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Abstract: The primary goal of this study is to achieve isothermal temperature control of the fluid at 

the outlet of a circular pipe through a gradient-based method. Typically, temperatures are set on the 

outer wall of the pipe to warm the fluid and achieve the desired uniformly consistent exit temperature. 

However, maintaining a constant temperature on the outer wall of the pipe is challenging due to the 

heat exchange between the fluid and the wall, as well as external environmental factors. Thus, in this 

current investigation, the temperature distribution is designated along the inner pipe wall to heat the 

fluid, employing an optimization algorithm to deduce the appropriate optimal heating function on the 

outer wall. This enables the attainment of the specified temperature on the inner wall. To guarantee 

consistent temperature control during optimal heating procedures across extensive distances or 

expansive areas, a gradient-based optimization technique is employed. In the context of a smaller pipe 

diameter scenario, applying the designated floor function temperature distribution produces the most 

accurate outcomes for exit temperatures at the pipe exit. The assessed heating function exhibits abrupt 

surges and disjointed behaviors, which can be alleviated by introducing a weight coefficient into the 

cost function. This adaptation preserves the precision of exit temperature and its uniformity. In the 

context of a larger pipe diameter scenario, while adhering to the floor function temperature 

specification, the estimated exit temperature remains precise, and the uniformity reaches a contentedly 

acceptable level. This implies that a larger pipe diameter could potentially require a lengthened tube 

to enhance the uniformity of exit temperatures. 
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1. Introduction 

As global warming becomes increasingly severe, the importance of energy conservation is also 

correspondingly heightened. For instance, building energy efficiency has become a primary goal in 

regional, national and even international energy policies. Among various building services, the energy 

consumption of heating, ventilation and air conditioning (HVAC) systems has shown particularly 

significant growth. In a typical HVAC system, fluids such as air are heated or cooled and brought to a 

predetermined temperature before being distributed to different areas of the building through a network 

of pipes. In this process, ensuring an even temperature distribution within the pipes is crucial, as it 

directly affects the comfort levels in different areas and the overall system performance [1,2]. 

On the other hand, various facilities within power plants, such as steam boilers and cooling towers, 

also require heat transfer through pipelines. In these processes, whether the fluid is water, steam or 

other cooling agents, its temperature distribution within the pipes is of utmost importance. Optimal 

heating control strategies that ensure a uniform distribution of steam temperature within the pipes can 

enhance heat transfer efficiency, reduce thermal stress due to uneven temperatures and consequently 

extend the boiler’s lifespan [3−5]. 

In addition, with the continuous development of the semiconductor industry, temperature control 

plays an increasingly prominent role in processing and measurement technologies. Techniques such as 

chemical vapor deposition (CVD), thermal oxidation and isothermal closed space sublimation (ICSS) 

heavily rely on precise temperature control. Specifically, ICSS is employed in the production of thin 

films for semiconductor and optoelectronic devices, involving a sublimation reaction between two 

parallel substrates under isothermal conditions to form the thin film [6,7].  

In numerous technological research, industrial production and laboratory applications, 

thermostatic baths have played crucial roles due to their ability to provide precise and stable 

temperature control. However, in the abovementioned cases where the object to be heated is 

excessively long or of large volume, the applicability of thermostatic baths in these specific 

environments is limited. To address these issues, this study proposes a strategy for optimization control 

using a gradient-based algorithm, with the aim of achieving isothermal control of the fluid at the exit 

of a circular pipe. This strategy achieves the desired isothermal state of the exit fluid temperature by 

precisely controlling the heat flux distribution on the outer pipe wall.  

The gradient-based optimization algorithm [8], due to its self-regularized characteristic, is popular 

in many areas, including heat flow management. This method uses the mathematical concept of the 

gradient to find the minimum or maximum of partial differential equations. In addition, it does not 

require a priori information of the functional form of the unknown quantities, and reliable estimations 

can always be obtained. Therefore, it provides an effective way to find the optimal solution. 

For instance, Chen and Ozisik applied a gradient-based algorithm to address a nonlinear optimal 

control problem, wherein they determined the optimal heating sources for both a slab [9,10] and a 

cylinder [11]. Huang [12] employed an iterative regularization approach within a non-linear optimal 

control problem, aiming to forecast the magnitudes of optimal boundary heat fluxes. 

