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Abstract: An odd-dimensional sphere admits a killing vector field, induced by the transform of
the unit normal by the complex structure of the ambiant Euclidean space. In this paper, we studied
orientable hypersurfaces in a Euclidean space that admits a unit Killing vector field and finds two
characterizations of odd-dimensional spheres. In the first result, we showed that a complete and simply
connected hypersurface of Euclidean space Rn+1, n > 1 admits a unit Killing vector field ξ that leaves
the shape operator S invariant and has sectional curvatures of plane sections containing ξ positive which
satisfies S (ξ) = αξ, α mean curvature if, and only if, n = 2m − 1, α is constant and the hypersurface
is isometric to the sphere S 2m−1(α2). Similarly, we found another characterization of the unit sphere
S 2(α2) using the smooth function σ = g(S (ξ), ξ) on the hypersurface.
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1. Introduction

The study of differential geometry started with the study of curves and surfaces in the Euclidean
space R3 with basic notions such as curvature, torsion, Frenet-Serret frame, first and second
fundamental forms, Gauss curvature and mean curvature. With the advancements, it shifted to studying
hypersurfaces in higher dimensional Euclidean space Rn+1, n > 1, with tools such as unit normal N to
hypersurface M and the shape operator S , the equations of Gauss, namely, [5]:

DXY = ∇XY + g(S (X),Y)N (1.1)

and

DXN = −S (X), X,Y ∈ X(M), (1.2)
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where DX and ∇X are covariant derivative operators on Rn+1 and hypersurface M, respectively, and g
is the Riemannian metric induced on M by the Euclidean metric ⟨, ⟩ on Rn+1. The mean curvature α of
the hypersurface M is given by α = 1

n trace(S ), and we have the Gauss and Codazzi equations for the
hypersurface M, namely, for all X,Y,Z ∈ X(M) (see [5])

R(X,Y)Z = g(S (Y),Z)S (X) − g(S (X),Z)S (Y), (1.3)

(∇XS )(Y) = (∇YS )(X), X,Y ∈ X(M), (1.4)

where R(X,Y)Z is the curvature tensor of M and (∇XS )(Y) = ∇XS Y − S (∇XY).
The Ricci tensor Ric of the hypersurface M is given by [5]:

Ric(X,Y) = nα (g(S (X),Y) − g(S (X), S (Y))) . (1.5)

In the following sections, we will use the notation R (X,Y; Z,W) to refer to the value obtained by
applying the metric g to R (X,Y) Z and W.

A hypersurface M of the Euclidean space Rn+1 is said to be totally umbilical if the shape operator is
S = λI, and for n > 1, it follows that λ is a constant. It is known that a complete and connected totally
umbilical hypersurface M of the Euclidean space Rn+1 is isometric to the sphere S n(λ2) of constant
curvature λ2 [5].

An interesting global result on a compact hypersurface M states that there exists a point p ∈ M such
that all sectional curvatures of M at p are positive [5].

Given a compact hypersurface M of Rn+1, the support function ρ = ⟨ψ,N⟩ where ψ : M −→ Rn+1 is
the immersion and satisfies the Minkowski’s formula∫

M
(1 + ρα) = 0, (1.6)

where α is the mean curvature of the hypersurface M.
Recall that a hypersurface M of the Euclidean space is said to be a minimal hypersurface if α = 0.

As a result of Minkowski’s formula, it follows that there is no compact minimal hypersurface in a
Euclidean space Rn+1.

One of the interesting goals in differential geometry of compact hypersurfaces is to find the
conditions under which the hypersurface of Rn+1 is isometric to the sphere S n(c) of the constant
curvature c.

In [6], it is shown that if the scalar curvature τ of a compact hypersurface M in the Euclidean space
Rn+1 satisfies τ ≤ λ1(n − 1), then M is isometric to S n(c). Here, λ1 stands for the first eigenvalue of the
Laplace operator. For similar results on compact hypersurfaces in Rn+1, we refer to [1, 7–9].

Consider the odd-dimensional sphere S 2n−1(c) as a hypersurface in the complex Euclidean space Cn

with natural embedding Ψ : S 2n−1(c) −→ Cn, with Ψ(x) = x, then it has shape operator S = −
√

cI and
unit normal N =

√
cΨ.

