] suggested a framework, namely ST-GCNs, which is an innovative
deep-learning method that associates with spatio-temporal GCNs, which run on diverse, appropriately
fusioned feature streams, assimilating signer’s pose, motion information, appearance, and shape. The
work of authors in [45] is sub-divided into three constituents: the first module is the feature extractor
in a multi-view spatio-temporal Network (MSTN) that accurately extracts the spatio-temporal features
of th RGB data and skeleton; the second module exemplifies an encoder network of SL based on
the transformer, which can resolve dependency of long-term; the last module exemplifies a CTC
decoder network. Table 5 exhibits that our proposed method obtains encouraging achievement, which
is summarized by a decrease of the WER value to 30.7% on the RWTH-PHOENIX-Weather 2014
dataset. These results prove that the dynamic spatial correlation of SL sequences and the long-term
temporal correlation can ameliorate learning of its visual features.

Table 5. Analysis of performance refinement on RWTH-PHOENIX-Weather 2014.

DEV Test

Methods del/ins WER del/ins WER

ST-GCNs [44] ] ] i 2134
Dense TCN [41] 10.7/5.1 359 10.5/5.5 36.5
MSTN [45] ] ; ] 228
Ljoin [43] ; 23.9 i 24.0
CTM [42] 11.6/63 389 109/64 387
STTN [46] h 25.11 i 24.74
Our method 106/52 293 10.1/57 30.7

4.3. Ablation study

To evaluate the contributions of the designed model, we have performed an ablation study on the
RWTH-PHOENIX-Weather 2014 dataset. An ablation study can analyze the different components that
influence the performance of the system. As shown in Table 6, it is feasible to evaluate the impact of
each proposed training structure. For this determination, the proposed model was trained either (i) with
non-manual features or (ii) without non-manual features. As concluded from Table 6, the proposed
model reveals a higher achievement when employing all modalities together, thereby yielding a 30.7%
WER.
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Table 6. Ablation study on RWTH-PHOENIX-Weather 2014. W/O NMF means without
non-manual features and W NMF means with non-manual features.

DEV Test
del/ins WER del/ins WER

W/ONMF 11.2/6.3 33.43 10.8/5.9 37.67
W NMF 10.6/5.2 293 10.1/5.77 30.7

Methods

5. Conclusions

In this work, we suggest an inventive training approach to produce a nominated feature extraction
module, which was thoroughly employed to better understand the convenient sign language gloss on
video sequences, while continuing to benefit from the iteratively cleansed alignment propositions.
We advance a multi-modal method to integrate the head position and motion gestures from video
sequences of sign language, which supplies superior spatio-temporal representations for gestures.
The substantial contribution of the proposed work is its capacity to recognize complex signs. It
demonstrates that by employing non-manual features, it is possible to accurately determine more
classes, which were classified incorrectly when employed solely as manual features. It was affirmed via
experiments that our MNM-SLR framework achieves a state-of-the-art performance on continuous sign
langue recognition with an accuracy of 90.12% on the SIGNUM dataset and 94.87% on the RWTH-
PHOENIX-Weather 2014 dataset.
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