The CFD-ACE+ software [13] is utilized for numerical computations in this work since it boasts 

exceptional computational performance and precise simulation capabilities. The present optimal 

heating problem is transformed into two sub-problems, namely, sensitivity and adjoint problems. We 

integrate the CFD-ACE+ software with our core optimization program, where the gradient-based 

algorithm is used for determining the optimal heating function required for various specified 

temperature distributions on the inner wall, thereby controlling the desired uniform fluid outlet temperature. 
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Finally, the optimal heating function is estimated for various inner wall specified temperature 

distributions to verify the validity of using the gradient-based algorithm to solve the considered optimal 

heating problem. 

2. Materials and methods 

2.1. Problem formulation 

A thin wall circular pipe is considered as the demonstration model of this optimal heating problem. 

The computational domain  consists of two sub-domains, i.e., the pipe and fluid domains, p and f, 

respectively. The computational domain and grid system of the present work are illustrated in 

Figure 1(a),(b), respectively. 

 

(a) 

 
(b) 

Figure 1. The (a) computational domain and (b) grid system of the present study. 

An incompressible laminar flow fluid with constant properties and neglected viscous heating term 

enters into the pipe with a velocity Uin = uin and an ambient temperature Tf,in = T∞. An unknown 

heat flux is applied on the outer surface of pipe S1 to increase the temperature of the fluid to yield the 
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desired uniform temperature at the outlet of the pipe. For practical consideration, the heating function 

is assumed not to be a function of radial direction; therefore, it is only a function of axial direction, 

q(x;S1). 

The goal of this study is to predict the optimal heating function to achieve the desired uniform 

temperature of the fluid at the pipe outlet. The interfacial surfaces of p and f, i.e., S2, are subjected 

to the perfect thermal contact condition, i.e., the temperatures and heat fluxes of the pipe are identical 

to those of the fluid on S2.  

The differential equations for this optimal control problem can be expressed as follows:  

(I) Pipe domain (p) 

2
p pk T 0 =             (1) 

where kp and Tp are the thermal conductivity and temperature of the pipe, respectively, and the outer 

surface S1 is subjected to an unknown optimal heating function q(x;S1). 

p
p 1 1

T
k q(x;S ) ;    on S ,  0 x L

n


− =  


.       (2) 

(II) Fluid domain (f) 

The continuity, momentum and energy equations for the fluid domain are given below: 

0 =U           (3) 

( ) ( )2 1
g

3
  = − +  +   + U U P U U U

      (4) 

( )2
f f p fk T C T =  U

         (5) 

where the velocity vector, thermal conductivity and fluid temperature are presented as U, kf and Tf, 

respectively. Here, the inlet fluid has a velocity Uin = uin and a temperature 
f ,inT T= . 

(III) Pipe-fluid interface (SΩp∩Ωf
= S2) 

The perfect thermal contact condition is utilized with S2:  

p f
p f p f

T T
k k  and  T =T

n n

 
− = −

 
, on S2.       (6) 

If the heating function q(x) is known, the temperature solutions to the above hydro-thermal conjugated 

problem can be solved using CFD-ACE+, and the outlet temperature of the pipe can be calculated.  

2.2. The optimal heating problem 

From a theoretical perspective, if the outer surface of the pipe is designated to possess a constant 

temperature Yp(x;S1), the fluid’s temperature upon entering the pipe with an initial temperature 𝑇∞ 

will ultimately align with Yp(x;S1) at the pipe outlet, provided the pipe length is sufficiently extensive. 

However, it is impractical to employ an exceedingly elongated pipe to achieve uniform fluid 

temperature at the outlet. Furthermore, the task of sustaining a consistent temperature on the outer pipe 

surface poses considerable challenges. 
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Hence, in this investigation, the designated temperatures Yp(x;S2) are assigned to the inner surface 

of the pipe, S2. Subsequently, the corresponding optimal heating function q(x;S1) for achieving these 

Yp(x;S2) values is determined. Additionally, if the specified temperature on S2 surpasses the desired 

uniform temperature at the outlet, Yf(L;Sout), it becomes plausible to shorten the pipe length. 

Designate the specified temperatures on S2 as Yp(x;S2), and the resolution of the optimal heating 

problem involves employing Yp(x;S2) to estimate the optimal heat flux q(x;S1). 

The following cost function must be minimized for obtaining q(x;S1): 

( )
2

L2 2
1 p 2 p 2 2 1

S x 0

J q x;S T (x;S ) Y (x;S ) dS + q(x;S ) dx
=

   = −     
    (7) 

where Tp(x;S2) are the estimated temperatures on S2, and  is a given weighting coefficient.  