Due to the presence of complex structure J on Cn, we get a unit vector field ξ defined on S 2n−1(c)
by

ξ = −JN,
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which is a Killing vector field on the sphere S 2n−1(c), that is, it satisfies

Lξg = 0,

where Lξ is the Lie-derivative with respect to ξ.
In this paper, we are interested in studying compact hypersurfaces in the Euclidean space Rn+1,

which admit a Killing vector field ξ and analyze the impact of the presence of the Killing vector field
on the geometry of hypersurfaces. It is well known that the presence of a Killing vector field on a
Riemannian manifold contravenes its topology as well as geometry [2–4, 9–14]. In that, if the length
of the Killing vector field is a constant, the influence on the topology and geometry of the Riemannian
manifold on which they exist becomes severe. For example, on an even-dimensional Riemannian
manifold of positive curvature, there does not exist a nonzero Killing vector field of constant length.
It is in this context that even-dimensional spheres S 2n(c) do not possess unit Killing vector fields.
In [13], it is shown that the fundamental group of a Riemannian manifold admitting a Killing vector
field contains a cyclic subgroup of constant index.

Recall that on a compact hypersurface M, each smooth vector field ξ is generated by the global
flow on M. Let {ϕt} be the flow of the Killing vector field ξ on the compact hypersurface M of the
Euclidean space Rn+1. We say that a (1,1)-tensor field T on the hypersurface M is invariant under the
killing vector field ξ if

ϕ∗t (T ) = T ◦ dϕt,

which is equivalent to

LξT = 0. (1.7)

Recall that a Killing vector field is said to be a nontrivial Killing vector field if it is not a parallel
vector field.

Our first result in this paper is the following.

Theorem 1. A complete and simply connected hypersurface M of the Euclidean Rn+1, n > 1 with mean
curvature α and shape operator S admits a nontrivial unit Killing vector ξ, such that the sectional
curvature of plane sections containing ξ are positive, the shape operator S is invariant under ξ and
S (ξ) = αξ holds if, and only if, n = 2m − 1, α is constant and M is isometric to the sphere S 2m−1(α2).

For a hypersurface M that admits a unit Killing vector field ξ, we have a smooth function σ : M −→
R, defined by

σ = g((S (ξ), ξ)),

and we also get a vector field U on the hypersurface M associated to ξ, defined by

U = S (ξ) − σξ, (1.8)

and we call U the associated vector field. It follows that U is orthogonal to ξ.
Finally, we prove the following with constrained sectional curvature R(S (ξ), ξ; ξ, S (ξ)) of the

hypersurface M.

Theorem 2. A nontrivial unit Killing vector field ξ on a compact and connected hypersurface M of
Rn+1, n > 1 with mean curvature α leaves the shape operator S invariant, and the function σ =

g(S (ξ), ξ) , 0 satisfies
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∫
M

R(S (ξ), ξ; ξ, S (ξ)) ≥
∫

M
(nσα||S (ξ)||2 − nσ2α2)

if, and only if, n = 2m − 1, α is a constant and M is isometric to S 2m−1(α2).

2. Preliminaries

A smooth vector field ξ on an n-dimensional Riemannian manifold (Nn, g) is said to be a Killing
vector field if

Lξg = 0. (2.1)

In [9], it is shown that for a Killing vector field ξ on (Nn, g), there exists skew-symmetric operator
F on (Nn, g), that satisfies

∇Xξ = F(X) (2.2)

and that

(∇XF)(Y) = R(X, ξ)Y, X,Y ∈ X(Nn) (2.3)

holds.
Moreover, if ξ is a unit Killing vector field, then it follows that it annihilates F; that is,

F(ξ) = 0. (2.4)

Using Eqs (2.2)–(2.4), we have

R(X, ξ)ξ = (∇XF)(ξ) = −F(∇Xξ) = −F2(X);

that is,

R(X, ξ)ξ = −F2(X), X ∈ X(M), (2.5)

and on taking the inner product with X in the above equation, we get the following expression

R(X, ξ; ξ, X) = ||F(X)||2, X ∈ X(M). (2.6)

Note that here, for a unit X that is orthogonal to ξ, R(X, ξ; ξ, X) stands for the sectional curvature of
the plane section spanned by ξ and X.

Let M be an orientable hypersurface of the Euclidean space Rn+1 with unit normal N and the shape
operator S . We denote the induced metric on M by g and the Riemannian connection with respect to g
by ∇. Suppose the hypersurace admits a unit Killing vector field ξ.

