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Abstract: In this work we start from near vector spaces, which we endow with some additional
properties that allow convex analysis. The seminormed structure used here will also be improved by
adding properties such as the null condition and null equality, thus resulting in a new type of space,
which is still weaker than the conventional Banach structures: pre-convex regular near-Banach space.
On the newly defined structure, we introduce the concept of uniform convexity and analyze several
resulting properties. The major outcomes prove a remarkable resemblance to the classical properties
resulting from uniform convexity on hyperbolic metric spaces or modular function spaces, including
the famous Browder-Göhde fixed point theorem.
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1. Introduction

Uniform convexity was first defined for Banach spaces in [1]. This property has a strong geometric
significance, stating that the midpoint of two given distinct points in the unit ball always falls inside
the ball, or, equivalently, if the midpoint tends to the boundary, the considered points approach each
other. In fixed point theory, the amazing contribution of this geometric property is emphasized by the
famous Browder-Göhde Theorem (see [2, 3]): Each nonexpansive self-mapping of a bounded closed
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convex subset in a uniformly convex Banach space has a fixed point, and the set of fixed points is
closed and convex. In connection to this theorem, see Sections 2 and 5 (uniform convexity and fixed
points in uniformly convex spaces, respectively) in [4]. Another interesting consequence of uniform
convexity was revealed by Edelstein ([5, 6]) who defined in connection with bounded sequences the
concept of asymptotic center, proving that, in uniformly convex Banach spaces, the asymptotic center
is a singleton. A comprehensive approach to asymptotic centers is given in Section 4 of [4].

One of the first significant extensions of uniform convexity was done in [7] to hyperbolic metric
spaces. In connection to this, see also Section 4 of the early paper [8]. Obviously, normed linear
spaces are hyperbolic spaces. As nonlinear examples, one can consider the Hadamard manifolds, the
Hilbert open unit ball equipped with the hyperbolic metric and the CAT(0) spaces (see Chapter 2 in [4]).
In [9], remarkable consequences of metric uniform convexity were stated:

• property (R) of each uniformly convex metric space (which is equivalent to reflexivity for Banach
spaces), stating that the intersection of each nonincreasing sequence of nonempty closed, bounded
and convex subsets is nonempty;
• the existence and uniqueness of best approximants in closed and convex subsets of uniformly

convex metric spaces;
• a metric version of parallelogram identity;
• a very useful technical lemma stating sufficient conditions for the distance limit between two

sequences to be zero;
• using the type-function of an bounded sequence, an analogue of Edelstein’s result was proven,

stating that all minimizing sequences are convergent toward the same, unique, limit-point.

The next relevant step regarding uniform convexity was the extension of this concept to modular
function spaces [10], resulting in properties similar to those described above. In addition, the existence
of fixed points for pointwise asymptotically nonexpansive self-mappings was proved.

Following the ideas applied in [9] and [10] for hyperbolic metric spaces and modular function
spaces, respectively, we wish to properly define uniform convexity on regular near-Banach spaces.
The concepts of near vector space, near (pseudo, semi) norm, as well as a number of versions of near-
Banach spaces are extremely recent and provide weaker types of normed structures, where the classical
distributivity laws from conventional vector spaces and the existence of additive inverse elements are
completely omitted.

Several versions of near-Banach spaces were introduced by Wu in [11]. Starting from a significantly
weakened vector structure (so-called near vector space), in which the laws of distributivity, as well
as the existence of the additive inverse element are completely excluded, and the existence of the
zero element is optional (being substituted by the so-called null set), Wu managed to define several
types of norms resulting near pseudo-seminormed, near seminormed, near pseudo-normed or near
normed spaces. In connection to these norms, he defined appropriate concepts of convergence and
completeness, obtaining several types of near-Banach structures. Sometimes other properties as null
condition or null equality were assumed and these led to some important consequences. Despite the
limitations imposed by the weak underlying structure, Wu managed to state and prove some adequate
versions of Banach’s contraction principle. Moreover, three important examples were provided,
proving that the newly considered structures are not trivial: The space of all bounded and closed
intervals in R, the space of fuzzy numbers in R and the hyperspace of all subsets of a conventional
vector space.
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However, looking closely at these highly general vector structures, we notice that they lack the
basic properties that allow us to approach convexity problems. Still, the examples listed above have
some features that make possible the definition of convexity: although scalar multiplication does not
generally act like it does for conventional vector spaces, it obeys the laws of distributivity when dealing
with scalars in the interval [0, 1]. In this paper we shall assume this additional property and we shall
name it pre-convexity. Moreover, the norm function we choose to work with will be the near seminorm
from [11] endowed with two additional properties: null condition and null equality. We will name this
stronger structure regular near norm. So, the underlying structure to be studied here is a pre-convex
regular near-Banach space. We will adapt uniform convexity to this type of space, studying several
properties arising from this concept. The major outcomes are similar to those already existing for
hyperbolic metric spaces and modular function spaces. In addition, we prove that Browder-Göhde
Theorem holds true for uniformly convex regular near-Banach spaces. Some examples are provided to
underline the utility of our study.

2. Preliminaries on regular near normed spaces

In this section, we recall the definition of a near vector space and other related concepts from [11].
Starting from a near seminorm, and adding to it properties such as the null condition and null equality,
we define the regular near norm on a near vector space, as well as corresponding concepts concerning
convergence analysis: Cauchy sequence, convergence, completeness and regular near-Banach space.

Definition 1 ([11]). A universal set over R is any nonempty set U endowed with two operations, an
internal one called vector addition and conventionally marked ⊕ and an external one acting as scalar
multiplication with real numbers.

Remark 1. The minus sign could be also used in connection to universal sets, if considered as follows:

−x = (−1)x.

We notice that it marks just a simple notation, without any connection to opposite elements. In general,
for universal sets, the concept of additive inverse element is not even defined.

Moreover, for any two elements x, y ∈ U, the subtraction x⊖y could be also conventionally defined,
as follows:

x ⊖ y = x ⊕ (−y) = x ⊕ (−1)y.

Definition 2 ([11]). Let U be a universal set over R. The set

Ψ = {x ⊖ x : x ∈ U}

is called the null set of U.

Definition 3 ([11]). Let U be a universal set over R. We say that U is a near vector space over R if the
following additional conditions are satisfied:

(i) 1x = x, ∀x ∈ U;

(ii) if x = y, then
{

x ⊕ z = y ⊕ z, ∀z ∈ U;
αx = αy, ∀α ∈ R;
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(iii) x ⊕ y = y ⊕ x, ∀x, y ∈ U;
(iv) x ⊕ (y ⊕ z) = x ⊕ y ⊕ z, ∀x, y, z ∈ U.

Definition 4 ([11]). Let U be a near vector space over R, with the null set Ψ. Two elements x, y are
called almost identical, and denoted x Ψ= y, if they satisfy any of the conditions below:

(i) x = y;
(ii) ∃ψ ∈ Ψ such that x = y ⊕ ψ or y = x ⊕ ψ;

(iii) ∃ψ1, ψ2 ∈ Ψ such that x ⊕ ψ1 = y ⊕ ψ2.