The first term on the right hand side in Eq (7) is the integration of the square of the difference 

between the estimated and specified temperature over S2. The second term denotes the integration of 

the square of the optimal heating function q(x;S1) over x, multiplied by a weighting coefficient . The 

weighting coefficient  is a design parameter that control the closeness of Tp(x;S2) to Yp(x;S2). As an 

illustration, when  = 0, Tp(x;S2) closely aligns with Yp(x;S2), yet the estimated q(x;S1) might exhibit 

oscillatory behavior. Therefore, to mitigate such oscillations and achieve a smoother q(x;S1), it 

becomes essential to introduce a finite value for the weighting coefficient . 

2.3. Gradient-based method for minimization 

The following gradient-based iterative equation [8] is utilized to compute the optimal heating 

function q(x;S1) by minimizing the cost function J[q(x;S1)]: 

( ) ( ) ( )n 1 n n 'n
1 1 1q x;S q x;S J x;S+ = −   for n=0,1,2…    (8) 

where n represents the iteration index, n  and 'n
1J (x;S )  denote the values of search step size and 

gradient of cost function, and they must be computed before Eq (8) can be applied. The solutions to 

the sensitivity and adjoint functions can be derived below and utilized to compute the values of n  

and 'n
1J (x;S ) . 

2.3.1. The sensitivity functions 

The sensitivity functions pertaining to the sensitivity problem can be obtained by perturbing the 

unknown optimal heat flux within the original problem, following the procedure outlined below. We 

assume that q(x;S1) experiences a minor perturbation, denoted as Δq, consequently leading to 

perturbations in Tp and Tf, represented as Tp and Tf, respectively. Substituting q, Tp and Tf with 

q+q, Tp+Tp and Tf+Tf, respectively, in Eqs (1) to (6), and subsequently subtracting the resulting 

equations from Eqs (1) to (6) while retaining only the first-order terms, yields the following equations 

for the sensitivity functions within the context of the linear problem considered here. 

(I) Pipe domain (p) 

2
p pk T 0  =          (9) 
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where the base surface S1 is subjected to a heat flux q, 

p
p

T
k q

n


− = 


  on S1.         (10) 

(II) Fluid domain (f) 

The continuity and momentum equations for 2 are given by Eqs (3) and (4), and the 

corresponding energy equation is given below. 

( )2
f f p fk T C T  =  U .        (11) 

The inlet conditions for the sensitivity functions are obtained as Uin = uin and Ta,in = 0. 

(III) Pipe-fluid interface (S2) 

The perfect thermal contact condition is derived for the interface surface S2 and obtained as 

p f
p f p f

T T
k k  and T = T

n n

 
− = −  

 
, on S2.      (12) 

The above sensitivity functions can be solved by CFD-ACE+. 

By using a Taylor expansion of the cost function ( )1J q x;S  
, the following new form of the 

cost function can be derived: 

( )

( )

2

2

L
n+1 n n 'n n n 'n 2

p p 2
S x=0

L
n n n 'n 2

p p p 2
S x=0

J(q )= T q J Y dS (q J ) dx

             = T T Y dS (q J ) dx

 − − +  −   

−  − +  − 

.   (13) 

The sensitivity functions 
'n

pT (J )
 are the solutions of the sensitivity problem given by Eqs (9) 

to (12) on S2 using
'nq J = .  

Equation (13) is minimized with respect to n
 to obtain the expression for determining the value 

of n
: 

( )

2

2

L
n 'n

p p p 2
S x 0n

L2 'n 2
p 2

S x 0

(T Y ) T dS q J dx

T dS (J ) dx

=

=

−  +  

 =

 +  

.       (14) 

2.3.2. The adjoint functions 

The derivation of the adjoint functions for the adjoint problems proceeds as follows: The energy 

equations for the pipe and fluid domains are multiplied by p and f, respectively. The resulting 

equations are then integrated over their respective domains, denoted as p and f. Subsequently, these 

two integrations are added to the right-hand side of Eq (7), leading to the following expression: 
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( ) ( )
2

p f

L
2

p p 2
S x 0

2 2
p p p p f f f p f f

J q x T Y dS q dx

k T d k T C T d

=

 

  = − +   

 +    +   −      
U

.    (15) 

The change in the cost function ΔJ can be derived by perturbing q, Tp and Tf by q, Tp and Tf, 

respectively, in Eq (15). This involves subtracting the original Eq (15) from the perturbed equation 

and retaining only the terms of the first order. Consequently, the ensuing adjoint functions for the 

adjoint problems can be determined as follows. 

