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1. Introduction

In this paper, we consider the standard linear model

M : y = Xθθθ + ννν, (1.1)

where it is assumed that y ∈ Rn×1 is vector of observable random variables, X ∈ Rn×p are known
matrices of arbitrary ranks (0 ≤ r(X) ≤ min{n, p}), θθθ ∈ Rp×1 is a vector of fixed but unknown
parameters, and ννν ∈ Rn×1 is a random error vector. In order to carry out reasonable estimation and
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statistical inference in the context of (1.1), we assume that the expectation vector and the covariance
matrix of ννν are given without loss of generality by

E(ννν) = 0, Cov(ννν) = ΣΣΣ. (1.2)

In the sequel, we assume that ΣΣΣ ∈ Rn×n is a known positive semi-definite matrix of arbitrary rank in
order to derive general and precise conclusions under the given model assumptions. Once the work on
the general assumptions is established, we can further, as usual in parametric regression analysis, let ΣΣΣ
be certain specified forms with known or unknown entries, and then derive various concrete inference
results.

The assumptions in the contexts of (1.1) and (1.2) are typical in form for a complete specification of
the general linear model (for short, GLM). Observe that there are two unknown vectors θθθ and ννν in (1.1).
Then, we can figure out that an obligatory task in statistical inference under (1.1) and (1.2) is to predict
the two unknown vectors simultaneously:

τττ = Aθθθ + Bννν, (1.3)

where it is assumed that A ∈ Rs×p and B ∈ Rs×n are known matrices of arbitrary ranks. This vector
obviously includes all the unknown vectors in (1.1), such as θθθ and ννν, as its special cases. It is easy to
see that under (1.1) and (1.2), we have

E(τττ) = Aθθθ, Cov(τττ) = BΣΣΣB′, Cov(τττ, y) = BΣΣΣ. (1.4)

In the investigation of linear statistical models for regression, it is a common inference problem to
propose and characterize various reasonable connections between two different given models under
the given model assumptions. One concrete problem of such kind is to investigate the relationships
between a given linear model (called the original model) and certain types of its transformed models.
Sometimes, the transformed models are required to meet with certain necessary requirements in the
statistical inferences of the original linear model. Now let us consider M in (1.1) and its transformed
models. In such a case, we may be faced with different transformed forms of the model in accordance
with linear transformations of observable random vector y. Generally speaking, various possible
transformed models of M in (1.1) are often obtained by pre-multiplying T by a given matrix. For
example,

N : Ty = TXθθθ + Tννν, (1.5)

is a common transformed form of M in (1.1), where T ∈ Rm×n is a known transformation matrix of
arbitrary rank. Below, we present a group of well-known cases of the transformed model for different
choices of the transformation matrix T in (1.5).

(a) We first divide the original model M in (1.1) as

M :
[
y1

y2

]
=

[
X1

X2

]
θθθ +

[
ννν1

ννν2

]
by the partitions of the vectors and matrices in the model. Then we take the transformation
matrices T1 = [In1 , 0] and T2 = [0, In2] in (1.5) to obtain the following two sub-sample models:

M1 : y1 = X1θθθ + ννν1,
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M2 : y2 = X2θθθ + ννν2,

where yi ∈ R
ni×1,Xi ∈ R

ni×p, θθθ ∈ Rp×1, νννi ∈ R
ni×1 and n = n1 + n2. They can also be viewed as

adding or deleting certain regression equations in a given GLM. Also, we can say that these two
individual models occur in two periods of observations of data.

(b) Assume that a concrete form of M in (1.1) is given by

M :
[
y1

y2

]
=

[
X1 0
0 X2

][
θθθ1
θθθ2

]
+

[
ννν1

ννν2

]
.

In this case, taking the two transformation matrices T1 = [In1 , 0] and T2 = [0, In2], we obtain the
following two sub-sample models:

M1 : y1 = X1θθθ1 + ννν1,

M2 : y2 = X2θθθ2 + ννν2,

where yi ∈ R
ni×1,Xi ∈ R

ni×pi , θθθi ∈ R
pi×1, νννi ∈ R

ni×1, n = n1 + n2, p = p1 + p2. The two models
are known as seemingly unrelated linear models, which are linked to each other by the correlated
error terms across the models, where all the given matrices and the unknown vectors in the two
models are different.

Due to the linear nature of M in (1.1), we see the expectations and covariance matrices of y,Ty and
τττ under the assumptions in (1.1) and (1.2):

E(y) = Xθθθ, E(Ty) = TXθθθ, (1.6)
Cov(y) = ΣΣΣ, Cov(Ty) = TΣΣΣT′, (1.7)
Cov(τττ, y) = BΣΣΣ, Cov(τττ, Ty) = BΣΣΣT′. (1.8)

Now we mention some backgrounds of this current study. For unknown parameters in a given
regression model, statisticians are able to adopt different optimal criteria in order to obtain proper
predictions and estimations of the unknown parameters. In comparison, the best linear unbiased
prediction, the best linear unbiased estimation and the least squares estimation are best known among
others because they have many excellent mathematical and statistical properties and performances.
There were many deep and fruitful works in the statistical literatures related to these predictions and
estimations. However, it is a common fact in statistical practice that the unknown parameters in a
given model may not be predictable or estimable. Instead, it is necessary to choose certain biased
predictions and biased estimations for the unknown parameters. For example, Rao described the bias
between estimators and unknown parameter functions, constructed the minimum biased estimation
class, selected the one with the minimum variance in the minimum biased estimation class and then
defined the best linear minimum biased estimation. Especially when the unknown parameter function
is an estimable function, the best linear minimum biased estimation is the classic best linear unbiased
estimation. It can be seen from (1.1)–(1.8) that a given model and its transformed models are not
necessarily equivalent in form. Hence, the predictors/estimators of unknown vectors that are going to
derive under these models have different algebraic expressions and properties. Yet, some
transformations of observable random vectors may preserve enough information for
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predicting/estimating unknown vectors in the original model. Therefore, it is natural to consider
certain links between the predictors/estimators obtained from an original model and its transformed
models in statistical inferences of these models. Traditionally, the problems of characterizing
relationships between predictions/estimations of unknown vectors in an original model and its
transformed models were known as linear sufficiency problems, which were first considered in [1, 3].
Many scholars also studied the relationship between estimations under a given original model and its
transformed model from different aspects. For instance, Baksalary and Kala considered the problem
on linear transformations of GLMs preserving the best linear unbiased estimations under the general
Gauss-Markoff model in [1]; Xie studied in [30] the best linear minimum biased estimations under a
given GLM and discussed the problem of the linear transformation preserving the best linear
minimum biased estimations. Also, the subject of this kind was sufficiently approached
in [7, 9, 14, 18, 20, 33] among others.