In [11], a near seminorm was defined by homogeneity and subadditivity. In addition, properties
as null condition and null equality were often used to provide stronger features in near seminormed
spaces. In this work we will put together all these conditions, thus defining the concept of regular near
norm.

Definition 5. Let U be a near vector space over R with the null set Ψ. A function || · || : U → R+ is
called regular near norm on U, if the following conditions hold true:

(i) the null condition: ||x|| = 0 if and only if x ∈ Ψ;
(ii) the null equality: ||x ⊕ ψ|| = ||x||, ∀x ∈ U, ∀ψ ∈ Ψ;

(iii) homogeneity: ||αx|| = |α| · ||x||, ∀α ∈ R, ∀x ∈ U;
(iv) subadditivity: ||x ⊕ y|| ≤ ||x|| + ||y||, ∀x, y ∈ U.

Example 1. Let us consider the set U of all bounded functions on R. We define the addition of two
bounded functions in the usual way and the scalar multiplication as follows:

(α f )(x) =

α f (x), if x ≥ 0,
α2 f (α2x), if x < 0.

It is not difficult to see that all the properties in Definition 3 are satisfied, making U a near vector
space over R. We also notice that, since (α + β) f , α f + β f , U is not a conventional vector space.
Moreover, one can identify the null setΨ in all the bounded functions that are identically null on [0,∞).

For a given function f ∈ U, we define || f || = sup
x≥0
| f (x)|. We thus obviously obtain a regular near

norm on U.

3. Properties of regular near normed spaces

The next proposition lists some regularity properties of the null set. They will play a significant
role in the development of our study. In [11], Wu demonstrated that these properties also work in a
less restrictive framework than the regular near norm studied here (for this wider setting, please see
Remark 3.3 and Proposition 3.9 in the cited paper).

Proposition 1. Let || · || be a regular near norm on a near vector space U, with null set Ψ. The following
properties hold true:

(i) The null set is closed under internal addition and scalar multiplication (see also Remark 3.3
in [11]);
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(ii) x Ψ= y⇔ x ⊖ y ∈ Ψ⇔ ||x ⊖ y|| = 0 (Proposition 3.9 in [11]);
(iii) If x Ψ= y, then ∥x∥ = ∥y∥ (Proposition 3.9 in [11]);

Proof.

(i) Let α ∈ R and ψ, ϕ ∈ Ψ. Then, from the null condition it follows that ||ψ|| = ||ϕ|| = 0 and

||αψ|| = |α| · ||ψ|| = 0; 0 ≤ ||ψ + ϕ|| ≤ ||ψ|| + ||ϕ|| = 0.

Using again the null condition, we conclude that αψ, ψ + ϕ ∈ Ψ.
(ii) The second equivalence results directly from the null condition. Let us suppose now that x Ψ= y.

Then, one of the three conditions in Definition 4 must be satisfied. We run the proof for the third
condition, the other cases being similar. So, there exist ψ1, ψ2 ∈ Ψ, such that x ⊕ ψ1 = y ⊕ ψ2.
Then,

x ⊕ ψ1 ⊖ y = y ⊕ ψ2 ⊖ y,

that is
x ⊖ y ⊕ ψ1 = y ⊖ y ⊕ ψ2 = ψ ⊕ ψ2 ∈ Ψ,

where ψ denotes y⊖ y. According to the null condition, ∥x ⊖ y ⊕ ψ1∥ = 0. On the other side, from
null equality, ∥x ⊖ y ⊕ ψ1∥ = ∥x ⊖ y∥, which proves that ∥x ⊖ y∥ = 0, equivalent to x ⊖ y ∈ Ψ.
For the converse statement, let us assume that x⊖ y ∈ Ψ. Then, x⊖ y = ψ, hence x⊖ y⊕ y = ψ⊕ y.
Since y ⊖ y ∈ Ψ, then x Ψ= y, according to Definition 4.

(iii) Let x Ψ= y. Same as before, we consider ψ1, ψ2 ∈ Ψ, such that x⊕ ψ1 = y⊕ ψ2. From null equality
it follows that

∥x∥ = ∥x ⊕ ψ1∥ = ∥y ⊕ ψ2∥ = ∥y∥ .

□

Further properties concerning regular near normed spaces are listed below. They provide
conclusions about some partial distributivity rules that could be applied despite the weak vector
structure of the underlying near vector space.

Proposition 2. Let || · || be a regular near norm on a near vector space U, with null set Ψ. The following
properties hold true:

(i) −(x⊖y) Ψ= −x⊕y = y⊖ x and −(x⊕y) Ψ= −x⊕(−y) = −x⊖y, although equalities are not necessarily
satisfied. Further on, the symmetric condition ||x⊖y|| = ||y⊖ x|| (see Definition 3.5 and Proposition
3.6 in [11]) is satisfied;

(ii) z ⊖ (x ⊕ y) Ψ= z ⊖ x ⊖ y and z ⊖ (x ⊖ y) Ψ= z ⊖ x ⊕ y. Consequently, opening parentheses inside the
norm is allowed (see Proposition 3.7 in [11]):

||z ⊖ (x ⊕ y)|| = ||z ⊖ x ⊖ y||; ||z ⊖ (x ⊖ y)|| = ||z ⊖ x ⊕ y||.

(iii) −(−x) Ψ= x, although −(−x) is not necessarily equal to x.
(iv) The triangle inequality ||x ⊖ y|| ≤ ||x ⊖ z|| + ||z ⊖ y|| is satisfied (see also Proposition 3.8 in [11]);

Proof.

AIMS Mathematics Volume 9, Issue 1, 2063–2083.



2068

(i) From the definition of the null set Ψ, one has −(x ⊖ y) ⊕ (x ⊖ y) = (x ⊖ y) ⊖ (x ⊖ y) = ψ ∈ Ψ. We
add in both sides −x and y and obtain

−(x ⊖ y) ⊕ (x ⊖ y) ⊖ x ⊕ y = ψ ⊖ x ⊕ y,

that is, after commuting some elements in the left side,

−(x ⊖ y) ⊕ x ⊖ x ⊖ y ⊕ y = ψ ⊖ x ⊕ y.

By denoting x ⊖ x = ψ1 ∈ Ψ and y ⊖ y = ψ2 ∈ Ψ, we find

−(x ⊖ y) ⊕ ψ1 ⊕ ψ2 = −x ⊕ y ⊕ ψ,

which provides immediately −(x ⊖ y) Ψ= −x ⊕ y = y ⊖ x. Applying the regular norm, we also find

∥x ⊖ y∥ = ∥−(x ⊖ y)∥ = ∥y ⊖ x∥ .

The second relationship can be proved similarly.
(ii) These properties follow immediately after adding z in both sides of the relations proved bei the

previous item.
(iii) By the definition of the null set, one has −(−x) ⊕ (−x) = −x ⊖ (−x) = ψ ∈ Ψ. Then, we add x in

both sides and obtain
−(−x) ⊕ (−x) ⊕ x = ψ ⊕ x,

that is
−(−x) ⊕ ψ1 = x ⊕ ψ,

where ψ1 denotes (−x) ⊕ x = x ⊖ x. This proves the claimed identity.
(iv) According to Definition 4, x⊖y Ψ= x⊖y+ψ, for every ψ ∈ Ψ. In particular, if z ∈ U, then z⊖z ∈ Ψ,

so
x ⊖ y Ψ= x ⊖ y ⊕ (z ⊖ z) = (x ⊖ z) ⊕ (z ⊖ y).