( )
2

p f

L

p p p 2
S x 0

2 2
p p p p f f f p f f

J 2 T Y T dS 2 q qdx

k T d k T C T d

=

 

 = −  +   

 +     +    −      
U

.   (16) 

Green’s second identity is utilized to reformulate two domain integration terms in Eq (16), Eqs (10) 

and (12) are utilized, and J is assumed to approach zero. Finally, the equations of the adjoint functions 

p and f can be obtained. 

(I) Pipe domain (p) 

2
p pk 0  =            (17) 

where the base surface S1 is subjected to the insulation condition given below. 

p
pk 0 

n


− =


, on S1.         (18) 

(II) Fluid domain (f) 

2
f f p fk = C   U .       (19) 

The inlet conditions for p and f are Uin = uin and f,in = 0. Here, U can be determined from Eqs (3) 

and (4). 

(III) Pipe-fluid interface (S2) 

The boundary condition for the interface surfaces on S2 are given below: 

p f
p f p p p fk = k 2(T Y )  and  

n n

 
− − − −  = 

 
, on S2.     (20) 

It is important to highlight that a perfect thermal contact condition is absent on S2, and further 

heat sources are present on S2 for the adjoint functions. The solutions for the aforementioned adjoint 

functions are computed using CFD-ACE+. 

Finally, the following integration term is left. 

( )
L

p
x=0

ΔJ= 2 q qdx  +   .       (21) 
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The increment in the cost function was obtained as [8] 

( )
L

x=0

ΔJ= J q qdx   .        (22) 

From Eqs (21) and (22), the gradient of the cost function ( )J q  is determined as 

( ) ( )p 2J q  = q +  .          (23) 

Once n  and 'n 'n
1J (x;S ) J (q)=  are obtained, Eq (8) can be iterated to compute the optimal 

heating function q(x;S1). The stopping criterion for Eq (8) is given below: 

n+1 n
f out f out

n
f out

T (L;S ) T (L;S )
100%  0.01%

T (L;S )

−
 =       (24)  

where n+1
f outT (L;S )  and n

f outT (L;S )  denote the average outlet fluid temperatures at the iteration 

indices n+1 and n.  

2.4. Computational procedure 

The computational methodology employed to address the optimal heating problem through a 

gradient-based algorithm is outlined as follows: 

Assume that qn(x; S1) is known at the iteration index n. 

Step 1. Solve Eqs (1) to (6) for Tp and Tf. 

Step 2. Check the stopping criterion Eq (24). Continue to Step 3 if the stopping criterion is not satisfied. 

Step 3. Solve Eqs (17) to (20) for p and f. 

Step 4. Compute J′[q(S1)] from Eq (23). 

Step 5. Set Δq = J′
n
, and solve Eqs (9) to (12) for Tp and Tf. 

Step 7. Compute n from Eq (14). 

Step 8. Compute the new estimate for qn+1(x;S1) from Eq (8) and return to Step 1. 

3. Results 

The objective of this study is to employ a gradient-based algorithm to determine the optimal 

heating function q(x;S1) within a pipe, aiming to achieve the desired uniform outlet fluid temperature. 

Given the absence of prior knowledge regarding the functional form of the unknown optimal heating 

function, this task can be categorized as function estimation within an optimal control problem. 

An aluminum alloy material with k = 190 W/(m∙K) is considered for the pipe module, and the 

inlet fluid is considered as water with inlet temperature T∞ = 300 K. The outer surface S1 of the pipe 

is subjected to an unknown heating function q(x;S1), and the perfect thermal contact condition is 

utilized on the inner surfaces S2 between the pipe and water.  