Given the model assumptions in (1.1)–(1.8), the purpose of this paper is to provide a unified
theoretical and conceptual exploration for solving the best linear minimum biased prediction (for
short, BLMBP) problems under a GLM and its transformed general linear models (for short, TGLMs)
through the skillful and effective use of a series of exact and analytical matrix analysis tools. The
remaining part of this current paper is organized as follows. In the second section, we introduce
notation and serval matrix analysis tools and techniques that we shall utilize to characterize matrix
equalities and matrix set inclusions that involve generalized inverses of matrices. In the third section,
we introduce the definitions of the linear minimum biased predictor (for short, LMBP) and the
BLMBP of τττ in (1.3), as well as basic estimation and inference theory regarding the LMBP and
BLMBP, including their analytical expressions and their mathematical and statistical properties and
features in the contexts of (1.1)–(1.8). In the fourth section, we address the problems regarding the
relationships between the BLMBPs under a GLM and its TGLMs using the powerful matrix rank and
inertia methodology. The fifth section presents a special example related to the main findings in the
preceding sections. Some conclusions and remarks are given in the last section.

2. Some preliminaries

We begin with the introduction of notation used in the sequel. Rm×n denotes the collection of all
m×n matrices over the field of real numbers, and the symbols M′, r(M) and R(M) denote the transpose,
the rank and the range (column space) of M ∈ Rm×n, and Im denotes the identity matrix of order m.
The Moore–Penrose generalized inverse of M, denoted by M†, is defined to be the unique solution G
satisfying the four matrix equations MGM = M, GMG = G, (MG)′ = MG and (GM)′ = GM. Let
PM = MM†, M⊥ = EM = Im − MM† and FM = In − M†M denote the three orthogonal projectors
(symmetric idempotent matrices) induced from M, which will help in briefly denoting calculation
processes related to generalized inverses of matrices, where both EM and FM satisfy EM = FM′ and
FM = EM′ and the ranks of EM and FM are r(EM) = m − r(M) and r(FM) = n − r(M). Two symmetric
matrices M and N of the same size are said to satisfy the inequalities M ≽ N, M ≼ N, M ≻ N
and M ≺ N in the Löwner partial ordering if M − N is positive semi-definite, negative semi-definite,
positive definite and negative definite, respectively. Further information about the orthogonal projectors
PM, EM and FM and their various applications in the theory of linear statistical models can be found,
e.g., in [10, 13, 16, 19]. It is also well known that the Löwner partial ordering between two symmetric
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matrices is a surprisingly strong and useful property in matrix analysis. The reader is referred to [16]
and the references therein for more results and facts regarding the issues of the Löwner partial ordering
in statistical theory and applications. Recently, the authors of [2, 4–6, 23, 25, 26, 29] proposed and
approached a series of research problems concerning the relationships of different kinds of predictions
of unknown parameters in regression models using the rank and inertia methodology in matrix analysis,
and provided a variety of simple and reasonable equivalent facts related to the relationship problems.
In this paper, we also adopt the rank and inertia methodology to approach the relationship problems
regarding different estimations and predictions.

As preliminaries that can help readers in getting familiar with the features and usefulness of the
matrix rank methodology, we present in the following a list of commonly used results and facts about
ranks of matrices and matrix equations, which are well known or easy to prove. We shall use them
in the descriptions and simplifications of various complicated matrix expressions and matrix equalities
that occur in the statistical inference of a GLM and its TGLMs in the following sections.

Lemma 2.1 ([28]). Let A and B be two sets composed by matrices of the same size.

A ∩B , ∅ ⇒ min
A∈A ,B∈B

r( A − B ) = 0, (2.1)

A ⊆ B ⇒ max
A∈A

min
B∈B

r( A − B ) = 0. (2.2)

Lemma 2.2 ([12]). Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then,

r[A, B] = r(A) + r(EAB) = r(B) + r(EBA), (2.3)

r
[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC), (2.4)

r
[
AA′ B
B′ 0

]
= r[A, B] + r(B). (2.5)

In particular, the following results hold:

(a) r[A, B] = r(A)⇔ R(B) ⊆ R(A)⇔ AA†B = B⇔ EAB = 0.

(b) r
[
A
C

]
= r(A)⇔ R(C′) ⊆ R(A′)⇔ CA†A = C⇔ CFA = 0.

Lemma 2.3 ([22]). Assume that five matrices A1, B1, A2, B2 and A3 of appropriate sizes satisfy the
conditions R(A′1) ⊆ R(B′1),R(A2) ⊆ R(B1),R(A′2) ⊆ R(B′2) and R(A3) ⊆ R(B2). Then,

r(A1B†1A2B†2A3) = r


0 B2 A3

B1 A2 0
A1 0 0

 − r(B1) − r(B2). (2.6)

Lemma 2.4 ([21, 27]). Let A ∈ Rm×n,B ∈ Rm×k and C ∈ Rl×n be given. Then, the maximum and
minimum ranks of A − BZ and A − BZC with respect to a variable matrix Z of appropriate sizes are
given by the following closed-form formulas:

max
Z∈Rk×n

r(A − BZ) = min{r[A, B], n}, (2.7)
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min
Z∈Rk×n

r(A − BZ) = r[A, B] − r(B), (2.8)

max
Z∈Rk×l

r(A − BZC) = min
{

r[A, B], r
[
A
C

]}
. (2.9)

Below we offer some existing formulas and results regarding general solutions of a basic linear
matrix equation and a constrained quadratic matrix optimization problem.