From Proposition 1(iii) and subadditivity of the regular near norm, we find

∥x ⊖ y∥ = ∥(x ⊖ z) ⊕ (z ⊖ y)∥ ≤ ∥x ⊖ z∥ + ∥z ⊖ y∥ .

□

Due to the properties listed above, we are now able to define concepts related to metric convergence
for regular near normed spaces.

Definition 6. Let (U, ∥·∥) be a regular near normed space.

• A sequence {xn} in U is said to be convergent to x ∈ U if lim
n→∞
∥xn ⊖ x∥ = 0.

• The sequence {xn} in U is called Cauchy if lim
m,n→∞

∥xn ⊖ xm∥ = 0.

• The regular near normed space (U, ∥·∥) is called complete (or regular near-Banach space) if every
Cauchy sequence is also convergent.
• A subset C ⊂ U is called bounded if ∥x ⊖ y∥ ≤ M, ∀x, y ∈ C, for a given constant M > 0.

AIMS Mathematics Volume 9, Issue 1, 2063–2083.



2069

• A subset C ⊂ U is called closed if for each sequence {xn} ⊂ C satisfying lim
n→∞
∥xn ⊖ x∥ = 0 for

some x ∈ U, one has x ∈ C.

In [11], several alternative definitions for convergence, Cauchy sequences and completeness were
provided for more general cases. However, since in a regular near normed space the symmetric
condition is satisfied (Proposition 2(i)), the definitions above are well posed.

Remark 2. The limit of a sequence {xn} is not necessarily unique. However, the sequence {xn}

converges simultaneously to distinct limit points x, y ∈ U if and only if x Ψ
= y. For details, see [11],

Proposition 4.3.

4. Uniform convexity on regular near-Banach spaces

In order to operate with convexity related properties, we previously ask for a certain precondition
to be fulfilled. More precisely, we ask that the space behave as a conventional vector space, at least for
scalars from interval [0, 1].

Definition 7. A near vector space U is endowed with pre-convexity property, if

(i) αx ⊕ βx = (α + β)x, ∀α, β ∈ [0, 1], α + β ≤ 1, ∀x ∈ U;
(ii) α(βx) = (αβ)x, ∀α, β ∈ [0, 1], ∀x ∈ U;

(iii) αx ⊕ αy = α(x ⊕ y), ∀α ∈ [0, 1], ∀x, y ∈ U.

Lemma 1. Let (U, ∥·∥) be a pre-convex regular near normed space. Then,

∥[(1 − α)x ⊕ αy] ⊖ z∥ ≤ (1 − α) ∥x ⊖ z∥ + α ∥y ⊖ z∥ , ∀x, y, z ∈ U, ∀α ∈ [0, 1].

Proof. Indeed, since z = (1 − α)z ⊕ αz one has

∥[(1 − α)x ⊕ αy] ⊖ z∥ = ∥[(1 − α)x ⊕ αy] ⊖ [(1 − α)z ⊕ αz]∥
= ∥(1 − α)x ⊕ αy ⊖ (1 − α)z ⊖ αz∥ (from Proposition 2(ii))
= ∥(1 − α)(x ⊖ z) ⊕ α(y ⊖ z)∥ (from pre-convexity)
≤ ∥(1 − α)(x ⊖ z)∥ + ∥α(y ⊖ z)∥ (from norm subadditivity)
= (1 − α) ∥x ⊖ z∥ + α ∥y ⊖ z∥ (from norm homogeneity),

hence the proof. □

Definition 8. Let (U, ∥·∥) be a regular near-Banach space. For every ϵ > 0 and r > 0 we denote

D(r, ϵ) = {(x, y) : x, y ∈ U, ∥x∥ , ∥y∥ ≤ r, ∥x ⊖ y∥ ≥ ϵr}

and

δ(r, ϵ) =


inf

{
1 −

1
r

∥∥∥∥∥1
2

x ⊕
1
2

y
∥∥∥∥∥ : (x, y) ∈ D(ϵ, r)

}
, if D(r, ϵ) , ∅;

1, if D(r, ϵ) = ∅.

Then U is said to be uniformly convex, if U is endowed with pre-convexity property and for each
s ≥ 0 and ϵ > 0, there exists η(s, ϵ) > 0 such that

δ(r, ϵ) > η(s, ϵ), ∀r > s.
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Lemma 2. Let (U, ∥·∥) be a uniformly convex regular near-Banach space and t ∈ (0, 1). For ϵ > 0 and
r > 0 consider

δt(r, ϵ) =


inf

{
1 −

1
r
∥(1 − t)x ⊕ ty∥ : (x, y) ∈ D(r, ϵ)

}
, if D(r, ϵ) , ∅;

1, if D(r, ϵ) = ∅.

If U is uniformly convex, then for each s ≥ 0 and ϵ > 0, there exists ηt(s, ϵ) > 0 such that

δt(r, ϵ) > ηt(s, ϵ), ∀r > s.

Proof. Obviously, the property is satisfied for t =
1
2

according to the definition of uniform convexity.

Since δt(r, ϵ) = δ1−t(r, ϵ) it is enough to prove the result for t >
1
2

. For x, y ∈ D(r, ϵ) and t ∈ (0, 1),

t >
1
2

, consider u = (1 − (2t − 1))x ⊕ (2t − 1)y and v = y. Then, 2t − 1 ∈ (0, 1) and

∥u∥ = ∥(1 − (2t − 1))x ⊕ (2t − 1)y∥
≤ (1 − (2t − 1)) ∥x∥ + (2t − 1) ∥y∥
≤ (1 − (2t − 1))r + (2t − 1)r = r.

Obviously, one also has ∥v∥ ≤ r. On the other side,

∥u − v∥ = ∥[(1 − (2t − 1))x ⊕ (2t − 1)y] ⊖ y]∥
= ∥2(1 − t)(x ⊖ y)∥ (from pre-convexity)
= 2(1 − t) ∥x ⊖ y∥ ≥ 2(1 − t)rϵ.

Therefore, (u, v) ∈ D(r, 2(1 − t)ϵ). Moreover,

1 −
1
r
∥(1 − t)x ⊕ ty∥ = 1 −

1
r

∥∥∥∥∥1
2

u ⊕
1
2

v
∥∥∥∥∥ ,

and consequently,
δt(r, ϵ) ≥ δ(r, 2(1 − t)ϵ).