Two pipe models will be investigated in this work, i.e., Case A (L = 6 m, uin = 0.4 m/s, ro = 3.5 

mm and ri = 2.5 mm) and Case B (L = 6 m, uin = 0.2 m/s, ro = 6 mm and ri = 5 mm). The grid-

independent tests for the pipes of Cases A and B will be studied first using q(x;S1) = 1000 W/m2 and 

T = 300 K, and the outlet average temperature of the water Tf(L;Sout) will be computed. 
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For Case A, three grid numbers of 114,000, 228,000 and 380,000 are used, and Tf(L;Sout) is 

computed as 303.248 K, 304.322 K and 304.321 K, respectively. The relative error in Tf(L;Sout) 

between the grid numbers 228,000 and 380,000 is only 0.00033%; therefore, grid number 228,000 will 

be utilized for subsequent computations. Similarly, three grid numbers of 121,050, 242,100 and 

403,500 are used for Case B, and Tf(L;Sout) is calculated as 304.559 K, 305.257 K and 305.256 K, 

respectively. The relative error in Tf(L;Sout) between the grid numbers 242,100 and 403,500 is only 

0.00033%; therefore, grid number 242,100 will be considered for further calculations. 

The forthcoming numerical experiments will be examined to validate the utilization of the current 

gradient-based algorithm in estimating the optimal heating function q(x;S1), contingent upon the 

desired uniform outlet water temperature of the pipe flow, set at Yf(L;Sout) = 323 K. 

The benefit of employing the gradient-based algorithm for predicting the optimal heating function 

lies in the flexibility of selecting initial guesses. Consequently, for all the numerical experiments 

conducted in this study, the initial guess for the optimal heating function is arbitrarily set to q(x;S1)0 = 

100 W/m². We explore two numerical test cases, denoted as Cases A and B, encompassing distinct 

pipe diameters and inlet velocities while maintaining the same pipe length. These cases involve 

different specified temperature distributions on S2. 

(A) Case A 

Within Case A, three distinct temperature distributions will be designated along the inner wall S2 

of the front part of the pipe, ranging from 0 m to 3.2 m. In the subsequent section, spanning from 3.2 m 

to 6 m, a constant temperature of 323 K will be specified to ensure compliance with the requirement 

of achieving Yf(L;Sout) = 323 K. This specification is applied to Cases A1−A3, leading to the 

estimation of corresponding optimal heating functions on S1. 

Case A1: 

The specified temperature distribution Yp(x;S2) on S2 is given as 

( )p 2

363  K;            0 x 3.2 m
Y x;S

323  K;            3.2 m x 6m 

 
= 

  .     (25) 

Figure 2(a) displays the graph of the Yp(x;S2) function. Employing the gradient-based algorithm 

with α = 0, the optimization analysis resulted in a reduction of the cost function to 20 after 104 

iterations. Figure 3 illustrates the change in the cost function over the course of iterations. This 

graphical representation highlights a rapid decline in the value of the cost function, exhibiting a 

consistently decreasing trend. 

The estimated optimal heating function q(x;S1) and the computed temperature Tp(x;S2) are given 

in Figure 2(a), and it shows that the values of Yp(x;S2) and Tp(x;S2) are almost identical. This implies 

that the optimal control algorithm used in this study is indeed effective, since the estimated q(x;S1) can 

produce Tp(x;S2) to match with Yp(x;S2). The temperature distributions of the water along the x-axis 

and at the cross-section of the outlet are given in Figure 2(b),(c), respectively. Evidently, the water 

within the pipe undergoes heating from Tp(x;S2), a process regulated by q(x;S1), resulting in the 

attainment of the desired fluid exit temperature. 
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(a) 

 
(b) 

 
(c) 

Figure 2. The (a) specified and estimated results, (b) temperature distribution along the x-

axis and (c) temperature distribution at Sout in Case A1 with  = 0. 
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Figure 3. The convergent speed in Case A1 with  = 0. 

The calculated average outlet temperature of the water was found to be Tf(L;Sout) = 326.2 K, in 

contrast to the specified requirement of Yf(L;Sout) = 323 K. This discrepancy suggests an excessive 

infusion of energy into the fluid, indicating the need for energy extraction from the front segment of 

the pipe in the subsequent cases under investigation. Moreover, Tf(L;Sout) represents an average value 

of exit temperatures, making it inadequate for assessing the uniformity of these temperatures. Consequently, 

an additional index must be formulated to accurately evaluate the exit temperature uniformity. 

The uniformity of exit temperatures is then defined as follows: 

out f out f outT(L;S ) = Max T (L;S ) Y (L;S ) − .     (26) 

Here, Tf(L;Sout) signifies the temperatures at the outlet of the flow. In the context of Case A1, 

the uniformity of exit temperatures is quantified as T(L;Sout) = 7.1 K. Observing Figure 2(c), it 

becomes evident that the uniformity of exit temperatures is not optimal, as discernible color variations 

within the outlet fluid are noticeable. 