We shall say the shape operator S is invariant under ξ if

LξS = 0, (2.7)
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which is equivalent to

(∇ξS )(X) = F(S X) − S (FX)), X ∈ X(M). (2.8)

Just like it was previously given, with a unit Killing vector field ξ on the hypersurface M, we can
define a smooth function σ : M −→ R by

σ = g(S (ξ), ξ)

and a smooth vector field U ∈ X(F) by

U = S (ξ) − σξ, (2.9)

which is called the associated vector field.
It follows that the vector field U is orthogonal to ξ. Note that, according to Codazzi’s Eq (1.4) for

hypersurface M and Eq (2.8), we confirm

(∇XS )(ξ) = F(S X) − S (FX), X ∈ X(M). (2.10)

Taking derivative in (2.9) with respect to X ∈ X(M) and using (2.2), we have that

∇XU = (∇XS )(ξ) + S (FX) − X(σ)ξ − σFX,

which in view of Eq (2.10), implies

∇XU = F(S X) − X(σ)ξ − σFX. (2.11)

3. Proof of Theorem 1

Suppose M is a complete and simply connected hypersurface of the Euclidean space Rn+1, which
admits a unit Killing vector field ξ with shape operator S as invariant under ξ. A sectional curvature of
the plane sections containing ξ are positive and the shape operator satisfies

S (ξ) = αξ, (3.1)

where α = 1
n trS is the mean curvature of M.

Differentiating Eq (3.1) with respect to X ∈ X(M) and using Eq (2.2) yields

(∇XS )(ξ) + S (FX) = X(α)ξ + αFX.

Using Eq (2.10) in the above equation brings

F(S X) = X(α)ξ + αFX, X ∈ X(M);

that is,
F(S X − αX) = X(α)ξ, X ∈ X(M).
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Operating F in the above equation and using equation (2.4), yields

F2(S X − αX) = 0, X ∈ X(M).

The above equation, in view of Eq (2.5) implies

R(S X − αX, ξ)ξ = 0.

Taking the inner product in the above equation, with S X − αX, we get

R(S X − αX, ξ; ξ, S X − αX) = 0, X ∈ X(M). (3.2)

Note that for any X ∈ X(M), in view of Eq (3.1), we have

g(S X − αX, ξ) = g(S X, ξ) − αg(X, α)
= g(X, S ξ) − αg(X, ξ)
= 0;

that is, S X − αX is orthogonal to ξ. Thus, by Eq (3.2), it follows that the sectional curvatures of the
plane sections spanned by S X − αX and ξ are zero, which is contrary to the hypothesis that sectional
curvatures of plane sections containing ξ are positive. Hence, we conclude

S X − αX = 0, X ∈ X(M);

that is,

S (X) = αX, X ∈ X(M). (3.3)

Note that the mean curvature α satisfies

nα =
n∑

j=1

g(S e j, e j) (3.4)

for a local orthonormal frame {e1, . . . , en} of the hypersurface M.
Differentiating (3.4) with respect to X ∈ X(M) gives

nX(α) =
n∑

j=1

[g(∇XS e j, e j) + g(S e j,DXe j)]

=

n∑
j=1

[g((∇XS )(e j), e j) + 2g(S e j,DXe j)],

and using Eq (1.4) gives

nX(α) =
n∑

j=1

[g((∇e jS )(X), e j) + 2g(S e j,DXe j)]. (3.5)
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Note that

∇Xe j =

n∑
i=1

ωi
j(X)ei,

where (ωi
j) are connection forms satisfying

ωi
j + ω

j
i = 0. (3.6)

We take
S (e j) =

∑
k

λk
jek,

where (λk
j) is a symmetric matrix. Thus,

n∑
j=1

g(S e j,∇Xe j) =
∑

ji

λi
jω

i
j(X) = 0,

owing to the fact that (λk
j) is a symmetric whereas (ωi

j(X)) is skew-symmetric.
Hence,

nX(α) =
n∑

j=1

g((∇e jS )(X), e j),

and as S is symmetric operator, we have

nX(α) =
n∑

j=1

g(X, (∇e jS )(e j)), X ∈ X(M).