Since U is uniformly convex, for each s ≥ 0 and ϵ > 0, there exists ηt(s, ϵ) = η(s, 2(1 − t)ϵ) > 0
such that

δt(r, ϵ) ≥ δ(r, 2(1 − t)ϵ) > η(s, 2(1 − t)ϵ) = ηt(s, ϵ) > 0, ∀r > s,

so the proof is completed. □

The next technical Lemma is expected to play an important role in fixed point theory, and is the
expression of similar results from uniformly convex Banach spaces, uniformly convex metric spaces
or uniformly convex modular spaces.
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Lemma 3. Let (U, ∥·∥) be a uniformly convex regular near-Banach space and {tn} ⊂ (0, 1) be bounded
away from 0 and 1 (i.e. 0 < p ≤ tn ≤ q < 1, for some p ≤ q ∈ (0, 1)). If there exists r ≥ 0 such that

lim sup
n→∞

∥xn∥ ≤ r, lim sup
n→∞

∥yn∥ ≤ r

and
lim
n→∞
∥(1 − tn)xn ⊕ tnyn∥ = r,

then
lim
n→∞
∥xn ⊖ yn∥ = 0.

Proof. If r = 0, the proof is trivial, since ∥xn ⊖ yn∥ ≤ ∥xn∥ + ∥yn∥. So, we assume from start that r > 0.
Consider also ϵ > 0. First of all, for each pair (x, y) ∈ D(r, ϵ), consider the function f : [0, 1] → R,
fx,y(t) = ∥(1 − t)x ⊕ ty∥. We start by showing that fx,y is a convex function. Indeed, based on pre-
convexity, one has

fx,y((1 − α)s + αt) = ∥(1 − [(1 − α)s + αt])x ⊕ [(1 − α)s + αt]y∥
= ∥[(1 − α)(1 − s) + α(1 − t)]x ⊕ [(1 − α)s + αt]y∥
= ∥(1 − α)[(1 − s)x ⊕ sy] ⊕ α[(1 − t)x ⊕ ty]∥
≤ (1 − α) ∥(1 − s)x ⊕ sy∥ + α ∥(1 − t)x ⊕ ty∥

= (1 − α) fx,y(s) + α fx,y(t), ∀α, t, s ∈ [0, 1].

Then t → λr,ϵ(t) = sup{ fx,y(t) : (x, y) ∈ D(r, ϵ)} is also convex on [0, 1] and hence it is continuous.

Since δt(r, ϵ) = 1 −
1
r
λr,ϵ(t), then t → δt(r, ϵ) is continuous as well, for each pair (r, ϵ).

In order to prove the statement of the Lemma, let us assume first the contrary. Then, let γ > 0.
Passing to a subsequence if necessary, we could assume that

∥xn∥ ≤ r + γ; ∥yn∥ ≤ r + γ; ∥xn ⊖ yn∥ ≥ (r + γ)ϵ.

Moreover, we could also assume that {tn} is convergent toward a point t0 ∈ [p, q] (otherwise, it contains
a convergent subsequence). Then

lim
n→∞

δtn(r + γ, ϵ) = δt0(r + γ, ϵ).

On the other side,

lim
n→∞

δtn(r + γ, ϵ) ≤ lim
n→∞

[
1 −

1
r + γ

∥(1 − tn)xn ⊕ tnyn∥

]
=

γ

r + γ
,

so
δt0(r + γ, ϵ) ≤

γ

r + γ
. (4.1)

Using the uniform convexity and Lemma 2, we could state that for each ϵ > 0, there exists ηt0(r, ϵ) >
0 such that

δt0(r + γ, ϵ) > ηt0(r, ϵ), ∀γ > 0. (4.2)
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From Eqs (4.1) and (4.2), we find

γ

r + γ
> ηt0(r, ϵ), ∀γ > 0.

Letting γ → 0, we find ηt0(r, ϵ) ≤ 0, which is a contradiction. □

Lemma 4. Let (U, ∥·∥) be a uniformly convex regular near-Banach space. For every ϵ ≥ 0 and r > 0
we consider the set D(r, ϵ) as in Definition 8 and, if D(r, ϵ) , ∅, we define the function

λ(ϵ, r) = inf
(x,y)∈D(r,ϵ)

{
1
2
∥x∥2 +

1
2
∥y∥2 −

∥∥∥∥∥1
2

x ⊕
1
2

y
∥∥∥∥∥2}

.

Then, for some given r > 0, λ(ϵ, r) = 0 if and only if ϵ = 0.

Proof. It is not difficult to see that the regular near norm, as well as the square functions are convex, so∥∥∥∥∥1
2

x ⊕
1
2

y
∥∥∥∥∥2

≤
1
2
∥x∥2 +

1
2
∥y∥2

hence λ(ϵ, r) ≥ 0, ∀ϵ ≥ 0, ∀r > 0.
We prove first the direct statement. Let us assume that λ(ϵ, r) = 0. The definition of infimum

ensures the existence of some sequences {xl} and {yl} in D(r, ϵ) such that

lim
l→∞

(
1
2
∥xl∥

2 +
1
2
∥yl∥

2
−

∥∥∥∥∥1
2

xl ⊕
1
2

yl

∥∥∥∥∥2)
= λ(ϵ, r) = 0. (4.3)

Consider the equality in R+:(
∥xl∥ − ∥yl∥

2

)2

=
∥xl∥

2

2
+
∥yl∥

2

2
−

(
∥xl∥ + ∥yl∥

2

)2

.

Since
0 ≤

∥∥∥∥∥1
2

xl ⊕
1
2

yl

∥∥∥∥∥ ≤ ∥xl∥ + ∥yl∥

2
,

we find (
∥xl∥ − ∥yl∥

2

)2

≤
∥xl∥

2

2
+
∥yl∥

2

2
−

∥∥∥∥∥1
2

xl ⊕
1
2

yl

∥∥∥∥∥2

.

Taking l → ∞, one has lim
l→∞

(∥xl∥ − ∥yl∥) = 0. Since ∥xl∥ , ∥xl∥ ≤ r, by going if necessary to a
subsequence, we could assume that lim

l→∞
∥xl∥ = z. Then lim

l→∞
∥yl∥ = z. Moreover, from equation (4.3) we

also obtain
lim
l→∞

∥∥∥∥∥1
2

xl ⊕
1
2

yl

∥∥∥∥∥ = z.

Applying now Lemma 3, we obtain lim
l→∞
∥xl − yl∥ = 0. On the other hand, since (xl, yl) ∈ D(r, ϵ), one

has ∥xl − yl∥ ≥ ϵr, ∀l. So
ϵr ≤ lim

l→∞
∥xl − yl∥ = 0,

hence ϵ = 0.

AIMS Mathematics Volume 9, Issue 1, 2063–2083.



2073

For the converse statement, we prove that λ(0, r) = 0. Let x, y ∈ U such that ∥x∥ ≤ r and y Ψ
= x.

Then ∥y∥ = ∥x∥ ≤ r and ∥x ⊖ y∥ = 0, so (x, y) belongs to D(0, r). Moreover, from Lemma 1∥∥∥∥∥1
2

x ⊕
1
2

y ⊖ x
∥∥∥∥∥ ≤ 1

2
∥x ⊖ x∥ +

1
2
∥x ⊖ y∥ = 0,

so
1
2

x ⊕
1
2

y Ψ= x Ψ= y,

leading to ∥∥∥∥∥1
2

x ⊕
1
2

y
∥∥∥∥∥ = ∥x∥ = ∥y∥

and so λ(0, r) = 0. □

Remark 3. Let us also notice that, for given x, y ∈ U, with ∥x∥ ≤ r and ∥y∥ ≤ r, taking ϵ =
∥x ⊖ y∥

r
leads to the inequality

λ

(
∥x ⊖ y∥

r
, r

)
≤

1
2
∥x∥2 +

1
2
∥y∥2 −

∥∥∥∥∥1
2

x ⊕
1
2

y
∥∥∥∥∥2

.