An abrupt surge in heat flux is observable at the initial section of the pipe, while a discontinuity 

in heat flux is present at x = 3.2 m. These abrupt alterations in heat flux pose challenges for practical 

control. To address this limitation, a corrective measure has been implemented by introducing a 

weighting coefficient α into the cost function, as depicted in Eq (7). 

When employing a weighting coefficient  = 110-6, the optimal solution converged after 31 

iterations, as depicted in Figure 4. It is notable that the fluctuations in heat flux have become smoother and 

more refined, although the values of Yp(x;S2) and Tp(x;S2) are not as optimal as those attained with  = 0. 

In this case, Tf(L;Sout) reached 327.7 K, and T(L;Sout) decreased from 7.1 K to 4.7 K. This underscores 

the efficacy of the weighting coefficient in effectively smoothing the optimal heating function. 
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(a) 

 
(b) 

 
(c) 

Figure 4. The (a) specified and estimated results, (b) temperature distribution along the x-

axis and (c) temperature distribution at Sout in Case A1 with  = 110-6. 

Case A2: 

For Case A1, the specified temperature Yp(x;S2) within the range of 0 to 3.2 m was established at 

363 K, revealing an excess of energy input. Consequently, in Case A2, the temperature distribution 

within the same range was modified to exhibit a linear decrease from 363 K to 323 K. 

( )p 2

363 12.5x K;          0 x 3.2 m
Y x;S

323 K;                     3.2 m < x 6 m 

−  
= 



.     (27) 
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This approach proves effective in curbing excessive energy infusion into the fluid. With  = 0, 

the optimal solution converged after 102 iterations, leading to a reduction in the cost function to 35. 

The outcomes of this estimation are showcased in Figure 5, and the convergence pattern is illustrated 

in Figure 6. It is evident from Figure 5(a) that the values of Yp(x;S2) and Tp(x;S2) exhibit a near-

identical correspondence. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. The (a) specified and estimated results, (b) temperature distribution along the x-

axis and (c) temperature distribution at Sout in Case A2 with  = 0. 
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Figure 6. The convergent speed in Case A2 with  = 0. 

This suggests that the estimated heat flux serves as an accurate representation of the optimal 

heating function, reinforcing the validity of the optimization algorithm. Figure 5(b),(c) depicts the 

temperature distributions along the x-axis and at the outlet, respectively. The calculated values for 

f outT (L;S )  and T(L;Sout) are 322.7 K and 1.2 K, respectively. These results indicate a close 

proximity of 
f outT (L;S )  to 323 K and a further reduction of T(L;Sout) to 1.2 K. This signifies a 

notable improvement in the uniformity of exit temperatures, as evidenced by the absence of color 

variation in the water outlet temperature seen in Figure 5(c). 

By utilizing Eq (27), the discontinuity in heat flux at x = 3.2 m is eliminated. However, a distinct 

surge in heat flux persists at the outset of the pipe. Consequently, to mitigate this issue, a weighting 

coefficient  = 110-6 is incorporated to enhance the smoothness of the estimated heat flux. After 31 

iterations, the optimal heating function converges, and the outcomes are illustrated in Figure 7. Figure 7(a) 

distinctly displays the amelioration of the abrupt increase in heat flux, yet the alignment between the 

values of Yp(x;S2) and Tp(x;S2) is not as precise with  = 110-6. However, f outT (L;S )  attains a value 

of 327.7 K, on par with the result achieved with  = 0. Nonetheless, T(L;Sout) escalates from 1.2 K 

to 2.2 K, introducing a discernible color variation in the outlet temperature seen in Figure 7(c). Despite 

this change, the uniformity of exit temperatures remains notably satisfactory even with  = 110-6. 
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(a) 

 

(b) 

  

(c) 

Figure 7. The (a) specified and estimated results, (b) temperature distribution along the x-

axis and (c) temperature distribution at Sout in Case A2 with  = 110-6. 
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Case A3: 

While the average exit temperature 
f outT (L;S )  in Case A2 achieved through linearly decreasing 

heating closely approximates the target temperature 
f outY (L;S ) , the uniformity of the exit 

temperature T(L;Sout) remains at 1.2 K. Consequently, Case A3 introduces a more intricate 

temperature distribution characterized by a floor function (step-like) profile. This is done to investigate 

whether such complexity can yield further enhancements in the uniformity of the exit temperature. 