From this, we see that the gradient of the mean curvature α satisfies

n∇α =
n∑

j=1

(∇e jS )(e j). (3.7)

Now, differentiating Eq (3.3) with respect to X ∈ X(M) yields

∇XS X = X(α)X + α∇XX,

and
S (∇XX) = α∇XX

gives
(∇XS )(X) = X(α)X.

Taking a local orthonormal frame {e1, . . . en} on the hypersurface M, we get

n∑
j=1

(∇e jS )(e j) =
n∑

j=1

e j(α)e j = ∇α,

AIMS Mathematics Volume 9, Issue 1, 1899–1910.



1906

and combining above the equation with Eq (3.7) yields

n∇α = ∇α.

However, n > 1 in the hypothesis implies

∇α = 0;

that is, the mean curvature α is a constant. Using Eqs (1.3) and (3.3), we see that the curvature tensor
of the hypersurface satisfies

R(X,Y)Z = α2{g(Y,Z)X − g(X,Z)Y}, X,Y,Z ∈ X(M);

that is, M is a space of constant curvature α2. Note that α2 > 0, as the sectional curvature of the plane
sections containing ξ are positive. Hence, with M being complete and a simply connected Riemannian
manifold of positive constant curvature α2, it is isometric to the sphere S n(α2).

Note that n cannot be even as a Killing vector field ξ on an even-dimensional Riemannian manifold
of positive sectional curvature that has a zero [5]; this is contrary to the assumption that ξ is a unit
Killing vector field. Hence, n is odd; that is, n = 2m − 1 and M is isometric to the sphere S 2m−1(α2).
The converse is trivial.

Note that the condition in the statement of Theorem 1 that the sectional curvatures of plane sections
containing ξ are positive is essential. For instance, if a complete and simply connected hypersurface
has sectional curvatures of plane sections containing ξ as nonpositive, then by virtue of Eq (2.6), it will
imply that ξ is a parallel; that is, it is a trivial Killing vector field contrary to the requirement that ξ is a
nontrivial.

4. Proof of Theorem 2

Suppose the compact and connected hypersurface M of the Euclidean space Rn+1, n > 1 with mean
curvature α admits a unit Killing vector field ξ, that the shape operator S is invariant under ξ and the
function σ = g(S ξ, ξ) , 0 satisfies∫

M
R(S ξ, ξ; ξ, S ξ) ≥

∫
M

(nασ||S ξ||2 − nα2σ2). (4.1)

For X ∈ X(M), by using Eq (2.2), we have that

X(σ) = g((∇XS )(ξ) + S FX, ξ) + g(S ξ, FX),

which, in view of Eq (2.8), gives

X(σ) = g(FS X, ξ) + g(S ξ, FX).

Using Eq (2.4) in the above equation, we get the gradient of σ as

∇σ = −F(S ξ). (4.2)
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Differentiating the above equation with respect to X ∈ X(M) and using Eq (2.2), we get

∇X∇σ = −[(∇XF)(S ξ) + F((∇XS )(ξ) + FS (X))].

Using Eqs (2.3) and (2.10), we conclude

∇X∇σ = −R(X, ξ)S ξ − F(F(S X) − S (FX)) − FS (FX);

that is,
∇X∇σ = −R(X, ξ)S ξ − F2(S X), X ∈ X(F).

Now, employing Eq (2.5) in the above equation, we reach

∇X∇σ = −R(X, ξ)S ξ + R(S X, ξ)ξ,

which in view of Eq (1.3), leads to

∇X∇σ = −[||S ξ||2S X − g(S X, S ξ)S ξ] + σS 2X − g(S X, S ξ)S ξ;

that is,

∇X∇σ = −||S ξ||2S X + σS 2X. (4.3)

Now, choosing a local orthonormal frame {e1, . . . , en} on the hypersurface M to compute div(∇σ),
by using Eq (4.3) we have

∆σ = div(∇σ) =
n∑

j=1

g(∇e j∇σ, e j) = −nα||S ξ||2 + σ||S ||2.

Thus, we conclude
σ∆σ = −nσα||S ξ||2 + σ2||S ||2.