Theorem 1 (Existence of best approximants). Let (U, ∥·∥) be a uniformly convex regular near-Banach
space, C ⊂ U a nonempty convex and closed subset and x ∈ U such that d(x,C) = inf

y∈C
∥x ⊖ y∥ < ∞.

Then, there exists a best approximant xC of x in C, i.e.,

∥x ⊖ xC∥ = inf
y∈C
∥x ⊖ y∥ .

Moreover, if xC and x′C are two best approximants, then xC
Ψ
= x′C.

Proof. We shall assume from the start that d = infy∈C ∥x ⊖ y∥ > 0. Then, there exists a sequence
{xn} ∈ C such that lim

n→∞
∥xn ⊖ x∥ = d. Consequently, for each σ > 0, there is Nσ > 0 such that

∥xn ⊖ x∥ ≤ d + σ, ∀n ≥ Nσ. Without loosing the generality, we could assume σ < 1. We prove next
that {xn}, n ≥ Nσ is Cauchy. If we assume the contrary, there exists ϵ0 > 0 and two subsequences xkn

and xmn , kn,mn ≥ n ≥ Nσ such that∥∥∥xkn ⊖ xmn

∥∥∥ ≥ ϵ0 =
ϵ0

d + σ
(d + σ) .

Since ∥∥∥xkn ⊖ x
∥∥∥ ≤ d + σ;

∥∥∥xmn ⊖ x
∥∥∥ ≤ d + σ,

it follows that (xkn ⊖ x, xmn ⊖ x) ∈ D(d + σ,
ϵ0

d + σ
).

The definition of the modulus of convexity provides the inequality∥∥∥∥∥1
2

xkn ⊕
1
2

xmn ⊖ x
∥∥∥∥∥ ≤ (d + σ)

(
1 − δ

(
d + σ,

ϵ0

d + σ

))
.

Since the function ϵ → δ(r, ϵ) is nondecreasing, we find

δ
(
d + σ,

ϵ0

d + σ

)
≥ δ

(
d + σ,

ϵ0

d + 1

)
.
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Moreover, from uniform convexity it follows that there exists η
(
d,

ϵ0

d + 1

)
> 0 such that

δ
(
d + σ,

ϵ0

d + 1

)
> η

(
d,

ϵ0

d + 1

)
> 0.

In conclusion, ∥∥∥∥∥1
2

xkn ⊕
1
2

xmn ⊖ x
∥∥∥∥∥ ≤ (d + σ)

(
1 − η

(
d,

ϵ0

d + 1

))
, ∀n ≥ Nσ.

So,

lim
n→∞

∥∥∥∥∥1
2

xkn ⊕
1
2

xmn ⊖ x
∥∥∥∥∥ ≤ (d + σ)

(
1 − η

(
d,

ϵ0

d + 1

))
.

On the other side, C is convex, so
1
2

xkn ⊕
1
2

xmn ∈ C and
∥∥∥∥∥1

2
xkn ⊕

1
2

xmn ⊖ x
∥∥∥∥∥ ≥ d. therefore,

d ≤ lim
n→∞

∥∥∥∥∥1
2

xkn ⊕
1
2

xmn ⊖ x
∥∥∥∥∥ ≤ (d + σ)

(
1 − η

(
d,

ϵ0

d + 1

))
.

Taking σ → 0, we find d ≤ d
(
1 − η

(
d,

ϵ0

d + 1

))
< d, which is absurd, unless our assumption about the

sequence {xn} not being Cauchy is false. By the completeness of U, {xn} should have a limit point, let
us say xC. This limit point is obviously an element of C, since this set was assumed closed. Moreover,
xC is a best approximant of x in C because

d ≤ ∥x ⊖ xC∥ ≤ ∥x ⊖ xn∥ + ∥xn − xC∥ ,

and after passing to the limit we find ∥x ⊖ xC∥ = d.

In order to complete our proof, we consider two best approximants xC, x′C of x in C. If xC
Ψ

, x′C, it
follows that there exists ϵ > 0, such that ∥∥∥xC ⊖ x′C

∥∥∥ = ϵ = ϵ

d
d.

From the relationships
∥x ⊖ xC∥ = d;

∥∥∥x − x′C
∥∥∥ = d,

and, from the definition for modulus of convexity, it follows that

d ≤
∥∥∥∥∥1

2
xC ⊕

1
2

x′C ⊖ x
∥∥∥∥∥ ≤ d

(
1 − δ

(
d,
ϵ

d

))
< d,

which is absurd. Therefore, xC
Ψ
= x′C. □

Definition 9. We say that a regular near-Banach space (U, ∥·∥) has property (R) if every nonincreasing
sequence {Cn} of nonempty, bounded, closed, convex subsets of U has a nonempty intersection.

Theorem 2. If (U, ∥·∥) is a uniformly convex regular near-Banach space, then U has property (R).
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Proof. Let {Cn} be a nonincreasing sequence of nonempty, bounded, closed, convex subsets of U and
x ∈ U such that lim

n→∞
d(x,Cn) < ∞. From Theorem 1, there exists xn ∈ Cn, such that

∥xn ⊖ x∥ = inf
y∈Cn
∥x ⊖ y∥ = d(x,Cn).

Since Cn+1 ⊂ Cn, one has d(x,Cn+1) ≥ d(x,Cn), so {d(x,Cn)} is a nondecreasing sequence in R. Let
d ≥ 0 be its limit. It follows that

lim
n→∞
∥xn ⊖ x∥ = d.

Case 1. If d = 0 it follows from the monotonicity of {d(x,Cn)} that d(x,Cn) = 0, ∀n. Therefore, there
exists {y(n)

k } ⊂ Cn such that lim
k→∞

∥∥∥y(n)
k ⊖ x

∥∥∥ = 0. So, the sequence {y(n)
k } converges to x. The set Cn is

closed, therefore x ∈ Cn. This relationship is independent of n, so x ∈ ∩Cn.
Case 2. We assume now that d > 0. We will prove that {xn} is Cauchy. If we assume the contrary, then
the same arguments we used in the proof of Theorem 1 lead to the inequality

lim
n→∞

∥∥∥∥∥1
2

xkn ⊕
1
2

xmn ⊖ x
∥∥∥∥∥ ≤ (d + σ)

(
1 − η

(
d,

ϵ0

d + 1

))
,

for some subsequences xkn and xmn . Let pn = min (kn,mn). Then xkn , xmn ∈ Cpn , which is a convex

subset. Therefore,
1
2

xkn ⊕
1
2

xmn ∈ Cpn , and
∥∥∥∥∥1

2
xkn ⊕

1
2

xmn ⊖ x
∥∥∥∥∥ ≥ d(x,Cpn). Taking n→ ∞ leads to

d = lim
n→∞

d(x,Cpn) ≤ lim
n→∞

∥∥∥∥∥1
2

xkn ⊕
1
2

xmn ⊖ x
∥∥∥∥∥ ≤ (d + σ)

(
1 − η

(
d,

ϵ0

d + 1

))
,

and after taking σ→ 0, to d ≤ d
(
1 − η

(
d,

ϵ0

d + 1

))
< d,which is not true. So {xn} is a Cauchy sequence

and hence convergent. Let x be one of its limits. We notice that, for each n ∈ N, xk ∈ Cn, ∀k ≥ n.
Since every set Cn is closed it follows that x ∈ Cn, for every n ∈ N, so x ∈ ∩Cn.