A floor function, •   , temperature distribution is specified from 0 to 3.2 m as follows: 

( )p 2

x
363 5 ( ) K;            0 x 3.2m

Y x;S 0.4

323 K;                                 3.2m x 6m 

  
−     =  

  

.     (28) 

With  = 0, the optimal solution converges after 100 iterations, resulting in the estimated 

outcomes showcased in Figure 8. The cost function value diminishes to 62, with the convergence 

pattern portrayed in Figure 9. From Figure 8(a), a noticeable alignment between the values of Yp(x;S2) 

and Tp(x;S2) becomes apparent, signifying that the estimated q(x;S1) indeed functions as the optimal 

heating function. Nevertheless, the estimated q(x;S1) demonstrates minor jumps owing to the step-like 

nature of the floor function. Addressing these jumps can be achieved by introducing a weighting 

coefficient, as will be explored later.  

Figure 8(b),(c) elucidates the temperature distributions of water along the x-axis and at the outlet 

(Sout), respectively. The calculated values for 
f outT (L;S )  and T(L;Sout) are 323.0 K and 0.3 K, 

respectively. In comparison to Case A2, the design of Case A3 showcases superior exit temperature 

uniformity, with a remarkably reduced T(L;Sout) of only 0.3 K. This is evident, as there is no 

noticeable color variation in the water outlet temperature at Sout, as depicted in Figure 8(c). 

In order to mitigate the abrupt spikes and discontinuous behaviors of q(x;S1), we introduced 

weighting coefficients  = 110-6 and 110-5 to facilitate a smoother profile for q(x;S1). The values of 

q(x;S1) converged after 30 and 22 iterations for  = 110-6 and 110-5, respectively. The outcomes for 

 = 110-6 and 110-5 are illustrated in Figures 10 and 11, respectively. Figures 10(a) and 11(a) clearly 

demonstrate the enhancement in alleviating the abrupt spikes and discontinuities in q(x;S1) with  = 

110-6 and 110-5. However, the alignment between the values of Yp(x;S2) and Tp(x;S2) is not as 

precise with these weighting coefficients. The values of 
f outT (L;S )  and T(L;Sout) reach 323.3 K 

and 1.7 K, respectively, when  = 110-6. These values are comparable to those obtained with = 0. 

However, with  = 110-5, the values of 
f outT (L;S )  and T(L;Sout) are 316.0 K and 11.5 K, respectively. 

As depicted in Figure 11(c), the uniformity of the exit temperature deteriorates significantly. 

In conclusion, opting for  = 110-6 facilitates the smoothing of the estimated heat flux while 

upholding desirable temperature uniformity. Nonetheless, when the weighting coefficient becomes too 

large, such as  = 110-5, the estimated heat flux undergoes excessive damping, consequently 

impacting the uniformity of exit temperatures. This underscores the significance of meticulously 

selecting an appropriate weighting coefficient for tackling the optimal heating problem. The estimated 

results for Case A are summarized in Table 1. 
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(a) 

 
(b) 

 
(c) 

Figure 8. The (a) specified and estimated results, (b) temperature distribution along the x-

axis and (c) temperature distribution at Sout in Case A3 with  = 0. 
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Figure 9. The convergent speed in Case A3 with  = 0. 

Table 1. The estimated results for Cases A and B. 

Cases 

 

Results 

A1 

(=) 

A1 

(=
-61 10 ) 

A2 

(=) 

A2 

(=
-61 10 ) 

A3 

(=) 

A3 

(=
-61 10 ) 

A3 

(=
-51 10 ) 

B 

(=) 

B 

(=
-61 10 ) 

f outY (L;S ) , 

K 
323 323 323 323 323 323 323 323 323 

Number of 

iterations 
104 31 102 31 100 30 22 101 36 

J 20 834625 35 520378 62 559965 2100084 10 476631 

f outT (L;S ) , K 326.2 327.7 322.7 322.7 323.0 323.3 316.0 323.2 323.4 

T(L;Sout) , K 7.1 4.7 1.2 2.2 0.3 1.7 11.5 7.6 9.1 
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(a) 

 
(b) 

 
(c) 

Figure 10. The (a) specified and estimated results, (b) temperature distribution along the 

x-axis and (c) temperature distribution at Sout in Case A3 with  = 110-6. 
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(a) 

 

(b) 

 

(c) 

Figure 11. The (a) specified and estimated results, (b) temperature distribution along the 

x-axis and (c) temperature distribution at Sout in Case A3 with  = 110-5. 
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(B) Case B 

For Case B, an investigation is conducted involving a larger pipe radius (ro = 6 mm and ri = 5 mm) 

at a flow velocity of uin = 0.2 m/s. Given the effectiveness of the specified floor function temperature 

distribution, it will be employed in Case B as the heating function on S2 to ensure the satisfaction of 

Yf(L;Sout) = 323 K. 