Integrating the above equation by parts leads to

−

∫
M
||∇σ||2 =

∫
M

(σ2||S ||2 − nσα||S ξ||2);

that is, ∫
M
σ2(||S ||2 − nα2) =

∫
M

(nσα||S ξ||2 − ||∇σ||2 − nσ2α2). (4.4)

Now, Eqs (2.6) and (4.2) give

||∇σ||2 = ||F(S ξ)||2 = R(S ξ, ξ; ξ, S ξ),

which changes Eq (4.4) to∫
M
σ2(||S ||2 − nα2) =

∫
M

(nσα||S ξ||2 − nσ2α2) −
∫

M
R(S ξ, ξ; ξ, S ξ).
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Now, employing the inequality in the above equation yields∫
M
σ2(||S ||2 − nα2) ≤ 0. (4.5)

Note that, according to Schwartz’s inequality ||S ||2 ≥ nα2, the integrand in the integral of
inequality (4.5) is nonnegative. Hence, we get

σ2(||S ||2 − nα2) = 0, (4.6)

and since σ , 0 on the connected M, Eq (4.6) implies ||S ||2 = nα2. However, ||S ||2 = nα2 is the equality
in the Schwartz’s inequality ||S ||2 ≥ nα2, which holds if, and only if, S = αI. Following the proof of
Theorem 1, we get M as isometric to S 2m−1(α2).

Conversely, suppose that M is isometric to S 2m−1(α2), then as seen in the introduction, we see there
is a unit Killing vector field ξ on S 2m−1(α2). Moreover, the shape operator S = αI is invariant under ξ
and the function σ = g(S ξ, ξ) = α.

Thus,
∫

M
R(S ξ, ξ; ξ, S ξ) = 0 and∫

M
(nσα||S ξ||2 − mσ2α2) =

∫
M

(nα4 − nα4) = 0.

Consequently, ∫
M

R(S ξ, ξ; ξ, S ξ) =
∫

M
(nσα||S ξ||2 − nσ2α2)

holds. This finishes the proof.
We would like to emphasize that the condition σ , 0 is essential in the statement of Theorem 2 to

reach the conclusion. For instance, if we consider σ = g(S ξ, ξ) = 0 on the compact and connected
hypersurface, then Eq (4.3) would imply S ξ = 0 and it will not allow the hypersurface to be isometric
to a sphere.

5. Conclusions

There are two important vector fields on a Riemannian manifold (N, g), namely, a Killing vector
field and a conformal vector field, and they have importance in the geometry of a Riemannian manifold
in which they live, as well as in physics, especially the theory of relativity. In this paper, we have used a
unit Killing vector field ξ on a hypersurface M of the Euclidean space Rm+1 under the restriction that the
shape operator S of the hypersurface is invariant under ξ, and we obtained two characterizations of the
odd-dimensional spheres. In these results, we used the restrictions on sectional curvatures of the plane
sections containing the unit Killing vector field ξ and the shape operator S to reach the conclusions.
There could be a natural question as to what the restriction on the Ricci curvature Ric (ξ, ξ) should be of
the orientable hypersurface of the Euclidean space Rm+1 admitting a Killing vector field ξ, which leaves
the shape operator S invariant so that the hypersurface is isometric to an odd-dimensional sphere.

The next important vector field on a Riemannian manifold (N, g) is the conformal vector field. A
vector field ζ on (N, g) is said to be a conformal vector field if

Lζg = 2ρg, (5.1)

AIMS Mathematics Volume 9, Issue 1, 1899–1910.



1909

where Lζg is the Lie derivative of g, with respect to ζ, and ρ is a smooth function called the conformal
factor [3,10]. It is known that all spheres S m(c) admit many conformal vector fields. Therefore, it
is natural to study hypersurfaces of the Euclidean space Rm+1 admitting a conformal vector field ζ.
Naturally, one would like to confront with the question: Under what conditions does an orientable
hypersurface M of the Euclidean space Rm+1 admitting a conformal vector field ζ is isometric to the
sphere S m(c)?

Given a unit Killing vector field ξ on an orientable hypersurface M of the Euclidean space Rn+1, we
have seen that there is a vector field U on M given by Eq (2.9), which is orthogonal to ξ and called the
associated vector field to ξ. In addition, if the shape operator S is invariant under ξ, then the associated
vector field U satisfies Eq (2.11). Note that in Theorem 1, we assumed the associated vector field
U = 0. However, it will be an interesting task to explore the geometry of an orientable hypersurface M
with unit Killing vector field ξ, with respect to which the shape operator S is invariant under ξ and has
a nonzero associated vector field U, by imposing some geometric conditions on U.

These three questions raised above shall be our focus of attention in future studies of an orientable
hypersurface of the Euclidean space Rm+1.
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