Lemma 2.5 ([15]). Let A ∈ Rm×n and B ∈ Rp×n. Then, the linear matrix equation ZA = B is solvable
for Z ∈ Rp×m if and only if R(A′) ⊇ R(B′), or equivalently, BA†A = B. In this case, the general
solution of the equation can be written in the parametric form

Z = BA† + UA⊥,

where U ∈ Rp×m is an arbitrary matrix.

Lemma 2.6 ([28]). Let A ∈ Rm×n, B ∈ Rm×k and assume that R(A) = R(B). Then

XA = 0⇔ XB = 0.

Lemma 2.7 ([24]). Let
f (Z) = (ZC + D)M(ZC + D)′ s.t. ZA = B, (2.10)

where it is assumed that A ∈ Rp×q, B ∈ Rn×q, C ∈ Rp×m and D ∈ Rn×m are given,M ∈ Rm×m is positive
semi-definite and the matrix equation ZA = B is solvable for Z ∈ Rn×p. Then, there always exists a
solution Z0 of ZA = B such that

f (Z) ≽ f (Z0)

holds for all solutions of ZA = B, and the matrix Z0 that satisfies the above inequality is determined
by the following consistent matrix equation:

Z0[A, CMC′A⊥] = [B, −DMC′A⊥].

In this case, the general expression of Z0 and the corresponding f (Z0) and f (Z) are given by

Z0 = argmin
ZA=B

f (Z) = [B, −DMC′A⊥][A, CMC′A⊥]† + U[A, CMC′]⊥,

f (Z0) = min
ZA=B

f (Z) = GMG′ −GMC′TCMG′,

f (Z) = f (Z0) + (ZC + D)MC′TCM(ZC + D)′

= f (Z0) + (ZCMC′A⊥ + DMC′A⊥)T(ZCMC′A⊥ + DMC′A⊥)′,

where G = BA†C + D, T = (A⊥CMC′A⊥)† and U ∈ Rn×p is arbitrary.

In order to describe the relationships between BLMBPs under different regression models, we need
to adopt the following definition to characterize possible equality between two random vectors [28].

Definition 2.8. Let y be as given in (1.1), let {L1} and {L2} be two matrix sets and let L1y and L2y be
any two linear predictors of τττ in (1.3).
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(a) {L1y} ∩ {L2y} , ∅ holds definitely, i.e, {L1} ∩ {L2} , ∅ if and only if

min
L1∈{L1},L2∈{L2}

r(L1 − L2) = 0.

(b) The vector set inclusion {L1y} ⊆ {L2y} holds definitely, i.e, {L1} ⊆ {L2} if and only if

max
L1∈{L1}

min
L2∈{L2}

r(L1 − L2) = 0.

(c) {L1y} ∩ {L2y} , ∅ holds with probability 1 if and only if

min
L1∈{L1},L2∈{L2}

r((L1 − L2)[X, ΣΣΣ]) = 0

⇔ min
L1∈{L1},L2∈{L2}

r((L1 − L2)[X, ΣΣΣX⊥]) = 0

⇔ min
L1∈{L1},L2∈{L2}

r((L1 − L2)[XX′, ΣΣΣX⊥]) = 0.

(d) The vecctor set inclusion {L1y} ⊆ {L2y} holds with probability 1 if and only if

max
L1∈{L1}

min
L2∈{L2}

r((L1 − L2)[X, ΣΣΣ]) = 0

⇔ max
L1∈{L1}

min
L2∈{L2}

r((L1 − L2)[X, ΣΣΣX⊥]) = 0

⇔ max
L1∈{L1}

min
L2∈{L2}

r((L1 − L2)[XX′, ΣΣΣX⊥]) = 0.

3. Fundamentals of the LMBP/LMBE and BLMBP/BLMBE

Recall in parametric regression analysis that if there exists a matrix L such that E(Ly − τττ) = (LX −
A)θθθ = 0 holds for all θθθ, the parametric parameter vector τττ in (1.3) is said to predictable under the
assumptions in (1.1) and (1.2). Otherwise, there does not exist an unbiased prediction of τττ under (1.1)
and (1.2), and therefore, we have to seek certain biased predictions of τττ according to various specified
optimization criteria. In this section, we shall adopt the following known definitions of the LMBP and
BLMBP of τττ (cf. [17, p. 337]).

Definition 3.1. Let the parametric vector τττ be as given in (1.3).

(a) The LMBP of τττ in (1.3) under (1.1) is defined to be

LMBPM (τττ) = LMBPM (Aθθθ + Bννν) = L̂y, (3.1)

where the matrix L̂ satisfies

L̂ = argmin
L∈Rs×n

tr((LX − A)(LX − A)′). (3.2)

(b) The LMBP of τττ in (1.3) under (1.5) is defined to be

LMBPN (τττ) = LMBPN (Aθθθ + Bννν) = K̂Ty, (3.3)

where the matrix K̂ satisfies

K̂ = argmin
K∈Rs×m

tr((KTX − A)(KTX − A)′). (3.4)
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Theorem 3.2. Under the notations in Definition 3.1, the following results hold:

L̂ = argmin
L∈Rs×n

tr((LX − A)(LX − A)′)⇔ L̂XX′ = AX′, (3.5)

K̂ = argmin
K∈Rs×m

tr((KTX − A)(KTX − A)′)⇔ K̂TX(TX)′ = A(TX)′. (3.6)

Proof. Note first that

tr((KTX − A)(KTX − A)′)
= tr((KTX − A(TX)†TX + A(TX)†TX − A)(KTX − A(TX)†TX + A(TX)†TX − A)′)
= tr((KTX − A(TX)†TX − AFTX)(KTX − A(TX)†TX − AFTX)′)
= tr(AFTXA′) + tr((KTX − A(TX)†TX)(KTX − A(TX)†TX)′)
− tr((K − A(TX)†)TXFTXA′) − tr(AFTX(TX)′(K − A(TX)†)′)
= tr(AFTXA′) + tr((KTX − A(TX)†TX)(KTX − A(TX)†TX)′), (3.7)

where TXFTX = 0. Note that tr((KTX − A(TX)†TX)(KTX − A(TX)†TX)′) ≥ 0 for all K ∈ Rs×m and
the matrix equation KTX = A(TX)†TX is solvable for K ∈ Rs×m. In this case, we obtain

min
K∈Rs×m

tr((KTX − A)(KTX − A)′) = tr(AFTXA′),

and

K̂ = argmin
K∈Rs×m

tr((KTX − A)(KTX − A)′)⇔ K̂TX − A(TX)†TX = 0⇔ K̂TX(TX)′ = A(TX)′,

thus establishing (3.6). Letting T = In leads to (3.5). □

Definition 3.3. Let the parametric vector τττ be as given in (1.3).