□

5. Two examples

Example 2 ([11]). Let I be the set of all bounded and closed intervals on R. With interval addition
[a, b] ⊕ [c, d] = [a + c, b + d] and with scalar multiplication: α[a, b] = [αa, αb] when α ≥ 0 and
α[a, b] = [αb, αa] when α < 0, thus it was proven in [11] that I is a near vector space, with null set
Ψ = {[−a, a], : a ≥ 0} (see Example 2.1, Example 2.3 in [11]). Moreover, together with the norm-
function ∥[a, b]∥ = |a + b|, I is a complete near-normed space, satisfying both the null condition and
null equality, so it is a regular near-Banach space (see Example 3.4 and Example 4.14 in [11]).

We shall prove next that I is uniformly convex. The pre-convexity is an immediate consequence of
the fact that multiplication of intervals with positive scalars acts similar as for R2, so distributivity laws
when positive scalars are involved run naturally. Let us consider now ϵ, r > 0 and two intervals [a, b]
and [c, d] such that

∥[a, b]∥ ≤ r, ∥[c, d]∥ ≤ r, ∥[a, b] ⊖ [c, d]∥ ≥ ϵr.

Explicitly, this means

|a + b| ≤ r, |c + d| ≤ r, |(a + b) − (c + d)| ≥ ϵr,
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or ∣∣∣∣∣a + b
r

∣∣∣∣∣ ≤ 1,
∣∣∣∣∣c + d

r

∣∣∣∣∣ ≤ 1,
∣∣∣∣∣a + b

r
−

c + d
r

∣∣∣∣∣ ≥ ϵ.
Since R is known to be uniformly convex, there is δ(ϵ) > 0, such that∣∣∣∣∣∣12

(
a + b

r
+

c + d
r

)∣∣∣∣∣∣ ≤ 1 − δ(ϵ),

that is ∣∣∣∣∣ (a + b) + (c + d)
2

∣∣∣∣∣ ≤ r[1 − δ(ϵ)].

On the other side, ∥∥∥∥∥1
2

[a, b] ⊕
1
2

[c, d]
∥∥∥∥∥ = ∣∣∣∣∣ (a + b) + (c + d)

2

∣∣∣∣∣ .
Hence ∥∥∥∥∥1

2
[a, b] ⊕

1
2

[c, d]
∥∥∥∥∥ ≤ r[1 − δ(ϵ)],

or
1 −

1
r

∥∥∥∥∥1
2

[a, b] ⊕
1
2

[c, d]
∥∥∥∥∥ ≥ δ(ϵ).

For ϵ > 0 and s ≥ 0, let us denote δ(s, ϵ) =
1
2
δ(ϵ). Then, for each r > s, one has

δ(r, ϵ) ≥ δ(ϵ) >
1
2
δ(ϵ) = δ(s, ϵ),

ending the proof.

Example 3. We consider the upper half plane U = {(x, y) ∈ R2 : y ≥ 0}. On this set we shall define
vector addition and scalar multiplication as follows:

• (x1, y1) ⊕ (x2, y2) = (x1 + x2, y1 + y2);
• α(x, y) = (αx, |α|y).

It is quite easy to notice that U together with these two operations is a near vector space. Moreover,
(x1, y1) ⊖ (x2, y2) = (x1 − x2, y1 + y2) and, in particular, (x, y) ⊖ (x, y) = (0, 2y), therefore the null set is
precisely the nonnegative y-axis,

Ψ = {(0, y) : y ≥ 0}.

Moreover,
(x1, y1) Ψ= (x2, y2) if and only if x1 = x2,

so two elements are almost identical when their projections onto the x-axis are equal.
For an arbitrary element (x, y) ∈ U, we define

∥(x, y)∥ = |x|.

We prove next that ∥·∥ is a regular near norm.
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• To start, we test the null condition. ∥(x, y)∥ = |x| = 0 if and only if x = 0, which is equivalent to
(x, y) laying on the nonnegative y-axis, that is, the null set Ψ.
• For testing the null equality, let ψ = (0, z) ∈ Ψ. Then

∥(x, y) ⊕ ψ∥ = ∥(x, y + z)∥ = |x| = ∥(x, y)∥ , ∀(x, y) ∈ U.

• The homogeneity and subadditivity follow immediately from similar properties on R.

The next step of our analysis is related to completeness. Let {(xn, yn)} be a Cauchy sequence in U.
Then

0 = lim
m,n→∞

∥(xn, yn) ⊖ (xm, ym)∥ = lim
m,n→∞

∥(xn − xm, yn + ym)∥ = lim
m,n→∞

|xn − xm|.

It follows that {xn} is a Cauchy sequence in R, so it is convergent. Let x∗ ∈ R be its limit, i.e.,
lim
n→∞
|xn − x∗| = 0 and consider an element of type (x∗, y) ∈ U, with y ≥ 0. Then

lim
n→∞
∥(xn, yn) ⊖ (x∗, y)∥ = lim

n→∞
∥(xn − x∗, yn + y)∥ = lim

n→∞
|xn − x∗| = 0,

so the sequence (xn, yn) is convergent to (x∗, y), ∀y ≥ 0. This also emphasizes the general fact we have
already stated, that the limit is not necessarily unique, but every two limits are almost identical.

Finally, we shall check the uniform convexity. The properties from pre-convexity are clearly
satisfied since, for positive scalars, the scalar multiplication acts as classical multiplication on R2.
The uniform convexity is an immediate consequence of the relationships:

∥(x1, y1)∥ = |x1|, ∥(x2, y2)∥ = |x2|, ∥(x1, y1) ⊖ (x2, y2)∥ = |x1 − x2|,

and ∥∥∥∥∥1
2

(x1, y1) ⊕
1
2

(x1, y1)
∥∥∥∥∥ = ∥∥∥∥∥( x1 + x2

2
,

y1 + y2

2

)∥∥∥∥∥ = ∣∣∣∣∣ x1 + x2

2

∣∣∣∣∣ ,
as well as of uniform convexity of (R, | · |).

6. The type function of a bounded sequence

Definition 10. Let (U, ∥·∥) be a regular near-Banach space, C a nonempty bounded subset and {xn} a
sequence in C.

(i) The function τ : C → [0,∞], τ(x) = lim sup
n→∞

∥x ⊖ xn∥ is called the type function of {xn} in C.