The specified temperature distribution Yp(x;S2) on S2 is expressed as follows: 

( )p 2

363  K;                                         0 x 1.84m

x
Y x;S 363 5    K;                      1.84 x 5.84m

0.4

323   K;                                        5.84m x 6m

 

  

= −     
 

  

.     (29) 

The Yp(x;S2) function is depicted in Figure 12(a). Employing  = 0 for the optimization analysis, 

the cost function diminishes to 10 after 101 iterations.  

The estimated q(x;S1) and the computed Tp(x;S2) are illustrated in Figure 12(a), unveiling a near-

identical correspondence between Yp(x;S2) and Tp(x;S2). This once again underscores the efficacy of 

the gradient-based algorithm employed in this study, as q(x;S1) successfully aligns Tp(x;S2) with 

Yp(x;S2). The temperature distributions that vary along the x-axis and the cross-sectional perspective 

at the outlet are presented in Figure 12(b),(c), respectively.  

 
(a) 

 
(b) 
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(c) 

Figure 12. The (a) specified and estimated results, (b) temperature distribution along the 

x-axis and (c) temperature distribution at Sout in Case B with  = 0. 

The calculated average outlet temperature of the water stands at 
f outT (L;S )  = 323.2 K, 

signifying adherence to the stipulated requirement of 
f outY (L;S )  = 323 K. Nevertheless, the 

uniformity of the exit temperature T(L;Sout) is determined to be 7.6 K, contributing to the discernible 

color shift in Figure 12(c). This observation highlights the potential necessity for a longer tube length 

when dealing with larger pipe diameters in order to ensure sufficient heating for achieving temperature 

uniformity conditions at the pipe exit. The convergence pattern is illustrated in Figure 13, which 

demonstrates a rapid convergence rate.  

To address the abrupt spikes and discontinuities in q(x;S1), a weighting coefficient  = 110-6 is 

introduced. After 36 iterations, the convergence of q(x;S1) is achieved, and the results are depicted in 

Figure 14. Analysis of Figure 14 indicates an amelioration in the sudden rise and discontinuity 

behaviors of q(x;S1), although the alignment between the values of Yp(x;S2) and Tp(x;S2) is not optimal. 

f outT (L;S )  and T(L;Sout) reach 323.4 K and 9.1 K, respectively, which can be deemed acceptable in 

accordance with the desired conditions. The estimated results for Case B are summarized in Table 1. 

 

Figure 13. The convergent speed in Case B with  = 0. 
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(a) 

 
(b) 

 
(c) 

Figure 14. The (a) specified and estimated results, (b) temperature distribution along the 

x-axis and (c) temperature distribution at Sout in Case B with  = 110-6. 
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4. Conclusions 

The current study delves into a novel approach to address the optimal heating problem. This 

method involves prescribing a temperature function along the inner surface of the pipe to facilitate 

fluid heating, complemented by the utilization of a gradient-based algorithm. This algorithm is applied 

to ascertain the optimal heating function along the outer surface of the pipe, aligning with the specified 

temperature function and resulting in uniform fluid exit temperatures. Numerical experiments affirm 

that the application of the estimated optimal heat function consistently achieves the desired uniform 

fluid exit temperatures to a satisfactory degree. 

In the context of Case A, characterized by a smaller pipe diameter, the utilization of the specified 

floor function temperature distribution, as observed in Case A3, yielded the most favorable outcomes 

for 
f outT (L;S )  and T(L;Sout) at the pipe exit. However, the estimated q(x;S1) exhibited abrupt 

surges and discontinuities. These behaviors can be alleviated by introducing a weighting coefficient 

into the cost function, leading to maintained accuracy in 
f outT (L;S )  and T(L;Sout). In the scenario 

of Case B, featuring a larger pipe diameter and the same floor function temperature specification, the 

estimated 
f outT (L;S )  remains precise, though T(L;Sout) achieves a satisfactory level. This suggests 

that a larger pipe diameter might necessitate an elongated tube length to enhance the uniformity of exit 

temperatures. 
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