(a) If L̂ satisfies

Cov( L̂y − τττ ) = min s.t. L̂ = argmin
L∈Rs×n

tr((LX − A)(LX − A)′) (3.8)

holds in the Löwner partial ordering, then the linear statistic L̂y is defined to be the BLMBP of τττ
in (1.3) under (1.1), and is denoted by

L̂y = BLMBPM (τττ) = BLMBPM (Aθθθ + Bννν). (3.9)

(b) If K̂ satisfies

Cov( K̂Ty − τττ ) = min s.t. K̂ = argmin
K∈Rs×m

tr((KTX − A)(KTX − A)′) (3.10)

holds in the Löwner partial ordering, then the linear statistic K̂Ty is defined to be the BLMBP of
τττ in (1.3) under (1.5), and is denoted by

K̂Ty = BLMBPN (τττ) = BLMBPN (Aθθθ + Bννν). (3.11)

If B = 0 or A = 0 in (1.3), then the K̂Ty in (3.11) are defined to be the best linear minimum
biased estimator (BLMBE) and the BLMBP of Aθθθ and Bννν in (1.3) under (1.5), respectively, and
are denoted by

K̂Ty = BLMBEN (Aθθθ) and K̂Ty = BLMBPN (Bννν).
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It is easy to verify that the difference of KTy − τττ under (1.5) can be written in the following form:

KTy − τττ = KTXθθθ +KTννν − Aθθθ − Bννν = (KTX − A)θθθ + (KT − B)ννν.

Hence, the covariance matrix of KTy − τττ can be written as

Cov( KTy − τττ ) = (KT − B)ΣΣΣ(KT − B)′ △= f (K). (3.12)

Our main results on the BLMBPs of τττ in (1.3) are given below.

Theorem 3.4. Let the parametric vector τττ be as given in (1.3) and define
W = [TX(TX)′, Cov(Ty)(TX)⊥] and D = Cov(τττ, Ty). Then

Cov(K̂Ty − τττ) = min s.t. K̂TX(TX)′ = A(TX)′ ⇔ K̂W = [A(TX)′, D(TX)⊥]. (3.13)

The matrix equation in (3.13) is solvable for K̂, i.e.,

[A(TX)′, D(TX)⊥]W†W = [A(TX)′, D(TX)⊥] (3.14)

holds under (3.6), while the general expression of K̂ and the corresponding BLMBPN (τττ) can be
written in the following form

BLMBPN (τττ) = K̂Ty = ([A(TX)′, D(TX)⊥]W† + U1W⊥)Ty, (3.15)

where U1 ∈ R
s×m is arbitrary. Furthermore, the following results hold.

(a) r[TX, TΣΣΣT′(TX)⊥] = r[TX, (TX)⊥TΣΣΣT′] = r[TX, TΣΣΣ] and
R[TX, TΣΣΣT′(TX)⊥] = R[TX, (TX)⊥TΣΣΣT′] = R[TX, TΣΣΣ].

(b) K̂T in (3.15) is unique if and only if R(T) ⊆ R[TX, TΣΣΣ].
(c) BLMBPN (τττ) is unique if and only if Ty ∈ R[TX, TΣΣΣ] holds with probability 1.
(d) The covariance matrix of BLMBPN (τττ) is given by

Cov(BLMBPN (τττ)) = K̂TΣΣΣT′K̂′ =
(
[A(TX)′, D(TX)⊥]W†

)
TΣΣΣT′

(
[A(TX)′, D(TX)⊥]W†

)′
;

(3.16)

the covariance matrix between BLMBPN (τττ) and τττ is given by

Cov(BLMBPN (τττ), τττ) = [A(TX)′, D(TX)⊥][TX(TX)′, TΣΣΣT′(TX)⊥]†D′; (3.17)

the difference of Cov(τττ) and Cov(BLMBPN (τττ)) is given by

Cov(τττ) − Cov(BLMBPN (τττ)) = BΣΣΣB′ − ([A(TX)′, D(TX)⊥]W†)TΣΣΣT′([A(TX)′, D(TX)⊥]W†)′;
(3.18)

the covariance matrix of τττ − BLMBPN (τττ) is given by

Cov(τττ − BLMBPN (τττ)) = ([A(TX)′, D(TX)⊥]W†T − B)ΣΣΣ([A(TX)′, D(TX)⊥]W†T − B)′.
(3.19)
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(e) If B = 0 or A = 0 in (1.3), then

BLMBEN (Aθθθ) = ([A(TX)′, 0]W† + U1W⊥)Ty, (3.20)
BLMBPN (Bννν) = ([0, D(TX)⊥]W† + U1W⊥)Ty. (3.21)

Proof. Eq (3.13) is obviously equivalent to

f (K) = (KT − B)ΣΣΣ(KT − B)′ = min s.t. KTX(TX)′ = A(TX)′. (3.22)

Since ΣΣΣ ≽ 0, the optimization problem in (3.22) is a special case of (2.10). By Lemma 2.7, the solution
of (3.22) is determined by the matrix equation in (3.13). This equation is consistent as well under (3.6),
and the general solution of the equation and the corresponding BLMBP are given in (3.15). Result (a)
is well known; see [11, 16]. Results (b) and (c) follow from the conditions [TX, TΣΣΣT′(TX)⊥]⊥T = 0
and [TX, TΣΣΣT′]⊥Ty = 0 holds with probability 1.

Taking the covariance operation of (3.15) yields (3.16). Also from (1.8) and (3.15), the covariance
matrix between BLMBPN (τττ) and τττ is

Cov(BLMBPN (τττ), τττ) = Cov(K̂Ty, τττ)
= [A(TX)′, D(TX)⊥][TX(TX)′, TΣΣΣT′(TX)⊥]†TΣΣΣB′

= [A(TX)′, D(TX)⊥][TX(TX)′, TΣΣΣT′(TX)⊥]†D′,

thus establishing (3.17). Combination of (1.4) and (3.16) yields (3.18). Substitution of (3.15)
into (3.12) and then simplification yields (3.19). □

Some conclusions for a special case of Theorem 3.4 are presented below without proof.