(ii) The value r(C) = inf
x∈C

τ(x) is called the asymptotic radius of {xn} relative to C.
(iii) A sequence {cn} in C is called a minimizing sequence of τ if lim

n→∞
τ(cn) = r(C).

(iv) The set A(C) = {x ∈ C : τ(x) = r(C)} is called the asymptotic center of {xn} in C.

Proposition 3. If (U, ∥·∥) is a regular near-Banach space endowed with the pre-convexity property, C
a nonempty bounded convex subset and {xn} a sequence in C, then the type function of {xn} is convex.

Proof. Let x, y ∈ C and α ∈ [0, 1]. Then,

τ((1 − α)x ⊕ αy) = lim sup
n→∞

∥(1 − α)x ⊕ αy ⊖ xn∥
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≤ lim sup
n→∞

[(1 − α) ∥x ⊖ xn∥ + α ∥y ⊖ xn∥] (from Lemma 1)

≤ (1 − α) lim sup
n→∞

∥x ⊖ xn∥ + α lim sup
n→∞

∥y ⊖ xn∥

= (1 − α)τ(x) + ατ(y),

hence the conclusion follows. □

Proposition 4. Let (U, ∥·∥) be a uniformly convex regular near-Banach space and C ⊂ U a closed,
bounded, convex subset. Let τ be the type function of a sequence {xn} on C. Then

(i) Every minimizing sequence {cn} of τ is convergent and all its limits belong to the asymptotic
center A(C). Consequently, the asymptotic center is nonempty.

(ii) Any convex combination (1 − λ)ck + λdk, λ ∈ (0, 1) of minimizing sequences is a minimizing
sequence as well.

(iii) For every two minimizing sequences, {cn} and {dn} hold true lim
n→∞
∥cn − dn∥ = 0.

(iv) The asymptotic center is not necessarily a singleton. However, if c, d ∈ A(C), then c Ψ= d (all the
asymptotic centers are almost identical).

Proof. (i) Let {cn} ⊂ C be a minimizing sequence of τ (the definition of infimum ensures the existence
of at least such sequence). Since C is bounded, there exists M > 0 such that ∥x − y∥ ≤ M, for every

x, y ∈ C. Let k,m be some fixed indices and denote ck,m =
1
2

ck ⊕
1
2

cm. In particular,

∥ck − xn∥ , ∥cm − xn∥ ≤ M, ∀k,m, n ∈ N. (6.1)

First of all, let us note from Proposition 2(ii) that

(ck ⊖ xn) ⊖ (cm ⊖ xn) = ck ⊖ xn ⊖ cm ⊕ xn = ck ⊖ cm ⊕ xn ⊖ xn
Ψ
= ck ⊖ cm,

so ∥(ck ⊖ xn) ⊖ (cm ⊖ xn)∥ = ∥ck ⊖ cm∥.
Then, using the inequalities (6.1) and Remark 3, one has

0 ≤ λ

(
∥ck ⊖ cm∥

M
,M

)
= λ

(
∥(ck ⊖ xn) ⊖ (cm ⊖ xn)∥

M
,M

)
≤

1
2
∥ck ⊖ xn∥

2 +
1
2
∥cm ⊖ xn∥

2
−

∥∥∥∥∥1
2

(ck ⊖ xn) ⊕
1
2

(cm ⊖ xn)
∥∥∥∥∥2

=
1
2
∥ck ⊖ xn∥

2 +
1
2
∥cm ⊖ xn∥

2
−

∥∥∥ck,m ⊖ xn

∥∥∥2
, ∀n ∈ N. (6.2)

It is well known that every sequence in R has a subsequence convergent to its limit superior.
Therefore, there exists a subsequence {xln} such that

lim
n→∞

∥∥∥ck,m ⊖ xln

∥∥∥ = lim sup
n→∞

∥∥∥ck,m ⊖ xn

∥∥∥ = τ(ck,m) ≥ r(C). (6.3)
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Also, going to a subsequence leads to the inequalities

lim sup
n→∞

∥∥∥ck ⊖ xln

∥∥∥ ≤ lim sup
n→∞

∥ck ⊖ xn∥ = τ(ck);

lim sup
n→∞

∥∥∥cm ⊖ xln

∥∥∥ ≤ lim sup
n→∞

∥cm ⊖ xn∥ = τ(cm). (6.4)

Writing Eq (6.2) for ln and taking lim sup for n→ ∞, based on the relationships (6.3) and (6.4), we
obtain

0 ≤ λ
(
∥ck ⊖ cm∥

M
,M

)
≤

1
2
τ(ck)2 +

1
2
τ(cm)2 − (r(C))2,

and this inequality holds true for each k,m. Since {cn} is a minimizing sequence, we find

lim
k,m→∞

λ

(
∥ck ⊖ cm∥

M
,M

)
= 0. (6.5)

We wish to prove first that {cn} is Cauchy. If we assume the contrary, then for some ϵ0 > 0, there
exists two subsequences satisfying ∥∥∥ckn ⊖ cmn

∥∥∥ ≥ ϵ0M.

Since D

M,

∥∥∥ckn ⊖ cmn

∥∥∥
M

 ⊂ D(M, ϵ0) it follows that

λ


∥∥∥ckn ⊖ cmn

∥∥∥
M

,M

 ≥ λ (ϵ0,M) ≥ 0.

It follows immediately from equation (6.5) that λ (ϵ0,M) = 0. This, together with Lemma 4 leads to
ϵ0 = 0, which is a contradiction. Therefore, {cn} is Cauchy sequence, and hence convergent. Let c ∈ U
be one of its limits. Since C is closed, c ∈ C. Moreover, we can prove that c is an asymptotic center.

Indeed,

r(C) ≤ τ(c) = lim sup
n→∞

∥c − xn∥ ≤ ∥c − ck∥ + lim sup
n→∞

∥ck − xn∥

≤ ∥c − ck∥ + τ(ck), ∀k ∈ N.

Taking k → ∞, we find
r(C) ≤ τ(c) ≤ r(C),

so c ∈ A(C).
(ii) Let {ck}, {dk} be two minimizing sequences for τ and ek = λck + (1 − λ) dk, λ ∈ (0, 1), k ≥ 0.

From Lemma 1, for any x ∈ C, we have

∥ek − x∥ ≤ λ ∥ck − x∥ + (1 − λ) ∥dk − x∥ , k ≥ 0,

which implies

lim sup
n→∞

∥ek − xn∥ ≤ λ lim sup
n→∞

∥ck − xn∥ + (1 − λ) lim sup
n→∞

∥dk − xn∥ ,
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that is,
τ (ek) ≤ λτ (ck) + (1 − λ) τ (dk) .