Corollary 3.5. Let the parametric vector τττ be as given in (1.3), and define V = [XX′, Cov(y)X⊥] and
C = Cov(τττ, y). Then

Cov(L̂y − τττ) = min s.t. L̂XX′ = AX′ ⇔ L̂V = [AX′, CX⊥]. (3.23)

The matrix equation in (3.23) is solvable for L̂, i.e.,

[AX′, CX⊥]V†V = [AX′, CX⊥] (3.24)

holds under (3.5),while the general expression of L̂ and the corresponding BLMBPM (τττ) can be written
in the following form

BLMBPM (τττ) = L̂y = ([AX′, CX⊥]V† + U2V⊥)y, (3.25)

where U2 ∈ R
s×n is arbitrary. Furthermore, the following results hold.

(a) r[X, ΣΣΣX⊥] = r[X, X⊥ΣΣΣ] = r[X, ΣΣΣ] and R[X, ΣΣΣX⊥] = R[X, X⊥ΣΣΣ] = R[X, ΣΣΣ].
(b) L̂ in (3.25) is unique if and only if r[X, ΣΣΣ] = n.
(c) BLMBPM (τττ) is unique if and only if y ∈ R[X, ΣΣΣ] holds with probability 1.
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(d) The covariance matrix of BLMBPM (τττ) is given by

Cov(BLMBPM (τττ)) = L̂ΣΣΣL̂′ =
(
[AX′, CX⊥]V†

)
ΣΣΣ

(
[AX′, CX⊥]V†

)′
; (3.26)

the covariance matrix between BLMBPM (τττ) and τττ is given by

Cov(BLMBPM (τττ), τττ) = [AX′, CX⊥][XX′, ΣΣΣX⊥]†C′; (3.27)

the difference of Cov(τττ) and Cov(BLMBPM (τττ)) is given by

Cov(τττ) − Cov(BLMBPM (τττ)) = BΣΣΣB′ −
(
[AX′, CX⊥]V†

)
ΣΣΣ

(
[AX′, CX⊥]V†

)′
; (3.28)

the covariance matrix of τττ − BLMBPM (τττ) is given by

Cov(τττ − BLMBPM (τττ) ) = ( [AX′, CX⊥]V† − B )ΣΣΣ( [AX′, CX⊥]V† − B )′. (3.29)

Corollary 3.6. Let the parametric vector τττ be as given in (1.3). Then, the following results hold:

(a) The BLMBP of τττ can be decomposed as the sum

BLMBPN (τττ) = BLMBEN (Aθθθ) + BLMBPN (Bννν), (3.30)

and they satisfy

Cov(BLMBEN (Aθθθ), BLMBPN (Bννν)) = 0, (3.31)
Cov(BLMBPN (τττ)) = Cov(BLMBEN (Aθθθ)) + Cov(BLMBPN (Bννν)). (3.32)

(b) For any matrix P ∈ Rt×s, and the following equality holds:

BLMBPN (Pτττ) = PBLMBPN (τττ). (3.33)

(c) The BLMBP of τττ can be decomposed as the sum

BLMBPM (τττ) = BLMBEM (Aθθθ) + BLMBPM (Bννν), (3.34)

and they satisfy

Cov(BLMBEM (Aθθθ), BLMBPM (Bννν)) = 0, (3.35)
Cov(BLMBPM (τττ)) = Cov(BLMBEM (Aθθθ)) + Cov(BLMBPM (Bννν)). (3.36)

(d) For any matrix P ∈ Rt×s, and the following equality holds:

BLMBPM (Pτττ) = PBLMBPM (τττ). (3.37)

Proof. Notice that the arbitrary matrix U1 in (3.15) can be rewritten as U1 = V1 +V2, while the matrix
[A(TX)′, D(TX)⊥] in (3.15) can be rewritten as

[A(TX)′, D(TX)⊥] = [A(TX)′, 0] + [0, D(TX)⊥].
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Correspondingly, BLMBPN (τττ) in (3.15) can be rewritten as the sum:

BLMBPN (τττ) = ( [A(TX)′, D(TX)⊥]W† + U1W⊥ )Ty
= ( [A(TX)′, 0]W† + V1W⊥ )Ty
+ ( [0, D(TX)⊥]W† + V2W⊥ )Ty
= BLMBEN (Aθθθ) + BLMBPN (Bννν),

thus establishing (3.30). From (3.20) and (3.21), the covariance matrix between BLMBEN (Aθθθ) and
BLMBPN (Bννν) is given by

Cov(BLMBEN (Aθθθ), BLMBPN (Bννν)) = [A(TX)′, 0]W†TΣΣΣT′([0, BΣΣΣT′(TX)⊥]W†)′.

Applying (2.6) to the right-hand side of the above equality and then simplifying by
Theorem 3.4(a), (2.3), and (2.5), we obtain

r( Cov(BLMBEN (Aθθθ), BLMBPN (Bννν)) )
= r( [A(TX)′, 0]W†TΣΣΣT′([0, BΣΣΣT′(TX)⊥]W†)′ )

= r


0

[
TX(TX)′

(TX)⊥TΣΣΣT′

] [
0

(TX)⊥TΣΣΣB′

]
[TX(TX)′, TΣΣΣT′(TX)⊥] TΣΣΣT′ 0

[A(TX)′, 0] 0 0

 − 2r[TX, TΣΣΣT′(TX)⊥]

= r


[
0 0
0 −(TX)⊥TΣΣΣT′(TX)⊥

] [
TX(TX)′

0

] [
0

(TX)⊥TΣΣΣB′

]
[TX(TX)′, 0] TΣΣΣT′ 0
[A(TX)′, 0] 0 0

 − 2r[TX, TΣΣΣ]

= r


0 TX(TX)′

TX(TX)′ TΣΣΣT′
A(TX)′ 0

 + r[(TX)⊥TΣΣΣT′(TX)⊥, (TX)⊥TΣΣΣB′] − 2r[TX, TΣΣΣ]

= r
[
TX(TX)′

A(TX)′

]
+ r

[
TX(TX)′

TΣΣΣT′

]
+ r[TX, TΣΣΣT′(TX)⊥, TΣΣΣB′] − r(TX) − 2r[TX, TΣΣΣ]

= r[TX, TΣΣΣ, TΣΣΣB′] − r[TX, TΣΣΣ]
= r[TX, TΣΣΣ] − r[TX, TΣΣΣ]
= 0,

which implies that Cov(BLMBEN (Aθθθ), BLMBPN (Bννν)) is a zero matrix, thus establishing (3.31).
Equation (3.32) follows from (3.30) and (3.31). Result (b) follows directly from (3.15). Results (c)
and (d) are special cases of (a) and (b). □

4. Relationships between the BLMBPs under a GLM and its TGLMs

One of the main tasks in the statistical inference of parametric regression models is to characterize
connections between different predicttions/estimattions of unknown parameters. In this section, we
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study the relationships between the BLMBPs under GLM and its TGLMs. Because the coefficient
matrices K̂T and L̂ in (3.15) and (3.25) are not necessarily unique, we use

{L̂}, {K̂T}, {BLMBPM (τττ)} = {L̂y}, {BLMBPN (τττ)} = {K̂Ty} (4.1)

to denote the collections of all the coefficient matrices and the corresponding BLMBPs. In order to
characterize the relations between the collections of the coefficient matrices in (4.1), it is necessary to
discuss the following four cases:

(a) {L̂} ∩ {K̂T} , ∅, so that {BLMBPM (τττ)} ∩ {BLMBPN (τττ)} , ∅ holds definitely;
(b) {L̂} ⊇ {K̂T}, so that {BLMBPM (τττ)} ⊇ {BLMBPN (τττ)} holds definitely;
(c) {L̂} ⊆ {K̂T}, so that {BLMBPM (τττ)} ⊆ {BLMBPN (τττ)} holds definitely;
(d) {L̂} = {K̂T}, so that {BLMBPM (τττ)} = {BLMBPN (τττ)} holds definitely.

In order to characterize the relations between the collections of the random vectors in (4.1), it is
necessary to discuss the following four cases:

(a) {BLMBPM (τττ)} ∩ {BLMBPN (τττ)} , ∅ holds with probability 1;
(b) {BLMBPM (τττ)} ⊇ {BLMBPN (τττ)} holds with probability 1;
(c) {BLMBPM (τττ)} ⊆ {BLMBPN (τττ)} holds with probability 1;
(d) {BLMBPM (τττ)} = {BLMBPN (τττ)} holds with probability 1.

Our main results are given below.

Theorem 4.1. Let BLMBPN (τττ) and BLMBPM (τττ) be as given in (3.15) and (3.25), respectively and
define

Λ =

[
TXX′ TΣΣΣ

0 X′

]
, Γ = [AX′, BΣΣΣ]. (4.2)

Then, the following results hold.

(a) There exist L̂ and K̂ such that L̂ = K̂T if and only if R(Γ′) ⊆ R(Λ′). In this case, {BLMBPM (τττ)}∩
{BLMBPN (τττ)} , ∅ holds definitely.

(b) {L̂} ⊇ {K̂T} if and only if R(Γ′) ⊆ R(Λ′). In this case, {BLMBPM (τττ)} ⊇ {BLMBPN (τττ)} holds
definitely.

(c) {L̂} ⊆ {K̂T} if and only if r
[
Λ

Γ

]
= r(T) + r(X) + r[X, ΣΣΣ] − n. In this case, {BLMBPM (τττ)} ⊆

{BLMBPN (τττ)} holds definitely.
(d) {L̂} = {K̂T} if and only if R(Γ′) ⊆ R(Λ′) and r[TX, TΣΣΣ] = r[X, ΣΣΣ] + r(T) − n. In this case,
{BLMBPM (τττ)} = {BLMBPN (τττ)} holds definitely.

Proof. From (3.15) and (3.25), the difference L̂ − K̂T can be written as

L̂ − K̂T = Q + U2[XX′, ΣΣΣX⊥]⊥ − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T, (4.3)

where Q = [AX′, BΣΣΣX⊥][XX′,ΣΣΣX⊥]† − [A(TX)′, BΣΣΣT′(TX)⊥][TX(TX)′,TΣΣΣT′(TX)⊥]†T and U1 ∈

Rs×m and U2 ∈ R
s×n are arbitrary. Applying (2.8) to (4.3) gives

min
L̂,K̂

r(L̂ − K̂T) = min
U1,U2

r(Q + U2[XX′, ΣΣΣX⊥]⊥ − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T)
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= r


Q

[XX′, ΣΣΣX⊥]⊥

[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

 − r
[

[XX′, ΣΣΣX⊥]⊥

[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

]
. (4.4)

It is easy to obtain by (2.3), (2.4) and elementary block matrix operations (EBMOs) that

r


Q

[XX′, ΣΣΣX⊥]⊥

[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T


= r


Q 0 0
In [XX′, ΣΣΣX⊥] 0
T 0 [TX(TX)′, TΣΣΣT′(TX)⊥]

 − r[XX′, ΣΣΣX⊥] − r[TX(TX)′, TΣΣΣT′(TX)⊥]

= r


0 −[AX′, BΣΣΣX⊥] [A(TX)′, BΣΣΣT′(TX)⊥]
In [XX′, ΣΣΣX⊥] 0
T 0 [TX(TX)′, TΣΣΣT′(TX)⊥]

 − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r


0 −[AX′, BΣΣΣX⊥] [A(TX)′, BΣΣΣT′(TX)⊥]
In 0 0
0 −T[XX′, ΣΣΣX⊥] [TX(TX)′, TΣΣΣT′(TX)⊥]

 − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r
[
[AX′, BΣΣΣX⊥] [A(TX)′, BΣΣΣT′(TX)⊥]
T[XX′, ΣΣΣX⊥] [TX(TX)′, TΣΣΣT′(TX)⊥]