Passing to the limit and keeping in mind that {ck} and {dk} are minimizing sequences, we obtain

r(C) ≤ lim
k→∞

τ (ek) ≤ λr(C) + (1 − λ) r(C) = r(C),

which gives the conclusion.
(iii) Let {cn}, {dn} be two minimizing sequences. Using similar arguments as in point i), one could

write

0 ≤ λ
(
∥cn ⊖ dn∥

M
,M

)
≤

1
2
τ(cn)2 +

1
2
τ(dn)2 − (r(C))2,

and this inequality holds true for each n. Since {cn}, {dn} are minimizing sequences, we find

lim
n→∞

λ

(
∥cn ⊖ dn∥

M
,M

)
= 0. (6.6)

Let us assume that lim
n→∞
∥cn − dn∥ , 0. Then, for some ϵ0 > 0, there exists two subsequences

satisfying ∥∥∥ckn ⊖ dkn

∥∥∥ ≥ ϵ0M.

This leads to inequality

λ


∥∥∥ckn ⊖ dkn

∥∥∥
M

,M

 ≥ λ (ϵ0,M) ≥ 0.

It follows immediately from equation (6.6) that λ (ϵ0,M) = 0. This, together with Lemma 4 leads to
ϵ0 = 0, which is a contradiction. Therefore, lim

n→∞
∥cn − dn∥ = 0.

(iv) Let c, d be two asymptotic points. Then, the sequences cn ≡ c and dn ≡ d are minimizing
sequences. It follows from iii) that

∥c − d∥ = 0,

so c Ψ= d. □

7. Nonexpansive mappings on regular near-normed spaces

Definition 11. Let (U, ∥·∥) be a regular near-normed space and C ⊂ U a nonempty subset. A mapping
T : C → C is called nonexpansive if

∥T x ⊖ Ty∥ ≤ ∥x ⊖ y∥ , ∀x, y ∈ C.

A point x ∈ C is called a near fixed point of T if T x Ψ= x. We shall denote by F(T ) the set of near
fixed points.

Theorem 3 (Existence of fixed points for nonexpansive mappings). Let (U, ∥·∥) be a uniformly convex
regular near-Banach space and C ⊂ U be a closed, bounded, convex subset. Let T : C → C be a
nonexpansive mapping. Then,

(i) T has a fixed point.
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(ii) The set of fixed points F(T ) is closed.

Proof. (i) For an arbitrarily fixed element x0 ∈ C, consider the Picard iteration xn = T n(x0), n ≥ 1.
Let τ be the type function of {xn} and A(C), r(C) the corresponding asymptotic center and asymptotic
radius, respectively. By Proposition 4(i) the asymptotic center A(C) is nonempty. Let p ∈ A(C), so
τ(p) = r(C). Then,

r(C) ≤ τ(T p) = lim sup
n→∞

∥T p ⊖ xn∥

= lim sup
n→∞

∥T p ⊖ T xn−1∥

≤ lim sup
n→∞

∥p ⊖ xn−1∥

= τ(p) = r(C).

It follows that T p belongs to A(C). Using Proposition 4(iv), we may conclude that T p Ψ= p, so p is
a near fixed point for T .

(ii) Let {pn} ⊂ F(T ) be a convergent sequence of fixed points and let p ∈ C (C is closed subset) be
a limit point. Then, T pn

Ψ
= pn, resulting that ∥T pn − pn∥ = 0. It follows

∥T p ⊖ p∥ ≤ ∥T p ⊖ T pn∥ + ∥T pn ⊖ pn∥ + ∥pn ⊖ p∥

≤ ∥p ⊖ pn∥ + 0 + ∥pn ⊖ p∥

= 2 ∥p ⊖ pn∥ .

Taking n→ ∞, we find ∥T p ⊖ p∥ = 0, so T p Ψ= p. Therefore, p ∈ F(T ). □

Example 4. On the regular near-Banach space defined in Example 3, we consider the mapping

T : U → U, T (x, y) =
(
e−x2
− 1, x2 + y

)
.

Then

T (x1, y1) ⊖ T (x2, y2) =
(
e−x2

1 − 1, x2
1 + y1

)
⊖

(
e−x2

2 − 1, x2
2 + y2

)
=

(
e−x2

1 − e−x2
2 , x2

1 + y1 + x2
2 + y2

)
.

So
∥T (x1, y1) ⊖ T (x2, y2)∥ =

∣∣∣∣e−x2
1 − e−x2

2

∣∣∣∣ ≤ |x1 − x2| = ∥(x1, y1) ⊖ (x2, y2)∥ ,

proving that T is nonexpansive.
To search the fixed points of T , one has to solve the equation T (x, y) Ψ= (x, y). This is equivalent

to ∥T (x, y) ⊖ (x, y)∥ = 0, which leads to
∣∣∣e−x2
− 1 − x

∣∣∣ = 0. This equation in R has the unique solution
x0 = 0, so the fixed points of T are all the pairs (0, y), y ≥ 0. In this case, the set of fixed points F(T )
is precisely the null set Ψ.

Example 5. On the regular near-Banach space I defined in Example 2, we consider the mapping

T : I → I, T ([a, b]) =
[
sin (a + b) + a − b

2
,

sin (a + b) + b − a
2

]
.
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Then,

∥T ([a, b]) ⊖ T ([c, d])∥ = | sin (a + b) − sin (c + d)| ≤ |(a + b) − (c + d)| = ∥[a, b] ⊖ [c, d]∥ ,

proving that T is nonexpansive.
In order to find the fixed points of T , we have to solve the equation ∥T ([a, b]) ⊖ [a, b]∥ = 0, that is∥∥∥∥∥∥

[
sin (a + b) + a − b

2
,

sin (a + b) + b − a
2

]
⊖ [a, b]

∥∥∥∥∥∥ = 0,

which leads to ∣∣∣∣∣sin (a + b) + a − b
2

− b +
sin (a + b) + b − a

2
− a

∣∣∣∣∣ = 0,

or
sin (a + b) = (a + b).

If x0 is the unique positive solution of equation sin x = x, then a + b = ±x0. Therefore the fixed
points of T are all the intervals [a, b], such that ∥[a, b]∥ = |a + b| = x0.

8. Conclusions and further development

Through this paper we managed to prove that uniform convexity could be extended to regular near-
Banach spaces, producing similar properties as for hyperbolic metric spaces or modular function
spaces: property (R), existence of best approximants, existence of fixed points for nonexpansive
mappings, as well as the existence of asymptotic centers. Moreover, it is not difficult to prove that
the binary relation indicating that two elements are almost identical is an equivalence relation. These
will allow us to say that the limit class of a convergent sequence is unique, and that the asymptotic
center of a bounded sequence is a singleton up to an equivalence class.

As further development, we consider first the possibility of analyzing the normal structure property
together with an adequate version of Kirk’s fixed point theorem on pre-convex regular near-Banach
spaces. Second, a study regarding numerical reckoning of fixed points for (generalized) nonexpansive
mappings using various types of iteration procedures could also provide significant contribution to the
study of regular near-Banach structures. Finally, we must point out that, out of the three examples of
near vector spaces provided by Wu [11], we have proved uniform convexity here only for the space of
closed and bounded intervals in R. The hyperspace is not suitable for our analysis because it does not
satisfy the necessary null condition. However, the set of fuzzy numbers in R is a pre-convex regular
near-Banach space. Still, the presence of the supremum in the definition of the regular near norm
function makes it difficult the verify the uniform convexity. Therefore, the question of whether this
space is uniformly convex or not remains an open problem.
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