]
+ n − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r


TXX′ TΣΣΣ TΣΣΣT′

0 X′ 0
0 0 (TX)′

AX′ BΣΣΣ BΣΣΣT′

 + n − r(X) − r(TX) − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r


TXX′ TΣΣΣ 0

0 X′ 0
0 0 (TX)′

AX′ BΣΣΣ 0

 + n − r(X) − r(TX) − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r


TXX′ TΣΣΣ

0 X′
AX′ BΣΣΣ

 + n − r(Γ) − r[X, ΣΣΣ], (4.5)

and

r
[

[XX′, ΣΣΣX⊥]⊥

[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

]
= r

[
In [XX′, ΣΣΣX⊥] 0
T 0 [TX(TX)′, TΣΣΣT′(TX)⊥]

]
− r[XX′, ΣΣΣX⊥] − r[TX(TX)′, TΣΣΣT′(TX)⊥]

= r
[
In 0 0
0 −T[XX′, ΣΣΣX⊥] [TX(TX)′, TΣΣΣT′(TX)⊥]

]
− r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r(T[XX′, ΣΣΣX⊥], [TX(TX)′, TΣΣΣT′(TX)⊥]) + n − r[X, ΣΣΣ] − r[TX, TΣΣΣ]
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= r


TXX′ TΣΣΣ TΣΣΣT′

0 X′ 0
0 0 (TX)′

 + n − r(X) − r(TX) − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r


TXX′ TΣΣΣ 0

0 X′ 0
0 0 (TX)′

 + n − r(X) − r(TX) − r[X, ΣΣΣ] − r[TX, TΣΣΣ]

= r
[
TXX′ TΣΣΣ

0 X′

]
+ n − r(Γ) − r[X, ΣΣΣ]. (4.6)

Substituting (4.5) and (4.6) into (4.4) yields

min
L̂,K̂

r(L̂ − K̂T) = r
[
Λ

Γ

]
− r(Λ). (4.7)

Setting the right-hand side of (4.7) equal to zero and applying Lemma 2.2(b) yields the equivalent
condition in (a). Applying (2.8) to (4.3) yields

min
L̂

r(L̂ − K̂T) = min
U2

r(Q + U2[XX′, ΣΣΣX⊥]⊥ − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T)

= r
[
Q − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

[XX′, ΣΣΣX⊥]⊥

]
− r([XX′, ΣΣΣX⊥]⊥)

= r
[
Q − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

[XX′, ΣΣΣX⊥]⊥

]
− n + r[X, ΣΣΣ] (4.8)

and by (2.9) and (4.5),

max
U1

r
[
Q − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

[XX′, ΣΣΣX⊥]⊥

]
= max

U1
r
([

Q
[XX′, ΣΣΣX⊥]⊥

]
−

[
Is

0

]
U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

)

= min

r


Q

[XX′, ΣΣΣX⊥]⊥

[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

 , r
[

Q Is

[XX′, ΣΣΣX⊥]⊥ 0

]
= min

r


Q

[XX′, ΣΣΣX⊥]
[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T

, s + n − r[X, ΣΣΣ]


= min

{
r
[
Λ

Γ

]
+ n − r(X) − r[X, ΣΣΣ] − r[TX, TΣΣΣ], s + n − r[X, ΣΣΣ]

}
= min

{
s, r

[
Λ

Γ

]
− r(Γ)

}
+ n − r[X, ΣΣΣ]. (4.9)

Combining (4.8) and (4.9) yields

max
K̂

min
L̂

r(L̂ − K̂T) = min
{

s, r
[
Λ

Γ

]
− r(Γ)

}
. (4.10)
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Setting the right-hand side of (4.10) equal to zero yields r
[
Λ

Γ

]
= r(Γ). Thus, the statement in (b) holds.

By a similar approach, we can obtain

max
L̂

min
K̂

r(L̂ − K̂T) = min
{

s, r
[
Λ

Γ

]
+ n − r(T) − r(X) − r[X, ΣΣΣ]

}
, (4.11)

as required for the statement in (c). Combining (b) and (c) yields (d). □

Theorem 4.2. Let BLMBPN (τττ) and BLMBPM (τττ) be as given in (3.15) and (3.25), respectively, and
let Λ and Γ be as given in (4.2). Then, the following six statements are equivalent:

(a) {BLMBPM (τττ)} ∩ {BLMBPN (τττ)} , ∅ holds definitely.
(b) {BLMBPM (τττ)} ∩ {BLMBPN (τττ)} , ∅ holds with probability 1.
(c) {BLMBPM (τττ)} ⊇ {BLMBPN (τττ)} holds with probability 1.
(d) {BLMBPM (τττ)} ⊆ {BLMBPN (τττ)} holds with probability 1.
(e) {BLMBPM (τττ)} = {BLMBPN (τττ)} holds with probability 1.
(f) R(Γ′) ⊆ R(Λ′).

Proof. It can be seen from Lemma 2.6 and Definition 2.8(c) that (a) is equivalent to

min
L̂,K̂

r((L̂ − K̂T)[XX′, ΣΣΣX⊥]) = 0. (4.12)

Substituting the coefficient matrices in (3.15) and (3.25) into (4.12) and simplifying, we obtain

U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥] = J,

where J = [AX′, BΣΣΣX⊥]−[A(TX)′, BΣΣΣT′(TX)⊥][TX(TX)′,TΣΣΣT′(TX)⊥]†T[XX′, ΣΣΣX⊥] and U1 ∈ R
s×m

is arbitrary. From Lemma 2.5, the matrix equation is solvable for U1 if and only if

r
[

J
[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥]

]
= r([TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥]). (4.13)

Applying (2.3) and (2.4), and simplifying, leads to

r
[

J
[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥]

]
= r

[
J 0

T[XX′, ΣΣΣX⊥] [TX(TX)′, TΣΣΣT′(TX)⊥]

]
− r[TX(TX)′, TΣΣΣT′(TX)⊥]

= r
[
[AX′, BΣΣΣX⊥] [A(TX)′, BΣΣΣT′(TX)⊥]
T[XX′, ΣΣΣX⊥] [TX(TX)′, TΣΣΣT′(TX)⊥]

]
− r[TX, TΣΣΣ]

= r


TXX′ TΣΣΣ TΣΣΣT′

0 X′ 0
0 0 (TX)′

AX′ BΣΣΣ BΣΣΣT′

 − r(X) − r(TX) − r[TX, TΣΣΣ]
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= r


TXX′ TΣΣΣ

0 X′
AX′ BΣΣΣ

 − r(X) − r[TX, TΣΣΣ] = r
[
Λ

Γ

]
− r(Γ), (4.14)

and

r([TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥])
= r([TX(TX)′, TΣΣΣT′(TX)⊥], T[XX′, ΣΣΣX⊥]) − r[TX, TΣΣΣ]
= r[TX, TΣΣΣ] − r[TX, TΣΣΣ] = 0. (4.15)

Substituting (4.14) and (4.15) into (4.13) leads to r
[
Λ

Γ

]
= r(Γ), thus establishing the equivalence of (a)

and (e).
From Lemma 2.6 and Definition 2.8(d) that (b) is equivalent to

max
K̂

min
L̂

r((L̂ − K̂T)[XX′, ΣΣΣX⊥]) = 0. (4.16)

From (2.7), (3.15), (3.23), (3.25) and (4.14),

max
K̂

min
L̂

r((L̂ − K̂T)[XX′, ΣΣΣX⊥])

= max
K̂

r(J − U1[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥])

= min
{

r
[

J
[TX(TX)′, TΣΣΣT′(TX)⊥]⊥T[XX′, ΣΣΣX⊥]

]
, s

}
. (4.17)

Setting the right-hand side of (4.17) equal to zero yields r
[
Λ

Γ

]
= r(Γ), thus establishing the equivalence

of (b) and (e).
Similarly, we are able to obtain

max
L̂

min
K̂

r((L̂ − K̂T)[XX′, ΣΣΣX⊥]) = r
[
Λ

Γ

]
− r(Γ). (4.18)

Thus, (4.18) is equivalent to r
[
Λ

Γ

]
= r(Γ). Combining results (b) and (c) leads to the equivalence of (d)

and (e). □

Combining Theorems 4.1 and 4.2, we obtain the following result:

Corollary 4.3. Let BLMBPN (τττ) and BLMBPM (τττ) be as given in (3.15) and (3.25), respectively, and
let Λ and Γ be as given in (4.2). Then, the following six statistical statements are equivalent:

(a) {BLMBPM (τττ)} ∩ {BLMBPN (τττ)} , ∅ holds definitely.
(b) {BLMBPM (τττ)} ⊇ {BLMBPN (τττ)} holds definitely.
(c) {BLMBPM (τττ)} ∩ {BLMBPN (τττ)} , ∅ holds with probability 1.
(d) {BLMBPM (τττ)} ⊇ {BLMBPN (τττ)} holds with probability 1.
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(e) {BLMBPM (τττ)} ⊆ {BLMBPN (τττ)} holds with probability 1.
(f) {BLMBPM (τττ)} = {BLMBPN (τττ)} holds with probability 1.

The results in the above theorems and corollaries can be simplified further for different choices of
the matrices in (1.3), such as, A = K and B = 0. Hence, many specified conclusions can further be
obtained on the relationships between a GLM and its TGLMs. Assume that τττ in (1.3) is predictable
under (1.1) and (1.5). We obtain that the BLMBP of τττ is just its BLUP, and the main results in the
paper are the classic theory on the BLUPs of τττ under (1.1) and (1.5). Therefore, these works are
certain extensions of the classic BLUP theory.

5. An example

Assume that a concrete form of M in (1.1) is given by

M :
[
y1

y2

]
=

[
X1 0
0 X2

] [
θθθ1
θθθ2

]
+

[
ννν1

ννν2

]
, E

[
ννν1

ννν2

]
= 0, Cov

[
ννν1

ννν2

]
= σ2

[
In1 0
0 In2

]
.

In this case, taking two transformation matrices T1 = [In1 , 0] and T2 = [0, In2], we obtain the following
two sub-sample models:

M1 : y1 = X1θθθ1 + ννν1, E(ννν1) = 0, Cov(ννν1) = σ2In1 ,

M2 : y2 = X2θθθ2 + ννν2, E(ννν2) = 0, Cov(ννν2) = σ2In2 ,

where it is assumed that yi ∈ R
ni×1,Xi ∈ R

ni×pi , θθθi ∈ R
pi×1, νννi ∈ R

ni×1, n = n1 + n2, p = p1 + p2. For
illustrating the results in Section 4, let A = [X1, 0],B = 0 and A = [0, X2],B = 0 in (1.3), respectively.
From Theorems 4.1 and 4.2,

r
[
Λ

Γ

]
= r


TXX′ TΣΣΣ

0 X′
AX′ BΣΣΣ

 = r


X1X′1 σ

2In1 0
0 X′1 0
0 0 X′2

X1X′1 0 0

 = r


0 In1 0
0 0 X′2

X1X′1 0 0

 = n1 + r(X),

r(Λ) = r
[
TXX′ TΣΣΣ

0 X′

]
= r

[
TX TΣΣΣ
0 X′

]
= r


X1 σ

2In1 0
0 X′1 0
0 0 X′2

 = n1 + r(X),

r(T) + r(X) + r[X, ΣΣΣ] − n = n1 + r(X).

Obviously, the equivalent conditions all hold in Theorems 4.1 and 4.2. Thus, we can easily describe
the relations between the corresponding estimators.

6. Conclusions

We have provided algebraic and statistical analysis of a biased prediction problem when a joint
parametric vector is unpredictable under a given GLM, and obtained an abundance of exact formulas
and facts about the BLMBPs of the joint parametric vector in the contexts of a GLM and its TGLMs.
All the findings in this article are technically formulated or denoted in certain analytical expressions or
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explicit assertions through the surprise use of specified matrix analysis tools and techniques. Hence,
it is not difficult to understand these results and facts from both mathematical and statistical aspects.
In view of this fact, we can take these obtained in the preceding sections as a group of theoretical
contributions in the statistical inference under general linear model assumptions. Consequently, we
are able to utilize the statistical methods developed in this article to provide additional insight into
various concrete inference problems and subjects related to GLMs. Correspondingly, we point out that
the main conclusions presented in this work have certain significant applications in the field of inverse
scattering problems. The reader is referred to [8, 31, 32] on the topic of inverse scattering problems.
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